Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consid...Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consider changes in temperature and pressure conditions,which limits the accuracy of the comprehensive evaluation of the brittle plastic evolution and sealing ability of gypsum rocks using temperature pressure coupling.Triaxial stress-strain tests were utilized to investigate the differences in the evolution of the confinement capacity of gypsum rocks under coupled temperaturepressure action and isothermal-variable pressure action on the basis of sample feasibility analysis.According to research,the gypsum rock's peak and residual strengths decrease under simultaneous increases in temperature and pressure over isothermal pressurization experimental conditions,and it becomes more ductile.This reduces the amount of time it takes for the rock to transition from brittle to plastic.When temperature is taken into account,both the brittle–plastic transformation's depth limit and the lithological transformation of gypsum rocks become shallower,and the evolution of gypsum rocks under variable temperature and pressure conditions is more complicated than that under isothermal pressurization.The sealing ability under the temperature-pressure coupling is more in line with the actual geological context when the application results of the Well#ZS5 are compared.This provides a theoretical basis for precisely determining the process of hydrocarbon accumulation and explains why the early hydrocarbon were not well preserved.展开更多
The Upper Cretaceous Qingshankou Formation black shales,deposited in the late Turonian(LTB shales),are the main source rocks of the Songliao Basin.The origins of organic matter enrichment of the shales is a contentiou...The Upper Cretaceous Qingshankou Formation black shales,deposited in the late Turonian(LTB shales),are the main source rocks of the Songliao Basin.The origins of organic matter enrichment of the shales is a contentious subject fuelling many ongoing debates.This study investigates the genesis of the organic matter-rich shale by using molecular geochemistry.The LTB shales can be divided into three sections.The SectionⅠshales were deposited in saline,stratified and anoxic water conditions,which are related to seawater incursion events.At least three episodic and periodic seawater incursion events were recognized during SectionⅠshale deposition.The SectionⅡshales deposited in brackish to fresh and deep lake-level conditions with high primary productivity,which are related to lake-level transgression.The SectionⅢshales were deposited under fresh and slightly oxidized water conditions,which are related to lake-level regression.Two organic matter enrichment models for the LTB shales are identified,that is,the seawater incursion model and the maximum lake-level transgression sedimentation model,which act on different shale sections,both playing significant roles in the enrichment of organic matter.展开更多
The types,occurrence and composition of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata of the first member of the Middle Permian Maokou Formation(Mao-1 Member)in eastern Sichuan Basin w...The types,occurrence and composition of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata of the first member of the Middle Permian Maokou Formation(Mao-1 Member)in eastern Sichuan Basin were investigated through outcrop section measurement,core observation,thin section identification,argon ion polishing,X-ray diffraction,scanning electron microscope,energy spectrum analysis and laser ablation-inductively coupled plasma-mass spectrometry.The diagenetic evolution sequence of clay minerals was clarified,and the sedimentary-diagenetic evolution model of clay minerals was established.The results show that authigenic sepiolite minerals were precipitated in the Si4+and Mg2+-rich cool aragonite sea and sepiolite-bearing strata were formed in the Mao-1 Member.During burial diagenesis,authigenic clay minerals undergo two possible evolution sequences.First,from the early diagenetic stage A to the middle diagenetic stage A1,the sepiolite kept stable in the shallow-buried environment lack of Al3+.It began to transform into stevensite in the middle diagenetic stage A2,and then evolved into disordered talc in the middle diagenetic stage B1and finally into talc in the period from the middle diagenetic stage B2to the late diagenetic stage.Thus,the primary diagenetic evolution sequence of authigenic clay minerals,i.e.sepiolite-stevensite-disordered talc-talc,was formed in the Mao-1 Member.Second,in the early diagenetic stage A,as Al3+carried by the storm and upwelling currents was involved in the diagenetic process,trace of sepiolite started to evolve into smectite,and a part of smectite turned into chlorite.From the early diagenetic stage B to the middle diagenesis stage A1,a part of smectite evolved to illite/smectite mixed layer(I/S).The I/S evolved initially into illite from the middle diagenesis stage A2to the middle diagenesis stage B2,and then totally into illite in the late diagenesis stage.Thus,the secondary diagenetic evolution sequence of authigenic clay minerals,i.e.sepiolite-smectite-chlorite/illite,was formed in the Mao-1 Member.The types and evolution of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata are significant for petroleum geology in two aspects.First,sepiolite can adsorb and accumulate a large amount of organic matters,thereby effectively improving the quality and hydrocarbon generation potential of the source rocks of the Mao-1 Member.Second,the evolution from sepiolite to talc is accompanied by the formation of numerous organic matter pores and clay shrinkage pores/fractures,as well as the releasing of the Mg2+-rich diagenetic fluid,which allows for the dolomitization of limestone within or around the sag.As a result,the new assemblages of self-generation and self-accumulation,and lower/side source and upper/lateral reservoir,are created in the Middle Permian,enhancing the hydrocarbon accumulation efficiency.展开更多
With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,...With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.展开更多
Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval anal...Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval analyses,this study systematically investigated the organic matter and pyrites in the continental shales in the 3^(rd)submember of the Chang 7 Member(Chang 7^(3)submember)in the Yanchang Formation,Ordos Basin and determined their types and the formation and evolutionary characteristics.The results are as follows.The organic matter of the continental shales in the Chang 7^(3)submember is dominated by amorphous bituminites and migrabitumens,which have come into being since the early diagenetic stage and middle diagenetic stage A,respectively.The formation and transformation of organic matter is a prerequisite for the formation of pyrites.The Ordos Basin was a continental freshwater lacustrine basin and lacked sulphates in waters during the deposition of the Chang 7 Member.Therefore,the syndiagenetic stage did not witness the formation of large quantities of pyrites.Since the basin entered early diagenetic stage A,large quantities of sulfur ions were released as the primary organic matter got converted into bituminites and,accordingly,pyrites started to form.However,this stage featured poorer fluid and spatial conditions compared with the syndepositional stage due to withdraw of water,the partial formation of bituminites,and a certain degree of compaction.As a result,large quantities of pyrrhotite failed to transition into typical spherical framboidal pyrites but grew into euhedral monocrystal aggregates.In addition,pyrites are still visible in the migrabitumens in both microfractures and inorganic pores of mudstones and shales,indicating that the pyrite formation period can extend until the middle diagenetic stage A.展开更多
