Recently, we focused on the Darbut and Karamay ophiolitic m41anges in West Junggar of the Central Asian Orogenic Belt (CAOB, SengOr et al., 1993; Windley et al., 2007; Xiao and Santosh, 2014), and made much progress...Recently, we focused on the Darbut and Karamay ophiolitic m41anges in West Junggar of the Central Asian Orogenic Belt (CAOB, SengOr et al., 1993; Windley et al., 2007; Xiao and Santosh, 2014), and made much progress. This study was supported by the National Nature Science Foundation of China (No. 41303027) and Special Fund for Basic Scientific Research of Central Colleges Project (No. 2014G1271058). The achievements are illustrated as follows.展开更多
The major elements, rare earth elements (REE) and trace elements of four basalt samples from central and western Pacific ferro- manganese crust provinces have been analyzed using chemical methods and ICP - MS, respe...The major elements, rare earth elements (REE) and trace elements of four basalt samples from central and western Pacific ferro- manganese crust provinces have been analyzed using chemical methods and ICP - MS, respectively. The results indicate that the samples have been extensively altered and that the contents of their major elements have changed significantly. However, the similarity of REE partition patterns and trace element contents of basalt samples to those of fresh oceanic island basalts (OIB) indicate that the basalt samples originated as OIB. Because of low-temperature alteration, the contents of A1203 , Fe203 , MnO, K20 and P205 increased, while MgO and FeO decreased. Active components, such as magnesium and iron, were leached from OIB resulting in the relative enrichment of SiO2. The leaching of active components can cause the relative enrichment of REE, while the precipitation of LREE-rich ferromanganese oxides in vesicles and fissures not only causes an increase of REE contents, but also induces "fractionation" of LREE and HREE. Based on the enrichment mechanism of REE contents, the theoretical quantities of precipitated ferromanganese oxides and the depleted quantities of active components are calculated : the depleted quantities of active components for the unit mass of fresh basalts vary in the range of 0.15 ~ 0. 657, and the precipitated quantities of ferromanganese oxides for the unit mass of fresh basahs vary in the range of 0. 006 ~ 0. 042. Of the major elements, the two most depleted are iron, and magnesium, with 18.28% ~ 70.95% of iron and 44.50% ~ 93.94% of magnesium in the fresh basalts was leached out. Theoretical calculation and geochemistry results both indicate that low-temperature alteration of basalts can supply abundant amount of metals to seawater, and may play an important role in ocean metal circulation.展开更多
Interactions between basaltic melt and orthopyroxenite(Opx)were investigated to gain a better understanding of the consequences of the residence and transport of ocean island basalts(OIBs)within the mantle.The experim...Interactions between basaltic melt and orthopyroxenite(Opx)were investigated to gain a better understanding of the consequences of the residence and transport of ocean island basalts(OIBs)within the mantle.The experiments were conducted using a DS-3600 six-anvil apparatus at 3.0–4.5 GPa and 1300–1450℃.The basaltic melt and Opx coexisted at local equilibrium at these pressures and temperatures;the initial melts dissolved Opx,which modified their chemical composition,and clinopyroxene(Cpx)precipitated with or without garnet(Grt).The trace-element contents of Grt,Cpx,and melt were measured and the mineral–melt distribution coefficients(D)of Cpx–melt and Grt–melt were calculated,which can be used to assess the distribution of trace elements between basalt and minerals in the mantle.Two types of reaction rim were found in the experimental products,Cpx,and Cpx+Grt;this result indicates that residual rocks within the mantle should be pyroxenite or garnet pyroxenite.Both rock types are found in mantle xenoliths from Hawaii,and the rare-earth-element(REE)pattern of Cpx in these mantle pyroxenites matches those of Cpx in the experimental reaction rims.Furthermore,residual melts in the experimental products plot in similar positions to Hawaiian high-SiO_(2)OIBs on major-element Harker diagrams,and their trace-element patterns show the signature of residual Grt,particularly in runs at1350℃ and 4.0–4.5 GPa.Trace-element concentrations of the experimental residual melts plot in similar positions to the Hawaiian OIBs on commonly used discrimination diagrams(Ti vs.Zr,Cr vs.Y,Cr vs.V,Zr/Y vs.Zr,and Ti/Y vs.Nb/Y).These results indicate that reaction between basaltic melt and pyroxenite might contribute to the generation of Hawaiian high-SiO2 OIBs and account for their chemical variability.展开更多
