The effect of cyanobacterial bloom decay on water quality and the complete degradation of cyanobacterial blooms in a short period were examined by an enclosure experiment in Gonghu Bay of Lake Taihu,China.Water qualit...The effect of cyanobacterial bloom decay on water quality and the complete degradation of cyanobacterial blooms in a short period were examined by an enclosure experiment in Gonghu Bay of Lake Taihu,China.Water quality parameters as well as taste and odor compounds during the breakdown of cyanobacterial blooms were measured.Results showed that the decay of cyanobacterial blooms caused anoxic water conditions,decreased pH,and increased nutrient loading to the lake water.The highest concentrations of dimethyl sulfide (DMS),dimethyl trisulfide (DMTS),and β-cyclocitral were observed in the anoxic water,at 62331.8,12413.3,and 1374.9 ng/L,respectively.2-Methylisoborneol was dominant during the live growth phase of cyanobacterial blooms,whereas DMS and DMTS were dominant during the decomposition phase.Dissolved oxygen,pH,and chlorophyll a were negatively correlated with DMS,DMTS,and β-cyclocitral,whereas total phosphorus,total nitrogen,and ammonium (NH4+-N) were positively correlated with DMS,DMTS,β-cyclocitral,and β-ionone.The experimental results suggested that preventing the anaerobic decomposition of cyanobacterial blooms is an important strategy against the recurrence of a malodor crisis in Lake Taihu.展开更多
There are regular problems of musty odor in the Huangpu River,a major source of drinking water for Shanghai,China.In this study,the musty odor and its main causative compounds in the Huangpu River source water were co...There are regular problems of musty odor in the Huangpu River,a major source of drinking water for Shanghai,China.In this study,the musty odor and its main causative compounds in the Huangpu River source water were confirmed through a yearly investigation using flavor profile analysis combined with HSPME-GC-MS analysis.The investigation showed that 2-methylisoborneol (2-MIB) with a concentration level between 28.6 and 71.0 ng/L was responsible for the musty odor in summer from July to September.Microscopic observation confirmed with the cloning results showed that Phormidium spp.,which accounted for 80%-95% of the algal cell density,was the microorganisms responsible for the production of 2-MIB and the estimated 2-MIB yield was 0.022 pg/cell.Results from a wide-area sampling campaign in the Huangpu River watershed showed that,other than the large tributaries receiving water from Tai Lake,several small creeks close to the intake may have contributed most of the 2-MIB and the Phormidium spp.to the Huangpu River source water.This study provides methodology for the investigation of odor causing compounds and microorganisms in river-type source water,and the result will be useful for water quality control in both source water and drinking water.展开更多
基金supported by the National Water Pollution Control and Management Technology Major Project(No.2012ZX07101-010)the State Key Laboratory of Freshwater Ecology and Biotechnology(No.2011FBZ07)
文摘The effect of cyanobacterial bloom decay on water quality and the complete degradation of cyanobacterial blooms in a short period were examined by an enclosure experiment in Gonghu Bay of Lake Taihu,China.Water quality parameters as well as taste and odor compounds during the breakdown of cyanobacterial blooms were measured.Results showed that the decay of cyanobacterial blooms caused anoxic water conditions,decreased pH,and increased nutrient loading to the lake water.The highest concentrations of dimethyl sulfide (DMS),dimethyl trisulfide (DMTS),and β-cyclocitral were observed in the anoxic water,at 62331.8,12413.3,and 1374.9 ng/L,respectively.2-Methylisoborneol was dominant during the live growth phase of cyanobacterial blooms,whereas DMS and DMTS were dominant during the decomposition phase.Dissolved oxygen,pH,and chlorophyll a were negatively correlated with DMS,DMTS,and β-cyclocitral,whereas total phosphorus,total nitrogen,and ammonium (NH4+-N) were positively correlated with DMS,DMTS,β-cyclocitral,and β-ionone.The experimental results suggested that preventing the anaerobic decomposition of cyanobacterial blooms is an important strategy against the recurrence of a malodor crisis in Lake Taihu.
基金supported by the National Natural Science Foundation of China(No.50938007)the National Special Funding Project for Water Pollution Control and Management of China(No.2008ZX07421004)
文摘There are regular problems of musty odor in the Huangpu River,a major source of drinking water for Shanghai,China.In this study,the musty odor and its main causative compounds in the Huangpu River source water were confirmed through a yearly investigation using flavor profile analysis combined with HSPME-GC-MS analysis.The investigation showed that 2-methylisoborneol (2-MIB) with a concentration level between 28.6 and 71.0 ng/L was responsible for the musty odor in summer from July to September.Microscopic observation confirmed with the cloning results showed that Phormidium spp.,which accounted for 80%-95% of the algal cell density,was the microorganisms responsible for the production of 2-MIB and the estimated 2-MIB yield was 0.022 pg/cell.Results from a wide-area sampling campaign in the Huangpu River watershed showed that,other than the large tributaries receiving water from Tai Lake,several small creeks close to the intake may have contributed most of the 2-MIB and the Phormidium spp.to the Huangpu River source water.This study provides methodology for the investigation of odor causing compounds and microorganisms in river-type source water,and the result will be useful for water quality control in both source water and drinking water.