The Yellow River Basin of China is a key region that contains myriad interactions between human activities and natural environment.Industrialization and urbanization promote social-economic development,but they also h...The Yellow River Basin of China is a key region that contains myriad interactions between human activities and natural environment.Industrialization and urbanization promote social-economic development,but they also have generated a series of environmental and ecological issues in this basin.Previous researches have evaluated urban resilience at the national,regional,urban agglomeration,city,and prefecture levels,but not at the watershed level.To address this research gap and elevate the Yellow River Basin’s urban resilience level,we constructed an urban resilience evaluation index system from five dimensions:industrial resilience,social resilience,environmental resilience,technological resilience,and organizational resilience.The entropy weight method was used to comprehensively evaluate urban resilience in the Yellow River Basin.The exploratory spatial data analysis method was employed to study the spatiotemporal differences in urban resilience in the Yellow River Basin in 2010,2015,and 2020.Furthermore,the grey correlation analysis method was utilized to explore the influencing factors of these differences.The results of this study are as follows:(1)the overall level of urban resilience in the Yellow River Basin was relatively low but showed an increasing trend during 2010–2015,and significant spatial distribution differences were observed,with a higher resilience level in the eastern region and a low-medium resilience level in the western region;(2)the differences in urban resilience were noticeable,with industrial resilience and social resilience being relatively highly developed,whereas organizational resilience and environmental resilience were relatively weak;and(3)the correlation ranking of resilience influencing factors was as follows:science and technology level>administrative power>openness>market forces.This research can provide a basis for improving the resilience level of cities in the Yellow River Basin and contribute to the high-quality development of the region.展开更多
Under the background of new infrastructure,the Yellow River Basin’s superior growth cannot be separated originating with the synergistic effect of scientific and technological inventiveness and ecological civilizatio...Under the background of new infrastructure,the Yellow River Basin’s superior growth cannot be separated originating with the synergistic effect of scientific and technological inventiveness and ecological civilization construction.In light of the coupling coordination analysis of the coordination effect of provincial high-tech industry agglomeration and resource carrying capacity in the Yellow River Basin from 2009 to 2021,The evolution of the geographical and temporal pattern of development was investigated using the Moran index and kernel density estimation.The results show that the agglomeration of high-tech industries in the Yellow River Basin presents a development trend of seek improvement in stability,and there is a good coupling and coordination throughout the progression of scientific and technological innovation and the loading capacity of the resource,from the viewpoint of a time series.From the perspective of spatial pattern distribution,the whole basin aims at the lower reaches,accelerates the optimization of digital industry and promotes Yellow River Basin development of superior quality through innovation support and increase of input,and based on policy guidance.展开更多
Under the combined influence of climate change and human activities,vegetation ecosystem has undergone profound changes.It can be seen that there are obvious differences in the evolution patterns and driving mechanism...Under the combined influence of climate change and human activities,vegetation ecosystem has undergone profound changes.It can be seen that there are obvious differences in the evolution patterns and driving mechanisms of vegetation ecosystem in different historical periods.Therefore,it is urgent to identify and reveal the dominant factors and their contribution rates in the vegetation change cycle.Based on the data of climate elements(sunshine hours,precipitation and temperature),human activities(population intensity and GDP intensity)and other natural factors(altitude,slope and aspect),this study explored the spatial and temporal evolution patterns of vegetation NDVI in the Yellow River Basin of China from 1989 to 2019 through a residual method,a trend analysis,and a gravity center model,and quantitatively distinguished the relative actions of climate change and human activities on vegetation evolution based on Geodetector model.The results showed that the spatial distribution of vegetation NDVI in the Yellow River Basin showed a decreasing trend from southeast to northwest.During 1981-2019,the temporal variation of vegetation NDVI showed an overall increasing trend.The gravity centers of average vegetation NDVI during the study period was distributed in Zhenyuan County,Gansu Province,and the center moved northeastwards from 1981 to 2019.During 1981-2000 and 2001-2019,the proportion of vegetation restoration areas promoted by the combined action of climate change and human activities was the largest.During the study period(1981-2019),the dominant factors influencing vegetation NDVI shifted from natural factors to human activities.These results could provide decision support for the protection and restoration of vegetation ecosystem in the Yellow River Basin.展开更多
Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cem...Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cement and seismic-geological analysis. The strike-slip fault system was initially formed in the Late Sinian, basically finalized in the Early Cambrian with dextral transtensional structure, was overlaid with at least one stage of transpressional deformation before the Permian, then was reversed into a sinistral weak transtensional structure in the Late Permian. Only a few of these faults were selectively activated in the Indosinian and later periods. The strike-slip fault system was affected by the preexisting structures such as Nanhuanian rifting normal faults and NW-striking deep basement faults. It is an oblique accommodated intracratonic transfer fault system developed from the Late Sinian to Early Cambrian to adjust the uneven extension of the Anyue trough from north to south and matches the Anyue trough in evolution time and intensity. In the later stage, multiple inversion tectonics and selective activation occurred under different tectonic backgrounds.展开更多
Significant changes in water cycle elements/processes have created serious challenges to regional sustainability and high-quality development in the Yellow River Basin in China.It is necessary to investigate the impac...Significant changes in water cycle elements/processes have created serious challenges to regional sustainability and high-quality development in the Yellow River Basin in China.It is necessary to investigate the impacts of climate change and human activities on hydrological evolution and disaster risk from a holistic perspective of the basin.This study developed initiatives to clarify the mechanisms of hydrological evolution in the human-influenced Yellow River Basin.The proposed research method includes:(1)a tool to simulate multiple factors and a multi-scale water cycle using a grid-based spatiotemporal coupling approach,and(2)a new algorithm to separate the responses of the water cycle to climate change and human impacts,and de-couple the eco-environmental effects using artificial intelligence techniques.With this research framework,key breakthroughs are expected to be made in the understanding of the impacts of land cover change on the water cycle and blue/green water redirection.The outcomes of this research project are expected to provide theoretical support for ecological protection and water governance in the basin.展开更多
The features of the unconformity,fault and tectonic inversion in the eastern Doseo Basin,Chad,were analyzed,and the genetic mechanisms and basin evolution were discussed using seismic and drilling data.The following r...The features of the unconformity,fault and tectonic inversion in the eastern Doseo Basin,Chad,were analyzed,and the genetic mechanisms and basin evolution were discussed using seismic and drilling data.The following results are obtained.First,four stratigraphic unconformities,i.e.basement(Tg),Mangara Group(T10),lower Upper Cretaceous(T5)and Cretaceous(T4),four faulting stages,i.e.Barremian extensional faults,Aptian–Coniacian strike-slip faults,Campanian strike-slip faults,and Eocene strike-slip faults,and two tectonic inversions,i.e.Santonian and end of Cretaceous,were developed in the Doseo Basin.Second,the Doseo Basin was an early failed intracontinental passive rift basin transformed by the strike-slip movement and tectonic inversion.The initial rifting between the African and South American plates induced the nearly N-S stretching of the Doseo Basin,giving rise to the formation of the embryonic Doseo rift basin.The nearly E-W strike-slip movement of Borogop(F1)in the western section of the Central African Shear Zone resulted in the gradual cease of the near north-south rifting and long-term strike-slip transformation,forming a dextral transtension fault system with inherited activity but gradually