Understanding the origin of ocean island basalts(OIB) has important bearings on Earth's deep mantle.Although it is widely accepted that subducted oceanic crust, as a consequence of plate tectonics, contributes mat...Understanding the origin of ocean island basalts(OIB) has important bearings on Earth's deep mantle.Although it is widely accepted that subducted oceanic crust, as a consequence of plate tectonics, contributes material to OIB's formation, its exact fraction in OIB's mantle source remains ambiguous largely due to uncertainties associated with existing geochemical proxies. Here we show, through theoretical calculation, that unlike many known proxies, triple oxygen isotope compositions(i.e.D^(17 )O) in olivine samples are not affected by crystallization and partial melting. This unique feature, therefore, allows olivine D^(17 )O values to identify subducted oceanic crusts in OIB's mantle source. Furthermore, the fractions of subducted ocean sediments and hydrothermally altered oceanic crust in OIB's mantle source can be quantified using their characteristic D^(17 )O values. Based on published D^(17 )O data, we estimated the fraction of subducted oceanic crust to be as high as 22.3% in certain OIB, but the affected region in the respective mantle plume is likely to be limited.展开更多
The oceanic island volcanic rocks in the Chiang Mai zone, northern Thailand, are usually covered by Lower Carboniferous and Upper Permian shallow-water carbonate rocks, with the Hawaii rocks and potash trachybasalt be...The oceanic island volcanic rocks in the Chiang Mai zone, northern Thailand, are usually covered by Lower Carboniferous and Upper Permian shallow-water carbonate rocks, with the Hawaii rocks and potash trachybasalt being the main rock types. The alkaline series is dominant with sub-alkaline series occurring in few cases. The geochemical characteristics are described as follows: the major chemical compositions are characterized by high TiO2, high P2O5 and medium K2O; the rare-earth elements are characterized by right-inclined strong LREE-enrichment patterns; the trace element patterns are of the upward-bulging K-Ti enrichment type; multi-component plots falling within the fields of oceanic island basalts and alkali basalts, belonging to the oceanic island-type volcanic rocks, which are similar to the equivalents in Deqin and Gengma (the Changning-Menglian zone) of Yunnan Province, China.展开更多
Seamount accretion is one of the most significant accretionary orogenic processes in the Central Asian Orogenic Belt,but there are few paleo-seamounts reported from and debate on the tectonic evolution of the Junggar ...Seamount accretion is one of the most significant accretionary orogenic processes in the Central Asian Orogenic Belt,but there are few paleo-seamounts reported from and debate on the tectonic evolution of the Junggar Ocean still exists.In this study,we present geochronological,mineralogical,geochemical and isotopic data for basalts from the Chagantaolegai ophiolitic mélanges in Junggar.Zircon U-Pb dating on one basalt yielded a weighted mean^(206)Pb/^(238)U age of 469±7 Ma,which suggests that it formed in the Middle Ordovician.All rock samples belong to alkaline basalt and show similar geochemical characteristics,displaying high TiO_(2)(~3 wt%),(La/Yb)N(17.6–19.0),ΣREE(232–289 ppm)and enrichment in Nb and Ta,which implies an ocean island basalt(OIB)affinity.Based upon positiveεN d(t)(+4.16 to+4.23),ΔNb(0.20–0.22)and low initial^(87)Sr/^(86)Sr(0.70425 to 0.70452)and Zr/Nb(3.35–3.57),we suggest that the Chagantaolegai OIB samples were likely derived from a fertile mantle source related to plume.The OIB rock assemblage,chert and marble in the southern part of the Chagantaolegai ophiolitic mélange indicates that a Middle Ordovician seamount was accreted to the Boshchekul-Chingiz arc due to the northward subduction of the Junggar-Balkhash Ocean.展开更多
