期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Ocean tide loading correction for InSAR measurements: Comparison of different ocean tide models 被引量:2
1
作者 Zhou Wu Mi Jiang +1 位作者 Ruya Xiao Jing Xu 《Geodesy and Geodynamics》 CSCD 2022年第2期170-178,共9页
With the rapid development of modern Interferometric Synthetic Aperture Radar(InSAR)missions,SAR instruments with wider coverage can be used to monitor the ground surface deformation from regional to global scale.Howe... With the rapid development of modern Interferometric Synthetic Aperture Radar(InSAR)missions,SAR instruments with wider coverage can be used to monitor the ground surface deformation from regional to global scale.However,the ocean tide loading(OTL)displacement is becoming a primary source of errors.It contributes to a long-wavelength signal in InSAR interferograms,leading to errors from millimeter to centimeter-level in InSAR deformation monitoring,especially over coastal areas.Although the state-of-the-art has applied ocean tide models to mitigate the errors,the difference between them and their impact on InSAR measurements are rarely discussed.In this paper,we compare representative ocean tide models and investigate their effects in the correction of OTL errors.We found that(i)the modeled OTL displacements from different models show little difference over interiors far from the ocean,while disagreement becomes larger over coastal areas;(ii)the magnitude of OTL artifacts may be greater than the atmospheric delays in some coastal areas,and the correction using ocean tide models can effectively attenuate the OTL effects for large-scale InSAR measurements;(iii)when correcting the OTL errors for InSAR measurements,the global model TPXO and FES are recommended because of their better overall performance,while the NAO model performs the worst.The local models with high spatial resolution can help improve the capability of coarse global models in complex topographic areas. 展开更多
关键词 INSAR Large-scale InSAR Ocean tide loading Ocean tide models
下载PDF
Influence of the modified global ocean tide model with local tides of East and South China Seas on load gravity in China and its neighbor area
2
作者 周江存 孙和平 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2005年第3期354-360,379,共8页
By using 11 global ocean tide models and tidal gauge data obtained in the East China Sea and South China Sea, the influence of the ocean loading on gravity field in China and its neighbor area is calculated in this pa... By using 11 global ocean tide models and tidal gauge data obtained in the East China Sea and South China Sea, the influence of the ocean loading on gravity field in China and its neighbor area is calculated in this paper. Furthermore, the differences between the results from original global models and modified models with local tides are discussed based on above calculation. The comparison shows that the differences at the position near the sea are so large that the local tides must be taken into account in the calculation. When the global ocean tide models of CSR4.0, FES02, GOT00, NAO99 and ORI96 are chosen, the local effect for M2 is less than 0.10 × 10-8 m·s-2 over the area far away from sea. And the local effect for O1 is less than 0.05 × 10-8 m·s-2 over that area when choosing AG95 or CSR3.0 models. This numerical result demonstrates that the choice of model is a complex problem because of the inconsistent accuracy of the models over the areas of East and South China Seas. 展开更多
关键词 global ocean tide model local tides data modification ocean tide loading
下载PDF
Evaluation of global ocean tide models based on tidal gravity observations in China
3
作者 Hongbo Tan Olivier Francis +5 位作者 Guiju Wu Guangliang Yang Jiapei Wang Xiaotong Zhang Jinshui Huang Chongyang Shen 《Geodesy and Geodynamics》 CSCD 2021年第6期451-458,共8页
Previous studies show that the calculated loading effects from global ocean tide models do not match actual measurements of gravity attraction and loading effects in Southeast Asia.In this paper,taking advantage of a ... Previous studies show that the calculated loading effects from global ocean tide models do not match actual measurements of gravity attraction and loading effects in Southeast Asia.In this paper,taking advantage of a unique network of gravity tidal stations all over the Chinese mainland,we compare the observed and modeled tidal loading effects on the basis of the most recent global ocean tide models.The results show that the average efficiencies of the ocean tidal loading correction for O_(1),K_(1),M_(2) are 77%,7 s3%and 59%,respectively.The loading correction efficiencies using recent ocean tidal models are better than the 40 years old Schwiderskis model at coastal stations,but relative worse at stations far from ocean. 展开更多
关键词 Gravity signals Ocean tidal loading Global ocean tide models gPhone gravimeter
下载PDF
Tidal modeling based on satellite altimetry observations of TOPEX/ Poseidon, Jason1, Jason2, and Jason3 with high prediction capability: A case study of the Baltic Sea
4
作者 Alireza A.Ardalan Asiyeh Hashemifaraz 《Geodesy and Geodynamics》 EI CSCD 2024年第4期404-418,共15页
This research aims to optimize the utilization of long-term sea level data from the TOPEX/Poseidon,Jason1,Jason2,and Jason3 altimetry missions for tidal modeling.We generate a time series of along-track observations a... This research aims to optimize the utilization of long-term sea level data from the TOPEX/Poseidon,Jason1,Jason2,and Jason3 altimetry missions for tidal modeling.We generate a time series of along-track observations and apply a developed method to produce tidal models with specific tidal constituents for each location.Our tidal modeling methodology follows an iterative process:partitioning sea surface height(SSH)observations into analysis/training and prediction/validation parts and ultimately identi-fying the set of tidal constituents that provide the best predictions at each time series location.The study focuses on developing 1256 time series along the altimetry tracks over the Baltic Sea,each with its own set of tidal constituents.Verification of the developed tidal models against the sSH observations within the prediction/validation part reveals mean absolute error(MAE)values ranging from 0.0334 m to 0.1349 m,with an average MAE of 0.089 m.The same validation process is conducted on the FES2014 and EOT20 global tidal models,demonstrating that our tidal model,referred to as BT23(short for Baltic Tide 2023),outperforms both models with an average MAE improvement of 0.0417 m and 0.0346 m,respectively.In addition to providing details on the development of the time series and the tidal modeling procedure,we offer the 1256 along-track time series and their associated tidal models as supplementary materials.We encourage the satellite altimetry community to utilize these resources for further research and applications. 展开更多