weakened in intensity(interrupted by two tectonic inversions).This fault system was composed of the main shear(F1),R-type shear(F2-F3)and P-type shear(F4-F5)faults,with the strike-slip associated faults as branches.The strike-slip movements of F1 in Cretaceous and Eocene were controlled by the dextral shear opening of the equatorial south Atlantic and rapid expanding of the Indian Ocean,respectively.The combined function of the strike-slip movement of F1 and the convergence between Africa and Eurasia made the Doseo Basin underwent the Santonian dextral transpressional inversion characterized by intensive folding deformation leading to the echelon NE-SW and NNE-SSW nose-shaped uplifts and unconformity(T5)on high parts of the uplifts.The convergence between Africa and Eurasia caused the intensive tectonic inversion of Doseo Basin at the end of Cretaceous manifesting as intensive uplift,denudation and folding deformation,forming the regional unconformity(T4)and superposing a nearly E-W structural configuration on the Santonian structures.Third,the Doseo Basin experienced four evolutional stages with the features of short rifting and long depression,i.e.Barremian rifting,Aptian rifting–depression transition,Albian–Late Cretaceous depression,and Cenozoic extinction,under the control of the tectonic movements between Africa and its peripheral plates.展开更多
A rarely reported middle-late Miocene-Pliocene channel(incised valley fill),the Huaguang Channel(HGC),has been found in the deep-water area of the southwestern Qiongdongnan Basin(QDNB).This channel is almost perpendic...A rarely reported middle-late Miocene-Pliocene channel(incised valley fill),the Huaguang Channel(HGC),has been found in the deep-water area of the southwestern Qiongdongnan Basin(QDNB).This channel is almost perpendicular to the orientation of another well-known,large,and nearly coeval submarine channel in this area.Based on the interpretation of high-resolution 3D seismic data,this study describes and analyzes the stratigraphy,tectonics,sedimentation,morphology,structure and evolution of HGC by means of well-seismic synthetic calibration,one-and two-dimensional forward modeling,attribute interpretation,tectonic interpretation,and gas detection.The HGC is located on the downthrown side of an earlier activated normal fault and grew northwestward along the fault strike.The channel is part of a slope that extends from the western Huaguang Sag to the eastern Beijiao Uplift.The HGC underwent four developmental stages:the(1)incubation(late Sanya Formation,20.4–15.5 Ma),(2)embryonic(Meishan Formation,15.5–10.5 Ma),(3)peak(Huangliu Formation,10.5–5.5 Ma)and(4)decline(Yinggehai Formation,5.5–1.9 Ma)stages.The channel sandstones have a provenance from the southern Yongle Uplift and filled the channel via multistage vertical amalgamation and lateral migration.The channel extended 42.5 km in an approximately straight pattern in the peak stage.At 10.5 Ma,sea level fell relative to its lowest level,and three oblique progradation turbidite sand bodies filled the channel from south to north.A channel sandstone isopach map demonstrated a narrow distribution in the early stages and a fan-shaped distribution in the late stage.The formation and evolution of the HGC were controlled mainly by background tectonics,fault strike,relative sea level change,and mass supply from the Yongle Uplift.The HGC sandstone reservoir is near the Huaguangjiao Sag,where hydrocarbons were generated.Channel-bounding faults and underlying faults link the source rock with the reservoir.A regionally extensive mudstone caprock overlies the channel sandstone.Two traps likely containing gas were recognized in a structural high upstream of the channel from seismic attenuation anomalies.The HGC will likely become an important oil and gas accumulation setting in the QDNB deep-water area.展开更多
Hydrocarbon resources in the Qiongdongnan Basin have become an important exploration target in China.However,the development of high-quality source rocks in this basin,especially in its deep-water areas,are still not ...Hydrocarbon resources in the Qiongdongnan Basin have become an important exploration target in China.However,the development of high-quality source rocks in this basin,especially in its deep-water areas,are still not fully understood.In this study,evolutions of sedimentary facies and palaeoenvironment and their influences on the development of source rocks in diverse tectonic regions of the Qiongdongnan Basin were investigated.The results show that during the Oligocene and to Miocene periods,the sedimentary environment of this basin progressively varied from a semi-closed gulf to an open marine environment,which resulted in significant differences in palaeoenvironmental conditions of the water column for various tectonic regions of the basin.In shallow-water areas,the palaeoproductivity and reducibility successively decrease,and the hydrodynamic intensity gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In deep-water areas,the water column of the Yacheng and Lingshui strata has a higher palaeoproductivity and a weaker hydrodynamic intensity than that of the Sanya-Meishan strata,while the reducibility gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In general,the palaeoenvironmental conditions of the water column are the most favorable to the development of the Yacheng organic-rich source rocks.Meanwhile,the Miocene marine source rocks in the deep-water areas of the Qiongdongnan Basin may also have a certain hydrocarbon potential.The differences in the development models of source rocks in various tectonic regions of continental margin basins should be fully evaluated in the exploration and development of hydrocarbons.展开更多
The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influ...The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influences,the deformation characteristics,structural attributes and evolution process of the Tongnan negative structure were investigated through a series of qualitative and quantitative methods such as balanced profile restoration,area-depth-strain(ADS)analysis,and structural geometric forward numerical simulation,after comprehensive structural interpretation of high-precision 3D seismic data.The results are obtained in three aspects.First,above and below the P/AnP(Permian/pre-Permian)unconformity,the Tongnan negative structure demonstrates vertical differential structural deformation.It experiences two stages of structural stacking and reworking:extensional depression(from the Sinian Dengying Formation to the Permian),and compressional syncline deformation(after the Jurassic).The multi-phase trishear deformation of the preexisting deep normal faults dominated the extensional depression.The primary depression episodes occurred in the periods from the end of Late Proterozoic to the deposition of the 1st–2nd members of the Dengying Formation,and from the deposition of Lower Cambrian Longwangmiao Formation–Middle–Upper Cambrian until the Ordovician.Second,the multi-stage evolution process of the Tongnan negative structure controlled the oil and gas migration and adjustment and present-day differential gas and water distribution between the Tongnan negative structure and the Gaoshiti and Moxi-Longnüsi structural highs.Third,the Ordovician,which is limitedly distributed in the Tongnan negative structure and is truncated by the P/AnP unconformity on the top,has basic geological conditions for the formation of weathering karst carbonate reservoirs.It is a new petroleum target deserving attention.展开更多
Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic compositio...Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag.展开更多
Nan'an Basin is a giant hydrocarbon basin,but its tectonic division scheme and associated fault systems has not been well understood.Based on newly acquired seismic data from the southwestern margin of the South C...Nan'an Basin is a giant hydrocarbon basin,but its tectonic division scheme and associated fault systems has not been well understood.Based on newly acquired seismic data from the southwestern margin of the South China Sea,this study analyzed the structural units,tectonic feature and geodynamics of the sedimentary basin.The new data suggests that the Nan0 an Basin is a rift basin oriented in the NE-SW direction,rather than a pull-apart basin induced by strike-slip faults along the western margin.The basin is a continuation of the rifts in the southwest South China Sea since the late Cretaceous.It continued rifting until the middle Miocene,even though oceanic crust occurred in the Southwest Subbasin.However,it had no transfer surface at the end of spreading,where it was characterized by a late middle Miocene unconformity(reflector T3).The Nan'an Basin can be divided into eight structural units by a series of NE-striking faults.This study provides evidences to confirm the relative importance and interplay between regional strike-slips and orthogonal displacement during basin development and deformation.The NE-SW-striking dominant rift basin indicates that the geodynamic drivers of tectonic evolution in the western margin of the South China Sea did not have a large strike-slip mechanism.Therefore,we conclude that a large strike-slip fault system did not exist in the western margin of the South China Sea.展开更多