The compositional variability of ocean island basalts(OIBs)is thought to reflect partial melting of a lithologicallyheterogeneous mantle source dominated by either pyroxenite or peridotite.The Pohnpei Island in Micron...The compositional variability of ocean island basalts(OIBs)is thought to reflect partial melting of a lithologicallyheterogeneous mantle source dominated by either pyroxenite or peridotite.The Pohnpei Island in Micronesia,which is associated with the Caroline hotspot,is suggested to have been generated from partial melting of a pyroxenite-rich mantle.To examine this hypothesis,we present new major-and trace-element compositions of olivine phenocrysts in basalts from the island.The olivines exhibit large systematic inter-and intra-crystalline compositional variability.In Sample DS1,olivines record compositional zonation,in which cores have relatively high Fo(77–85),Ni(550×10^(-6 )–2392×10^(-6 )),and Fe/Mn ratios(66–82),whereas rims have lower Fo(71–78),Ni(526×10^(-6 )–1537×10^(-6 )),and Fe/Mn ratios(51–62).By contrast,olivines within other samples preserve no clear compositional zonation,exhibiting similar or slightly lower Fo values(66–78),Ni contents(401×10^(-6 )–1268×10^(-6 )),and Fe/Mn ratios(53–69)as the rims of zoned crystals.The distinct chemical contrast between the two different types of olivine suggests they formed in magma chambers at different depths.Analysis using forward petrological modeling and multi-element indicators(Fe/Mn,Zn/Fe,FC3MS(FeO^(T)/CaO-(3×MgO/SiO^(2))),Mn/Zn,and Ni/(Mg/Fe))of whole-rock samples and high-Fo olivines is inconsistent with a pyroxenite-rich mantle source.We suggest these inconsistencies reflect an influence on the partition coefficients of Ni and Mn between olivine and liquid during melting at variable pressures and temperatures.In addition,magma recharge and mixing within the magmatic plumbing system can change the composition of olivine.We suggest that identification of the mantle source of OIBs in volcanic islands such as the Pohnpei Island using olivine geochemistry should be treated with caution.展开更多
基金supported by the National Nature Science Foundation of China(No.41303027)Special Fund for Basic Scientific Research of Central Colleges Project(No.2014G1271058)
文摘Recently, we focused on the Darbut and Karamay ophiolitic m41anges in West Junggar of the Central Asian Orogenic Belt (CAOB, SengOr et al., 1993; Windley et al., 2007; Xiao and Santosh, 2014), and made much progress. This study was supported by the National Nature Science Foundation of China (No. 41303027) and Special Fund for Basic Scientific Research of Central Colleges Project (No. 2014G1271058). The achievements are illustrated as follows.
基金The National Natural Science Foundation of China (NSFC) under contract No 40706028the China Oceanic Mineral Resources Re-search and Development Association (COMRA) under contract No DYXM115-01-2-01
文摘The major elements, rare earth elements (REE) and trace elements of four basalt samples from central and western Pacific ferro- manganese crust provinces have been analyzed using chemical methods and ICP - MS, respectively. The results indicate that the samples have been extensively altered and that the contents of their major elements have changed significantly. However, the similarity of REE partition patterns and trace element contents of basalt samples to those of fresh oceanic island basalts (OIB) indicate that the basalt samples originated as OIB. Because of low-temperature alteration, the contents of A1203 , Fe203 , MnO, K20 and P205 increased, while MgO and FeO decreased. Active components, such as magnesium and iron, were leached from OIB resulting in the relative enrichment of SiO2. The leaching of active components can cause the relative enrichment of REE, while the precipitation of LREE-rich ferromanganese oxides in vesicles and fissures not only causes an increase of REE contents, but also induces "fractionation" of LREE and HREE. Based on the enrichment mechanism of REE contents, the theoretical quantities of precipitated ferromanganese oxides and the depleted quantities of active components are calculated : the depleted quantities of active components for the unit mass of fresh basalts vary in the range of 0.15 ~ 0. 657, and the precipitated quantities of ferromanganese oxides for the unit mass of fresh basahs vary in the range of 0. 006 ~ 0. 042. Of the major elements, the two most depleted are iron, and magnesium, with 18.28% ~ 70.95% of iron and 44.50% ~ 93.94% of magnesium in the fresh basalts was leached out. Theoretical calculation and geochemistry results both indicate that low-temperature alteration of basalts can supply abundant amount of metals to seawater, and may play an important role in ocean metal circulation.
