Define the total number of distinct prime factors of an odd perfect number n asω(n). We prove that if n is an odd perfect number which is relatively prime to 3 and 5 and7, then ω(n) ≥ 107. And using this result, we...Define the total number of distinct prime factors of an odd perfect number n asω(n). We prove that if n is an odd perfect number which is relatively prime to 3 and 5 and7, then ω(n) ≥ 107. And using this result, we give a conclusion that the third largest prime factor of such an odd perfect number exceeds 1283.展开更多
In this paper, we find two integers k0, m of 159 decimal digits such that if k ≡ k0 (mod m), then none of five consecutive odd numbers k, k - 2, k - 4, k - 6 and k - 8 can be expressed in the form 2^n ± p^α, ...In this paper, we find two integers k0, m of 159 decimal digits such that if k ≡ k0 (mod m), then none of five consecutive odd numbers k, k - 2, k - 4, k - 6 and k - 8 can be expressed in the form 2^n ± p^α, where p is a prime and n, α are nonnegative integers.展开更多
基金Foundation item: Supported by the Science Foundation of Kashgar Teacher's College(112390)
文摘Define the total number of distinct prime factors of an odd perfect number n asω(n). We prove that if n is an odd perfect number which is relatively prime to 3 and 5 and7, then ω(n) ≥ 107. And using this result, we give a conclusion that the third largest prime factor of such an odd perfect number exceeds 1283.
基金the National Natural Science Foundation of China,Grant No 10471064 and 10771103
文摘In this paper, we find two integers k0, m of 159 decimal digits such that if k ≡ k0 (mod m), then none of five consecutive odd numbers k, k - 2, k - 4, k - 6 and k - 8 can be expressed in the form 2^n ± p^α, where p is a prime and n, α are nonnegative integers.