Based on the data of outcrops, seismic sections, thin sections, heavy mineral assemblages and detrital zircon U-Pb dating, the sedimentary characteristics, lake level fluctuation and provenance characteristics of the ...Based on the data of outcrops, seismic sections, thin sections, heavy mineral assemblages and detrital zircon U-Pb dating, the sedimentary characteristics, lake level fluctuation and provenance characteristics of the Middle Jurassic Lianggaoshan Formation(J_(2)l) in eastern Sichuan Basin, SW China, were investigated to reveal the control of tectonic movements of the surrounding orogenic belts on the sedimentary systems. The J_(2)lmainly developed a delta–lake sedimentary system, which contained a complete third-order sequence that was subdivided into four lake level up-down cycles(fourth-order sequence).The lake basins of cycles Ⅰ and Ⅱ were mainly distributed in eastern Sichuan Basin, while the lake basins of cycles Ⅲ and Ⅳ migrated to central Sichuan Basin, resulting in the significant difference in sedimentary characteristics between the north and the south of eastern Sichuan Basin. The provenance analysis shows that there were three types of provenances for J_(2)l. Specifically, the parent rocks of Type Ⅰ were mainly acidic igneous rocks and from the proximal northern margin of the Yangtze Plate;the parent rocks of Type Ⅱ were intermediate-acid igneous rocks and metamorphic rocks and from the central parts of the southern and northern Qinling orogenic belts;the parent rocks of Type Ⅲ were mainly metamorphic rocks followed by intermediate–acid igneous rocks, and from the North Daba Mountain area. It is recognized from the changes of sedimentary system and provenance characteristics that the sedimentary evolution of J_(2)lin eastern Sichuan Basin was controlled by the tectonic compression of the Qinling orogenic belt. In the early stage, the lake basin was restricted to the east of the study area, and Type Ⅰ provenance was dominant. With the intensifying north-south compression of the Qinling orogenic belt, the lake basin expanded rapidly and migrated northward, and the supply of Type Ⅱ provenance increased. In the middle and late stages, the uplift of the North Daba Mountain led to the lake basin migration and the gradual increase in the supply of Type Ⅲ provenance.展开更多
Submarine canyon is an important channel for long-distance sediment transport, and an important part of deepwater sedimentary system. The large-scale Rizhao Canyons have been discovered for the first time in 2015 in t...Submarine canyon is an important channel for long-distance sediment transport, and an important part of deepwater sedimentary system. The large-scale Rizhao Canyons have been discovered for the first time in 2015 in the continental slope area of the western South China Sea. Based on the interpretation and analysis of multi-beam bathymetry and two-dimensional multi-channel seismic data, the geology of the canyons has however not been studied yet. In this paper, the morphology and distribution characteristics of the canyon are carefully described,the sedimentary filling structure and its evolution process of the canyon are analyzed, and then its controlling factors are discussed. The results show that Rizhao Canyons group is a large slope restricted canyon group composed of one east-west west main and nine branch canyons extending to the south. The canyon was formed from the late Miocene to the Quaternary. The east-west main canyon is located in the transition zone between the northern terrace and the southern Zhongjiannan Slope, and it is mainly formed by the scouring and erosion of the material source from the west, approximately along the slope direction. Its development and evolution is mainly controlled by sediment supply and topographic conditions, the development of 9 branch canyons is mainly controlled by gravity flow and collapse from the east-west main canyon. This understanding result is a supplement to the study of “source-channel–sink” sedimentary system in the west of the South China Sea, and has important guiding significance for the study of marine geological hazards.展开更多
Based on core observation, thin section examination, fluid inclusions analysis, carbon and oxygen isotopic composition analysis, and other approaches, the structural and burial evolution histories were investigated, a...Based on core observation, thin section examination, fluid inclusions analysis, carbon and oxygen isotopic composition analysis, and other approaches, the structural and burial evolution histories were investigated, and the diagenetic evolution process and genetic/development models were systematically discussed of the Upper Paleozoic Permian clastic rock reservoirs in the Bohai Bay Basin, East China. The Bohai Bay Basin underwent three stages of burial and two stages of uplifting in the Upper Paleozoic. Consequently, three stages of acid dissolution generated by the thermal evolution of kerogen, and two stages of meteoric freshwater leaching occurred. Dissolution in deeply buried, nearly closed diagenetic system was associated with the precipitation of authigenic clay and quartz, leading to a limited increase in storage space. Different structural uplifting–subsidence processes of tectonic zones resulted in varying diagenetic–reservoir-forming processes of the Permian clastic reservoirs. Three genetic models of reservoirs are recognized. The Model I reservoirs with pores formed in shallow strata and buried in shallow to medium strata underwent two stages of exposure to long-term open environment and two stages of meteoric freshwater leaching to enhance pores near the surface, and were shallowly buried in the late stage, exhibiting the dominance of secondary pores and the best physical properties. The Model Ⅱ reservoirs with pores formed in shallow strata and preserved due to modification after deep burial experienced an early exposure-open to late burial-closed environment, where pore types were modified due to dissolution, exhibiting the dominance of numerous secondary solution pores in feldspar and the physical properties inferior to Model I. The Model Ⅲ reservoirs with pores formed after being regulated after multiple periods of burial and dissolution experienced a dissolution of acidic fluids of organic origin under a near-closed to closed environment, exhibiting the dominance of intercrystalline micropores in kaolinite and the poorest physical properties. The target reservoirs lied in the waterflood area in the geological period of meteoric freshwater leaching, and are now the Model Ⅱ deep reservoirs in the slope zone–depression zone. They are determined as favorable options for subsequent exploration.展开更多
On the basis of exhaustive researches on the facies sequences and depositlonal evolutionary process of various depositional systems, the genetic stratigraphic framework of the extensional rifted oceanic basin, which h...On the basis of exhaustive researches on the facies sequences and depositlonal evolutionary process of various depositional systems, the genetic stratigraphic framework of the extensional rifted oceanic basin, which has undergone strong structural destruction, has been reconstructed by means of dynamic genetic stratigraphic analysis. Five depositional episodes have been distinguished from various isochronous stratigraphic boundaries and stratigraphic sequences with the three-dimensional structure of each depositional episode analysed in detail. The tectonic paleogeographic environment corresponding to different stages of each depositional episode has been reconstructed for individual depositional system tracts. And the evolution history of this rifted basin has been divided into four stages' initial rifting and oceanization of continental crust, stretching and spreading of the basin, subduction and basin differentiation, and convergence and collision. A NNE-trending intracontinental soft collision suture was left after the closing of the basin.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.42172147)PetroChina Major Science and Technology Project(Grant No.ZD2019-183-002).