关键词 Satellitealtimetry Baltic Sea Ocean tide modeling Jason3 Jason2 Jason1 TOPEX/POSEIDON EOT20 FES2014
下载PDF
Estimation of free core nutation parameters and availability of computing options
5
作者 Weiwei Yang Xiaoming Cui +2 位作者 Jianqiao Xu Qingchao Liu Ming Qin 《Geodesy and Geodynamics》 EI CSCD 2024年第1期61-74,共14页
The Earth’s Free Core Nutation(FCN) causes Earth tides and forced nutation with frequencies close to the FCN that exhibit resonance effects.High-precision superconducting gravimeter(SG) and very long baseline interfe... The Earth’s Free Core Nutation(FCN) causes Earth tides and forced nutation with frequencies close to the FCN that exhibit resonance effects.High-precision superconducting gravimeter(SG) and very long baseline interferometry(VLBI) provide good observation techniques for detecting the FCN parameters.However,some choices in data processing and solution procedures increase the uncertainty of the FCN parameters.In this study,we analyzed the differences and the effectiveness of weight function and ocean tide corrections in the FCN parameter detection using synthetic data,SG data from thirty-one stations,and the 10 celestial pole offset(CPO) series.The results show that significant discrepancies are caused by different computing options for a single SG station.The stacking method,which results in a variation of0.24-5 sidereal days(SDs) in the FCN period(T) and 10^(3)-10^(4) in the quality factor(Q) due to the selection of the weighting function and the ocean tide model(OTM),can effectively suppress this influence.The statistical analysis results of synthetic data shows that although different weight choices,while adjusting the proportion of diurnal tidal waves involved,do not significantly improve the accuracy of fitted FCN parameters from gravity observations.The study evaluated a series of OTMs using the loading correction efficiency.The fitting of FCN parameters can be improved by selecting the mean of appropriate OTMs based on the evaluation results.Through the estimation of the FCN parameters based on the forced nutation,it was found that the weight function P_(1) is more suitable than others,and different CPO series(after 2009) resulted in a difference of 0.4 SDs in the T and of 103 in the Q.We estimated the FCN parameters for SG(T=430.4±1.5 SDs and Q=1.52×10^(4)±2.5×10^(3)) and for VLBI(T=429.8±0.7 SDs,Q=1.88×10^(4)±2.1×10^(3)). 展开更多
关键词 Free core nutation Superconducting gravimeter Very long baseline interferometry Weight function Ocean tide model
下载PDF
Feasibility study on application of satellite formations for eliminating the influence from aliasing error of ocean tide model 被引量:1
6
作者 ZHAO Qian JIANG WeiPing +1 位作者 XU XinYu ZOU XianCai 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第3期474-481,共8页
Currently,aliasing error of temporal signal model becomes the main factor constraining the accuracy of temporal gravity field.In provision of three types of satellite formations,i.e.,GRACE-type,Pendulum-type and n-s-C... Currently,aliasing error of temporal signal model becomes the main factor constraining the accuracy of temporal gravity field.In provision of three types of satellite formations,i.e.,GRACE-type,Pendulum-type and n-s-Cartwheel-type,which are suitable for gravity mission and composed of observation in different directions,here we design two cases and conduct a simulation experiment on the feasibility to apply satellite formations for eliminating the influence from the aliasing error of ocean tide models.The result of our experiment shows that,when the aliasing error is disregarded,n-s-Cartwheel formation can provide the best conditions for gravity field determination,which,compared with GRACE-type,can improve the accuracy by 43%.When aliasing error of the ocean tide model acts as the main source of error,the satellite formation applied in dynamic method for gravity field inversion cannot eliminate aliasing or improve the accuracy of gravity field.And due to its higher sensitivity to the high-degree variation of gravity field,the Cartwheel-type formation,which includes the radial observation,can result in the gravity field containing more high-frequency signals for the ocean tide model error,and lead to a dramatically larger error. 展开更多
关键词 satellite formation aliasing error ocean tide model gravity field inversion
原文传递
Synthetic tidal parameters for gravity over China and its neighbor area
7
作者 周江存 孙和平 《Acta Seismologica Sinica(English Edition)》 CSCD 2007年第6期656-663,共8页
The synthetic tidal parameters with high spatial resolution for gravity over China and its neighbor area are constructed with Earth's tidal model and ocean tide loading calculated using TPXO7 global ocean tide model ... The synthetic tidal parameters with high spatial resolution for gravity over China and its neighbor area are constructed with Earth's tidal model and ocean tide loading calculated using TPXO7 global ocean tide model as well as tidal data over China seas. The comparison between synthetic parameters and ones observed by spring gravimeters at some seismic network stations and Hong Kong station and one observed by super-conducting gravimeter at Wuhan station shows that the average differences in amplitude factors and phases are smaller than 0.005 and 0.5° respectively; and that the discrepancies between observational and synthetic parameters are dependent on gravimetric technique in that the synthetic parameters are in well agreement with the superconducting gravimetric observations. This also indicates that the synthetic result is a good estimation for tidal gravity, and the numerical results in the present paper not only can provide ground and space gravimetry such as absolute gravimetry with correction model of tidal gravity, but also provide effective tidal parameters over areas where no observation is carried out. 展开更多
关键词 synthetic tidal parameters for gravity Earth's tidal model ocean tide loading TPXO7 ocean tide model tidal data over China seas
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部