基金Natural Science Foundations of China(Grant Nos.41502057 and 41472065)Foundations of Suzhou University(Nos.2019ZD46,2015jb01 and 2015jb07).
文摘Interactions between basaltic melt and orthopyroxenite(Opx)were investigated to gain a better understanding of the consequences of the residence and transport of ocean island basalts(OIBs)within the mantle.The experiments were conducted using a DS-3600 six-anvil apparatus at 3.0–4.5 GPa and 1300–1450℃.The basaltic melt and Opx coexisted at local equilibrium at these pressures and temperatures;the initial melts dissolved Opx,which modified their chemical composition,and clinopyroxene(Cpx)precipitated with or without garnet(Grt).The trace-element contents of Grt,Cpx,and melt were measured and the mineral–melt distribution coefficients(D)of Cpx–melt and Grt–melt were calculated,which can be used to assess the distribution of trace elements between basalt and minerals in the mantle.Two types of reaction rim were found in the experimental products,Cpx,and Cpx+Grt;this result indicates that residual rocks within the mantle should be pyroxenite or garnet pyroxenite.Both rock types are found in mantle xenoliths from Hawaii,and the rare-earth-element(REE)pattern of Cpx in these mantle pyroxenites matches those of Cpx in the experimental reaction rims.Furthermore,residual melts in the experimental products plot in similar positions to Hawaiian high-SiO_(2)OIBs on major-element Harker diagrams,and their trace-element patterns show the signature of residual Grt,particularly in runs at1350℃ and 4.0–4.5 GPa.Trace-element concentrations of the experimental residual melts plot in similar positions to the Hawaiian OIBs on commonly used discrimination diagrams(Ti vs.Zr,Cr vs.Y,Cr vs.V,Zr/Y vs.Zr,and Ti/Y vs.Nb/Y).These results indicate that reaction between basaltic melt and pyroxenite might contribute to the generation of Hawaiian high-SiO2 OIBs and account for their chemical variability.
基金funding supports from the strategic priority research program (B) of Chinese Academy ofSciences (XDB18010104) and (XDB18010100)Chinese NSF Project (41490635)
文摘Understanding the origin of ocean island basalts(OIB) has important bearings on Earth's deep mantle.Although it is widely accepted that subducted oceanic crust, as a consequence of plate tectonics, contributes material to OIB's formation, its exact fraction in OIB's mantle source remains ambiguous largely due to uncertainties associated with existing geochemical proxies. Here we show, through theoretical calculation, that unlike many known proxies, triple oxygen isotope compositions(i.e.D^(17 )O) in olivine samples are not affected by crystallization and partial melting. This unique feature, therefore, allows olivine D^(17 )O values to identify subducted oceanic crusts in OIB's mantle source. Furthermore, the fractions of subducted ocean sediments and hydrothermally altered oceanic crust in OIB's mantle source can be quantified using their characteristic D^(17 )O values. Based on published D^(17 )O data, we estimated the fraction of subducted oceanic crust to be as high as 22.3% in certain OIB, but the affected region in the respective mantle plume is likely to be limited.
基金granted by the National Natural Science Foundation of China (Grant Nos. 40372105 and 40772143)
文摘The oceanic island volcanic rocks in the Chiang Mai zone, northern Thailand, are usually covered by Lower Carboniferous and Upper Permian shallow-water carbonate rocks, with the Hawaii rocks and potash trachybasalt being the main rock types. The alkaline series is dominant with sub-alkaline series occurring in few cases. The geochemical characteristics are described as follows: the major chemical compositions are characterized by high TiO2, high P2O5 and medium K2O; the rare-earth elements are characterized by right-inclined strong LREE-enrichment patterns; the trace element patterns are of the upward-bulging K-Ti enrichment type; multi-component plots falling within the fields of oceanic island basalts and alkali basalts, belonging to the oceanic island-type volcanic rocks, which are similar to the equivalents in Deqin and Gengma (the Changning-Menglian zone) of Yunnan Province, China.