文摘Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consider changes in temperature and pressure conditions,which limits the accuracy of the comprehensive evaluation of the brittle plastic evolution and sealing ability of gypsum rocks using temperature pressure coupling.Triaxial stress-strain tests were utilized to investigate the differences in the evolution of the confinement capacity of gypsum rocks under coupled temperaturepressure action and isothermal-variable pressure action on the basis of sample feasibility analysis.According to research,the gypsum rock's peak and residual strengths decrease under simultaneous increases in temperature and pressure over isothermal pressurization experimental conditions,and it becomes more ductile.This reduces the amount of time it takes for the rock to transition from brittle to plastic.When temperature is taken into account,both the brittle–plastic transformation's depth limit and the lithological transformation of gypsum rocks become shallower,and the evolution of gypsum rocks under variable temperature and pressure conditions is more complicated than that under isothermal pressurization.The sealing ability under the temperature-pressure coupling is more in line with the actual geological context when the application results of the Well#ZS5 are compared.This provides a theoretical basis for precisely determining the process of hydrocarbon accumulation and explains why the early hydrocarbon were not well preserved.
基金funded by a grant from the National Natural Science Foundation of China(Grant Nos.U2244207,42102200)the China Geological Survey Foundation(Grant Nos.DD20230257,DD20242404)。
文摘The Upper Cretaceous Qingshankou Formation black shales,deposited in the late Turonian(LTB shales),are the main source rocks of the Songliao Basin.The origins of organic matter enrichment of the shales is a contentious subject fuelling many ongoing debates.This study investigates the genesis of the organic matter-rich shale by using molecular geochemistry.The LTB shales can be divided into three sections.The SectionⅠshales were deposited in saline,stratified and anoxic water conditions,which are related to seawater incursion events.At least three episodic and periodic seawater incursion events were recognized during SectionⅠshale deposition.The SectionⅡshales deposited in brackish to fresh and deep lake-level conditions with high primary productivity,which are related to lake-level transgression.The SectionⅢshales were deposited under fresh and slightly oxidized water conditions,which are related to lake-level regression.Two organic matter enrichment models for the LTB shales are identified,that is,the seawater incursion model and the maximum lake-level transgression sedimentation model,which act on different shale sections,both playing significant roles in the enrichment of organic matter.
基金Supported by the Enterprise Innovation and Development Joint Fund of National Natural Science Foundation of China(U19B6003)National Natural Science Foundation of China(41872150)。
文摘The types,occurrence and composition of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata of the first member of the Middle Permian Maokou Formation(Mao-1 Member)in eastern Sichuan Basin were investigated through outcrop section measurement,core observation,thin section identification,argon ion polishing,X-ray diffraction,scanning electron microscope,energy spectrum analysis and laser ablation-inductively coupled plasma-mass spectrometry.The diagenetic evolution sequence of clay minerals was clarified,and the sedimentary-diagenetic evolution model of clay minerals was established.The results show that authigenic sepiolite minerals were precipitated in the Si4+and Mg2+-rich cool aragonite sea and sepiolite-bearing strata were formed in the Mao-1 Member.During burial diagenesis,authigenic clay minerals undergo two possible evolution sequences.First,from the early diagenetic stage A to the middle diagenetic stage A1,the sepiolite kept stable in the shallow-buried environment lack of Al3+.It began to transform into stevensite in the middle diagenetic stage A2,and then evolved into disordered talc in the middle diagenetic stage B1and finally into talc in the period from the middle diagenetic stage B2to the late diagenetic stage.Thus,the primary diagenetic evolution sequence of authigenic clay minerals,i.e.sepiolite-stevensite-disordered talc-talc,was formed in the Mao-1 Member.Second,in the early diagenetic stage A,as Al3+carried by the storm and upwelling currents was involved in the diagenetic process,trace of sepiolite started to evolve into smectite,and a part of smectite turned into chlorite.From the early diagenetic stage B to the middle diagenesis stage A1,a part of smectite evolved to illite/smectite mixed layer(I/S).The I/S evolved initially into illite from the middle diagenesis stage A2to the middle diagenesis stage B2,and then totally into illite in the late diagenesis stage.Thus,the secondary diagenetic evolution sequence of authigenic clay minerals,i.e.sepiolite-smectite-chlorite/illite,was formed in the Mao-1 Member.The types and evolution of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata are significant for petroleum geology in two aspects.First,sepiolite can adsorb and accumulate a large amount of organic matters,thereby effectively improving the quality and hydrocarbon generation potential of the source rocks of the Mao-1 Member.Second,the evolution from sepiolite to talc is accompanied by the formation of numerous organic matter pores and clay shrinkage pores/fractures,as well as the releasing of the Mg2+-rich diagenetic fluid,which allows for the dolomitization of limestone within or around the sag.As a result,the new assemblages of self-generation and self-accumulation,and lower/side source and upper/lateral reservoir,are created in the Middle Permian,enhancing the hydrocarbon accumulation efficiency.
基金Supported by the Key Project of National Natural Science Foundation of China(42330810).
文摘With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.
基金funded by the subproject of the National Science and Technology Major Project(No.2017ZX05036004).
文摘Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval analyses,this study systematically investigated the organic matter and pyrites in the continental shales in the 3^(rd)submember of the Chang 7 Member(Chang 7^(3)submember)in the Yanchang Formation,Ordos Basin and determined their types and the formation and evolutionary characteristics.The results are as follows.The organic matter of the continental shales in the Chang 7^(3)submember is dominated by amorphous bituminites and migrabitumens,which have come into being since the early diagenetic stage and middle diagenetic stage A,respectively.The formation and transformation of organic matter is a prerequisite for the formation of pyrites.The Ordos Basin was a continental freshwater lacustrine basin and lacked sulphates in waters during the deposition of the Chang 7 Member.Therefore,the syndiagenetic stage did not witness the formation of large quantities of pyrites.Since the basin entered early diagenetic stage A,large quantities of sulfur ions were released as the primary organic matter got converted into bituminites and,accordingly,pyrites started to form.However,this stage featured poorer fluid and spatial conditions compared with the syndepositional stage due to withdraw of water,the partial formation of bituminites,and a certain degree of compaction.As a result,large quantities of pyrrhotite failed to transition into typical spherical framboidal pyrites but grew into euhedral monocrystal aggregates.In addition,pyrites are still visible in the migrabitumens in both microfractures and inorganic pores of mudstones and shales,indicating that the pyrite formation period can extend until the middle diagenetic stage A.
基金supported by the Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences.
文摘The Yellow River Basin of China is a key region that contains myriad interactions between human activities and natural environment.Industrialization and urbanization promote social-economic development,but they also have generated a series of environmental and ecological issues in this basin.Previous researches have evaluated urban resilience at the national,regional,urban agglomeration,city,and prefecture levels,but not at the watershed level.To address this research gap and elevate the Yellow River Basin’s urban resilience level,we constructed an urban resilience evaluation index system from five dimensions:industrial resilience,social resilience,environmental resilience,technological resilience,and organizational resilience.The entropy weight method was used to comprehensively evaluate urban resilience in the Yellow River Basin.The exploratory spatial data analysis method was employed to study the spatiotemporal differences in urban resilience in the Yellow River Basin in 2010,2015,and 2020.Furthermore,the grey correlation analysis method was utilized to explore the influencing factors of these differences.The results of this study are as follows:(1)the overall level of urban resilience in the Yellow River Basin was relatively low but showed an increasing trend during 2010–2015,and significant spatial distribution differences were observed,with a higher resilience level in the eastern region and a low-medium resilience level in the western region;(2)the differences in urban resilience were noticeable,with industrial resilience and social resilience being relatively highly developed,whereas organizational resilience and environmental resilience were relatively weak;and(3)the correlation ranking of resilience influencing factors was as follows:science and technology level>administrative power>openness>market forces.This research can provide a basis for improving the resilience level of cities in the Yellow River Basin and contribute to the high-quality development of the region.
