We carry out the first time-resolved measurement of Rb atoms desorbing from octadecyltrichlorosilane coated sur- faces by polarizing the atoms near the surface using an evanescent wave pump pulse and watching the subs...We carry out the first time-resolved measurement of Rb atoms desorbing from octadecyltrichlorosilane coated sur- faces by polarizing the atoms near the surface using an evanescent wave pump pulse and watching the subsequent intensity change of another evanescent wave probe beam, and find the mean adsorption (dwell) time to be about 400ns at a cell body temperature of 112℃. The adsorption energy is found to be 0.19eV from the surface tem- perature dependence of the adsorption time. This method can be extended to study the adsorption/desorption process of other alkali atoms on other surfaces of transparent substrates with an ultimate time resolution limited by the flight time of atoms in the evanescent wave which is of the order of nanoseconds.展开更多
A novel way of producing superhydrophobic surfaces by applying a self-assembled monolayer(SAM)to silicon micro/nano-textured surfaces is presented in this paper.The micro/nano-textured surfaces on silicon substrates w...A novel way of producing superhydrophobic surfaces by applying a self-assembled monolayer(SAM)to silicon micro/nano-textured surfaces is presented in this paper.The micro/nano-textured surfaces on silicon substrates were generated by the aluminum-induced crystallization(AIC)of amorphous silicon(a-Si)technique.Octadecyltrichlorosilane(OTS)SAMs were then applied to the textured surfaces by dip coating.The topography and wetting properties of the resulting surfaces were characterized using scanning electron microscopy(SEM)and a video-based contact angle measurement system.The results show that by introducing OTS SAMs on the silicon micro/nano-textured surfaces,superhydrophobic surfaces with water contact angles(WCAs)of 155°were obtained,as compared to the WCAs of OTS-modified smooth silicon surfaces of about 112°.Surface topography was found to directly influence the WCA as predicted by the Cassie-Baxter model.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11074050
文摘We carry out the first time-resolved measurement of Rb atoms desorbing from octadecyltrichlorosilane coated sur- faces by polarizing the atoms near the surface using an evanescent wave pump pulse and watching the subsequent intensity change of another evanescent wave probe beam, and find the mean adsorption (dwell) time to be about 400ns at a cell body temperature of 112℃. The adsorption energy is found to be 0.19eV from the surface tem- perature dependence of the adsorption time. This method can be extended to study the adsorption/desorption process of other alkali atoms on other surfaces of transparent substrates with an ultimate time resolution limited by the flight time of atoms in the evanescent wave which is of the order of nanoseconds.
基金This material is based on work supported by the US National Science Foundation under Grant Nos.CMMI-0600642 and CMMI-0645040.
文摘A novel way of producing superhydrophobic surfaces by applying a self-assembled monolayer(SAM)to silicon micro/nano-textured surfaces is presented in this paper.The micro/nano-textured surfaces on silicon substrates were generated by the aluminum-induced crystallization(AIC)of amorphous silicon(a-Si)technique.Octadecyltrichlorosilane(OTS)SAMs were then applied to the textured surfaces by dip coating.The topography and wetting properties of the resulting surfaces were characterized using scanning electron microscopy(SEM)and a video-based contact angle measurement system.The results show that by introducing OTS SAMs on the silicon micro/nano-textured surfaces,superhydrophobic surfaces with water contact angles(WCAs)of 155°were obtained,as compared to the WCAs of OTS-modified smooth silicon surfaces of about 112°.Surface topography was found to directly influence the WCA as predicted by the Cassie-Baxter model.