基金supported by the National Science Foundation of China(Grant No.41672217)the Fundamental Research Funds for the Central Universities(Grant No.N170104022)the State Scholarship Fund(Grant No.201806085034)。
文摘Seamount accretion is one of the most significant accretionary orogenic processes in the Central Asian Orogenic Belt,but there are few paleo-seamounts reported from and debate on the tectonic evolution of the Junggar Ocean still exists.In this study,we present geochronological,mineralogical,geochemical and isotopic data for basalts from the Chagantaolegai ophiolitic mélanges in Junggar.Zircon U-Pb dating on one basalt yielded a weighted mean^(206)Pb/^(238)U age of 469±7 Ma,which suggests that it formed in the Middle Ordovician.All rock samples belong to alkaline basalt and show similar geochemical characteristics,displaying high TiO_(2)(~3 wt%),(La/Yb)N(17.6–19.0),ΣREE(232–289 ppm)and enrichment in Nb and Ta,which implies an ocean island basalt(OIB)affinity.Based upon positiveεN d(t)(+4.16 to+4.23),ΔNb(0.20–0.22)and low initial^(87)Sr/^(86)Sr(0.70425 to 0.70452)and Zr/Nb(3.35–3.57),we suggest that the Chagantaolegai OIB samples were likely derived from a fertile mantle source related to plume.The OIB rock assemblage,chert and marble in the southern part of the Chagantaolegai ophiolitic mélange indicates that a Middle Ordovician seamount was accreted to the Boshchekul-Chingiz arc due to the northward subduction of the Junggar-Balkhash Ocean.
基金The Resources and Environment Projects of China Ocean Mineral R&D Association under contract No.DY135-E2-2-01the Natural Science Foundation of Shandong Province under contract No.ZR2020QD076
文摘The compositional variability of ocean island basalts(OIBs)is thought to reflect partial melting of a lithologicallyheterogeneous mantle source dominated by either pyroxenite or peridotite.The Pohnpei Island in Micronesia,which is associated with the Caroline hotspot,is suggested to have been generated from partial melting of a pyroxenite-rich mantle.To examine this hypothesis,we present new major-and trace-element compositions of olivine phenocrysts in basalts from the island.The olivines exhibit large systematic inter-and intra-crystalline compositional variability.In Sample DS1,olivines record compositional zonation,in which cores have relatively high Fo(77–85),Ni(550×10^(-6 )–2392×10^(-6 )),and Fe/Mn ratios(66–82),whereas rims have lower Fo(71–78),Ni(526×10^(-6 )–1537×10^(-6 )),and Fe/Mn ratios(51–62).By contrast,olivines within other samples preserve no clear compositional zonation,exhibiting similar or slightly lower Fo values(66–78),Ni contents(401×10^(-6 )–1268×10^(-6 )),and Fe/Mn ratios(53–69)as the rims of zoned crystals.The distinct chemical contrast between the two different types of olivine suggests they formed in magma chambers at different depths.Analysis using forward petrological modeling and multi-element indicators(Fe/Mn,Zn/Fe,FC3MS(FeO^(T)/CaO-(3×MgO/SiO^(2))),Mn/Zn,and Ni/(Mg/Fe))of whole-rock samples and high-Fo olivines is inconsistent with a pyroxenite-rich mantle source.We suggest these inconsistencies reflect an influence on the partition coefficients of Ni and Mn between olivine and liquid during melting at variable pressures and temperatures.In addition,magma recharge and mixing within the magmatic plumbing system can change the composition of olivine.We suggest that identification of the mantle source of OIBs in volcanic islands such as the Pohnpei Island using olivine geochemistry should be treated with caution.