基金supported by the 2021 Research and Practice Project of Higher Education Teaching Reform in Henan Province(Grant No.2021SJGLX072Y).
文摘Under the background of new infrastructure,the Yellow River Basin’s superior growth cannot be separated originating with the synergistic effect of scientific and technological inventiveness and ecological civilization construction.In light of the coupling coordination analysis of the coordination effect of provincial high-tech industry agglomeration and resource carrying capacity in the Yellow River Basin from 2009 to 2021,The evolution of the geographical and temporal pattern of development was investigated using the Moran index and kernel density estimation.The results show that the agglomeration of high-tech industries in the Yellow River Basin presents a development trend of seek improvement in stability,and there is a good coupling and coordination throughout the progression of scientific and technological innovation and the loading capacity of the resource,from the viewpoint of a time series.From the perspective of spatial pattern distribution,the whole basin aims at the lower reaches,accelerates the optimization of digital industry and promotes Yellow River Basin development of superior quality through innovation support and increase of input,and based on policy guidance.
基金This work was supported by grants from the National Natural Science Foundation of China(42101306,4217107)the Natural Science Foundation of Shandong Province(ZR2021MD047),the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA2002040203)+2 种基金the Open Fund of the Key Laboratory of National Geographic Census and Monitoring,Ministry of Natural Resources(MNR)(2020NGCM02)the Open Fund of the Key Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources(KF-2020-05-001)the Major Project of the High Resolution Earth Observation System of China(GFZX0404130304).
文摘Under the combined influence of climate change and human activities,vegetation ecosystem has undergone profound changes.It can be seen that there are obvious differences in the evolution patterns and driving mechanisms of vegetation ecosystem in different historical periods.Therefore,it is urgent to identify and reveal the dominant factors and their contribution rates in the vegetation change cycle.Based on the data of climate elements(sunshine hours,precipitation and temperature),human activities(population intensity and GDP intensity)and other natural factors(altitude,slope and aspect),this study explored the spatial and temporal evolution patterns of vegetation NDVI in the Yellow River Basin of China from 1989 to 2019 through a residual method,a trend analysis,and a gravity center model,and quantitatively distinguished the relative actions of climate change and human activities on vegetation evolution based on Geodetector model.The results showed that the spatial distribution of vegetation NDVI in the Yellow River Basin showed a decreasing trend from southeast to northwest.During 1981-2019,the temporal variation of vegetation NDVI showed an overall increasing trend.The gravity centers of average vegetation NDVI during the study period was distributed in Zhenyuan County,Gansu Province,and the center moved northeastwards from 1981 to 2019.During 1981-2000 and 2001-2019,the proportion of vegetation restoration areas promoted by the combined action of climate change and human activities was the largest.During the study period(1981-2019),the dominant factors influencing vegetation NDVI shifted from natural factors to human activities.These results could provide decision support for the protection and restoration of vegetation ecosystem in the Yellow River Basin.
基金Supported by the Science and Technology Cooperation Project of CNPC-SWPU Innovation Alliance (2020CX010101)National Natural Science Foundation of China (91955204)。
文摘Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cement and seismic-geological analysis. The strike-slip fault system was initially formed in the Late Sinian, basically finalized in the Early Cambrian with dextral transtensional structure, was overlaid with at least one stage of transpressional deformation before the Permian, then was reversed into a sinistral weak transtensional structure in the Late Permian. Only a few of these faults were selectively activated in the Indosinian and later periods. The strike-slip fault system was affected by the preexisting structures such as Nanhuanian rifting normal faults and NW-striking deep basement faults. It is an oblique accommodated intracratonic transfer fault system developed from the Late Sinian to Early Cambrian to adjust the uneven extension of the Anyue trough from north to south and matches the Anyue trough in evolution time and intensity. In the later stage, multiple inversion tectonics and selective activation occurred under different tectonic backgrounds.
基金supported by the National Natural Science Foundation of China(Grant No.U2243203),the Fundamental Research Funds for the Central Universities(Grants No.B200204029 and B220201011),and the Natural Science Foundation of Jiangsu Province(Grant No.BK20210368).
文摘Significant changes in water cycle elements/processes have created serious challenges to regional sustainability and high-quality development in the Yellow River Basin in China.It is necessary to investigate the impacts of climate change and human activities on hydrological evolution and disaster risk from a holistic perspective of the basin.This study developed initiatives to clarify the mechanisms of hydrological evolution in the human-influenced Yellow River Basin.The proposed research method includes:(1)a tool to simulate multiple factors and a multi-scale water cycle using a grid-based spatiotemporal coupling approach,and(2)a new algorithm to separate the responses of the water cycle to climate change and human impacts,and de-couple the eco-environmental effects using artificial intelligence techniques.With this research framework,key breakthroughs are expected to be made in the understanding of the impacts of land cover change on the water cycle and blue/green water redirection.The outcomes of this research project are expected to provide theoretical support for ecological protection and water governance in the basin.
基金Supported by the PetroChina Science and Technology Project(2021DJ3103)。
文摘The features of the unconformity,fault and tectonic inversion in the eastern Doseo Basin,Chad,were analyzed,and the genetic mechanisms and basin evolution were discussed using seismic and drilling data.The following results are obtained.First,four stratigraphic unconformities,i.e.basement(Tg),Mangara Group(T10),lower Upper Cretaceous(T5)and Cretaceous(T4),four faulting stages,i.e.Barremian extensional faults,Aptian–Coniacian strike-slip faults,Campanian strike-slip faults,and Eocene strike-slip faults,and two tectonic inversions,i.e.Santonian and end of Cretaceous,were developed in the Doseo Basin.Second,the Doseo Basin was an early failed intracontinental passive rift basin transformed by the strike-slip movement and tectonic inversion.The initial rifting between the African and South American plates induced the nearly N-S stretching of the Doseo Basin,giving rise to the formation of the embryonic Doseo rift basin.The nearly E-W strike-slip movement of Borogop(F1)in the western section of the Central African Shear Zone resulted in the gradual cease of the near north-south rifting and long-term strike-slip transformation,forming a dextral transtension fault system with inherited activity but gradually weakened in intensity(interrupted by two tectonic inversions).This fault system was composed of the main shear(F1),R-type shear(F2-F3)and P-type shear(F4-F5)faults,with the strike-slip associated faults as branches.The strike-slip movements of F1 in Cretaceous and Eocene were controlled by the dextral shear opening of the equatorial south Atlantic and rapid expanding of the Indian Ocean,respectively.The combined function of the strike-slip movement of F1 and the convergence between Africa and Eurasia made the Doseo Basin underwent the Santonian dextral transpressional inversion characterized by intensive folding deformation leading to the echelon NE-SW and NNE-SSW nose-shaped uplifts and unconformity(T5)on high parts of the uplifts.The convergence between Africa and Eurasia caused the intensive tectonic inversion of Doseo Basin at the end of Cretaceous manifesting as intensive uplift,denudation and folding deformation,forming the regional unconformity(T4)and superposing a nearly E-W structural configuration on the Santonian structures.Third,the Doseo Basin experienced four evolutional stages with the features of short rifting and long depression,i.e.Barremian rifting,Aptian rifting–depression transition,Albian–Late Cretaceous depression,and Cenozoic extinction,under the control of the tectonic movements between Africa and its peripheral plates.
基金The National Natural Science Foundation of China’s Major Project “Research on Geophysical Theories and Methods of Unconventional Oil and Gas Exploration and Development”, Task Ⅰ: “China’s Tight Oil and Gas Reservoir Geological Characteristics, Classification and Typical Geological Model Establishment” under contract No. 41390451the Science and Technology Project of Sinopec Shanghai Offshore Petroleum Company under contract No. KJ-2021-7
文摘A rarely reported middle-late Miocene-Pliocene channel(incised valley fill),the Huaguang Channel(HGC),has been found in the deep-water area of the southwestern Qiongdongnan Basin(QDNB).This channel is almost perpendicular to the orientation of another well-known,large,and nearly coeval submarine channel in this area.Based on the interpretation of high-resolution 3D seismic data,this study describes and analyzes the stratigraphy,tectonics,sedimentation,morphology,structure and evolution of HGC by means of well-seismic synthetic calibration,one-and two-dimensional forward modeling,attribute interpretation,tectonic interpretation,and gas detection.The HGC is located on the downthrown side of an earlier activated normal fault and grew northwestward along the fault strike.The channel is part of a slope that extends from the western Huaguang Sag to the eastern Beijiao Uplift.The HGC underwent four developmental stages:the(1)incubation(late Sanya Formation,20.4–15.5 Ma),(2)embryonic(Meishan Formation,15.5–10.5 Ma),(3)peak(Huangliu Formation,10.5–5.5 Ma)and(4)decline(Yinggehai Formation,5.5–1.9 Ma)stages.The channel sandstones have a provenance from the southern Yongle Uplift and filled the channel via multistage vertical amalgamation and lateral migration.The channel extended 42.5 km in an approximately straight pattern in the peak stage.At 10.5 Ma,sea level fell relative to its lowest level,and three oblique progradation turbidite sand bodies filled the channel from south to north.A channel sandstone isopach map demonstrated a narrow distribution in the early stages and a fan-shaped distribution in the late stage.The formation and evolution of the HGC were controlled mainly by background tectonics,fault strike,relative sea level change,and mass supply from the Yongle Uplift.The HGC sandstone reservoir is near the Huaguangjiao Sag,where hydrocarbons were generated.Channel-bounding faults and underlying faults link the source rock with the reservoir.A regionally extensive mudstone caprock overlies the channel sandstone.Two traps likely containing gas were recognized in a structural high upstream of the channel from seismic attenuation anomalies.The HGC will likely become an important oil and gas accumulation setting in the QDNB deep-water area.
基金supported by the National Natural Science Foundation of China(42272162)the Natural Science Foundation of Guangdong Province(2021A1515011381 and 2021A1515011635)the Science Project of the CNOOC(KJZH-2021-0003-00).
文摘Hydrocarbon resources in the Qiongdongnan Basin have become an important exploration target in China.However,the development of high-quality source rocks in this basin,especially in its deep-water areas,are still not fully understood.In this study,evolutions of sedimentary facies and palaeoenvironment and their influences on the development of source rocks in diverse tectonic regions of the Qiongdongnan Basin were investigated.The results show that during the Oligocene and to Miocene periods,the sedimentary environment of this basin progressively varied from a semi-closed gulf to an open marine environment,which resulted in significant differences in palaeoenvironmental conditions of the water column for various tectonic regions of the basin.In shallow-water areas,the palaeoproductivity and reducibility successively decrease,and the hydrodynamic intensity gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In deep-water areas,the water column of the Yacheng and Lingshui strata has a higher palaeoproductivity and a weaker hydrodynamic intensity than that of the Sanya-Meishan strata,while the reducibility gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In general,the palaeoenvironmental conditions of the water column are the most favorable to the development of the Yacheng organic-rich source rocks.Meanwhile,the Miocene marine source rocks in the deep-water areas of the Qiongdongnan Basin may also have a certain hydrocarbon potential.The differences in the development models of source rocks in various tectonic regions of continental margin basins should be fully evaluated in the exploration and development of hydrocarbons.
基金Supported by the National Natural Science Foundation of China(U19B6003-01).
文摘The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influences,the deformation characteristics,structural attributes and evolution process of the Tongnan negative structure were investigated through a series of qualitative and quantitative methods such as balanced profile restoration,area-depth-strain(ADS)analysis,and structural geometric forward numerical simulation,after comprehensive structural interpretation of high-precision 3D seismic data.The results are obtained in three aspects.First,above and below the P/AnP(Permian/pre-Permian)unconformity,the Tongnan negative structure demonstrates vertical differential structural deformation.It experiences two stages of structural stacking and reworking:extensional depression(from the Sinian Dengying Formation to the Permian),and compressional syncline deformation(after the Jurassic).The multi-phase trishear deformation of the preexisting deep normal faults dominated the extensional depression.The primary depression episodes occurred in the periods from the end of Late Proterozoic to the deposition of the 1st–2nd members of the Dengying Formation,and from the deposition of Lower Cambrian Longwangmiao Formation–Middle–Upper Cambrian until the Ordovician.Second,the multi-stage evolution process of the Tongnan negative structure controlled the oil and gas migration and adjustment and present-day differential gas and water distribution between the Tongnan negative structure and the Gaoshiti and Moxi-Longnüsi structural highs.Third,the Ordovician,which is limitedly distributed in the Tongnan negative structure and is truncated by the P/AnP unconformity on the top,has basic geological conditions for the formation of weathering karst carbonate reservoirs.It is a new petroleum target deserving attention.
基金Supported by the National Natural Science Foundation of China(41802177,42272188,42303056)PetroChina Prospective and Basic Technological Project(2022DJ0507)+1 种基金Research Fund of PetroChina Basic Scientific Research and Strategic Reserve Technology(2020D-5008-04)National Natural Science of Sichuan Province(23NSFSC546)。
文摘Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag.
基金This research was financially supported by Natural Science Foundation of China(U1701245,No.91228208)CGS project(DD20190213)CNPC project(kt 2021-02-02).
文摘Nan'an Basin is a giant hydrocarbon basin,but its tectonic division scheme and associated fault systems has not been well understood.Based on newly acquired seismic data from the southwestern margin of the South China Sea,this study analyzed the structural units,tectonic feature and geodynamics of the sedimentary basin.The new data suggests that the Nan0 an Basin is a rift basin oriented in the NE-SW direction,rather than a pull-apart basin induced by strike-slip faults along the western margin.The basin is a continuation of the rifts in the southwest South China Sea since the late Cretaceous.It continued rifting until the middle Miocene,even though oceanic crust occurred in the Southwest Subbasin.However,it had no transfer surface at the end of spreading,where it was characterized by a late middle Miocene unconformity(reflector T3).The Nan'an Basin can be divided into eight structural units by a series of NE-striking faults.This study provides evidences to confirm the relative importance and interplay between regional strike-slips and orthogonal displacement during basin development and deformation.The NE-SW-striking dominant rift basin indicates that the geodynamic drivers of tectonic evolution in the western margin of the South China Sea did not have a large strike-slip mechanism.Therefore,we conclude that a large strike-slip fault system did not exist in the western margin of the South China Sea.
基金Supported by the Scientific Research and Technology Development Project of PetroChina (2021DJ04,2021DJ0401)。
文摘Based on the data of outcrops, seismic sections, thin sections, heavy mineral assemblages and detrital zircon U-Pb dating, the sedimentary characteristics, lake level fluctuation and provenance characteristics of the Middle Jurassic Lianggaoshan Formation(J_(2)l) in eastern Sichuan Basin, SW China, were investigated to reveal the control of tectonic movements of the surrounding orogenic belts on the sedimentary systems. The J_(2)lmainly developed a delta–lake sedimentary system, which contained a complete third-order sequence that was subdivided into four lake level up-down cycles(fourth-order sequence).The lake basins of cycles Ⅰ and Ⅱ were mainly distributed in eastern Sichuan Basin, while the lake basins of cycles Ⅲ and Ⅳ migrated to central Sichuan Basin, resulting in the significant difference in sedimentary characteristics between the north and the south of eastern Sichuan Basin. The provenance analysis shows that there were three types of provenances for J_(2)l. Specifically, the parent rocks of Type Ⅰ were mainly acidic igneous rocks and from the proximal northern margin of the Yangtze Plate;the parent rocks of Type Ⅱ were intermediate-acid igneous rocks and metamorphic rocks and from the central parts of the southern and northern Qinling orogenic belts;the parent rocks of Type Ⅲ were mainly metamorphic rocks followed by intermediate–acid igneous rocks, and from the North Daba Mountain area. It is recognized from the changes of sedimentary system and provenance characteristics that the sedimentary evolution of J_(2)lin eastern Sichuan Basin was controlled by the tectonic compression of the Qinling orogenic belt. In the early stage, the lake basin was restricted to the east of the study area, and Type Ⅰ provenance was dominant. With the intensifying north-south compression of the Qinling orogenic belt, the lake basin expanded rapidly and migrated northward, and the supply of Type Ⅱ provenance increased. In the middle and late stages, the uplift of the North Daba Mountain led to the lake basin migration and the gradual increase in the supply of Type Ⅲ provenance.
基金The Major Special Project of Guangdong Provincial Laboratory of Southern Marine Science and Engineering(Guangzhou) under contract No. GML2019ZD0207the National Natural Science Foundation of China under contract No. U20A20100the China Geological Survey Project under contract Nos DD20221712, DD20221719 and DD20191002。
文摘Submarine canyon is an important channel for long-distance sediment transport, and an important part of deepwater sedimentary system. The large-scale Rizhao Canyons have been discovered for the first time in 2015 in the continental slope area of the western South China Sea. Based on the interpretation and analysis of multi-beam bathymetry and two-dimensional multi-channel seismic data, the geology of the canyons has however not been studied yet. In this paper, the morphology and distribution characteristics of the canyon are carefully described,the sedimentary filling structure and its evolution process of the canyon are analyzed, and then its controlling factors are discussed. The results show that Rizhao Canyons group is a large slope restricted canyon group composed of one east-west west main and nine branch canyons extending to the south. The canyon was formed from the late Miocene to the Quaternary. The east-west main canyon is located in the transition zone between the northern terrace and the southern Zhongjiannan Slope, and it is mainly formed by the scouring and erosion of the material source from the west, approximately along the slope direction. Its development and evolution is mainly controlled by sediment supply and topographic conditions, the development of 9 branch canyons is mainly controlled by gravity flow and collapse from the east-west main canyon. This understanding result is a supplement to the study of “source-channel–sink” sedimentary system in the west of the South China Sea, and has important guiding significance for the study of marine geological hazards.
基金Supported by the National Natural Science Foundation(42222208,41821002)China National Science and Technology Major Project(2016ZX05006-007)Mount Taishan Scholar Young Expert Project(201909061).
文摘Based on core observation, thin section examination, fluid inclusions analysis, carbon and oxygen isotopic composition analysis, and other approaches, the structural and burial evolution histories were investigated, and the diagenetic evolution process and genetic/development models were systematically discussed of the Upper Paleozoic Permian clastic rock reservoirs in the Bohai Bay Basin, East China. The Bohai Bay Basin underwent three stages of burial and two stages of uplifting in the Upper Paleozoic. Consequently, three stages of acid dissolution generated by the thermal evolution of kerogen, and two stages of meteoric freshwater leaching occurred. Dissolution in deeply buried, nearly closed diagenetic system was associated with the precipitation of authigenic clay and quartz, leading to a limited increase in storage space. Different structural uplifting–subsidence processes of tectonic zones resulted in varying diagenetic–reservoir-forming processes of the Permian clastic reservoirs. Three genetic models of reservoirs are recognized. The Model I reservoirs with pores formed in shallow strata and buried in shallow to medium strata underwent two stages of exposure to long-term open environment and two stages of meteoric freshwater leaching to enhance pores near the surface, and were shallowly buried in the late stage, exhibiting the dominance of secondary pores and the best physical properties. The Model Ⅱ reservoirs with pores formed in shallow strata and preserved due to modification after deep burial experienced an early exposure-open to late burial-closed environment, where pore types were modified due to dissolution, exhibiting the dominance of numerous secondary solution pores in feldspar and the physical properties inferior to Model I. The Model Ⅲ reservoirs with pores formed after being regulated after multiple periods of burial and dissolution experienced a dissolution of acidic fluids of organic origin under a near-closed to closed environment, exhibiting the dominance of intercrystalline micropores in kaolinite and the poorest physical properties. The target reservoirs lied in the waterflood area in the geological period of meteoric freshwater leaching, and are now the Model Ⅱ deep reservoirs in the slope zone–depression zone. They are determined as favorable options for subsequent exploration.
文摘On the basis of exhaustive researches on the facies sequences and depositlonal evolutionary process of various depositional systems, the genetic stratigraphic framework of the extensional rifted oceanic basin, which has undergone strong structural destruction, has been reconstructed by means of dynamic genetic stratigraphic analysis. Five depositional episodes have been distinguished from various isochronous stratigraphic boundaries and stratigraphic sequences with the three-dimensional structure of each depositional episode analysed in detail. The tectonic paleogeographic environment corresponding to different stages of each depositional episode has been reconstructed for individual depositional system tracts. And the evolution history of this rifted basin has been divided into four stages' initial rifting and oceanization of continental crust, stretching and spreading of the basin, subduction and basin differentiation, and convergence and collision. A NNE-trending intracontinental soft collision suture was left after the closing of the basin.