There has been significant research in recent decades on Land use Land cover (LULC) changes and their influence on biodiversity but little to no research on its impact on air quality. This research seeks to demonstrat...There has been significant research in recent decades on Land use Land cover (LULC) changes and their influence on biodiversity but little to no research on its impact on air quality. This research seeks to demonstrate how geospatial technologies such as geographic information system (GIS) and remote sensing can be used to assess the effects of LULC changes on particulate matter emissions and their impact on air quality in the East Baton Rouge area. In pursuit of these objectives, this study uses LANDSAT imageries from the past 30 years specifically Landsat Thematic Mapper (TM C2L2) and Landsat 8 Operational Land Imager/Thermal Infrared (OLI/TIRS C2L2) covering 1991, 2001, 2011 and 2021 were collected, processed, and analyzed for the LULC change analysis using QGIS software. Additionally, Sentinel 5P and the Air quality index from the U.S. Environmental Protection Agency (EPA) were used to assess the air quality trend over the years to establish the correlation between LULC and air quality. Results showed an increasing trend in air quality over the past 3 decades with concentrations of CO, NO<sub>2</sub>, and PM2.5 abruptly falling however, urbanization and the population expanded throughout the time. The paper concludes by outlining a policy recommendation in the form of encouraging Louisiana residents to use alternative renewable energies rather than the over-dependence on coal-fired electric generating plants that have an impact on the environment.展开更多
This paper prohes into the relationship among individual benefits, benefits of the country. common benefits of all humans in land use and land resource security. The following balanced land use model is proposed: the...This paper prohes into the relationship among individual benefits, benefits of the country. common benefits of all humans in land use and land resource security. The following balanced land use model is proposed: the harmonious and interactive relationship between man and nature, two main bodies of land ecological system, constitutes the mechanism of land resources security; The feedback relationship between man and nature is the basis for the land resources security and the core is the relationship among people established for the benefit equilibrium in land use. The conflicts in land use stem from the rarity of land resource and the solution to those conflicts in harmony helps land resource security.展开更多
Monitoring and understanding the changes in mangrove ecosystems and their surroundings are required to determine how mangrove ecosystems are constantly changing while influenced by anthropogenic, and natural drivers. ...Monitoring and understanding the changes in mangrove ecosystems and their surroundings are required to determine how mangrove ecosystems are constantly changing while influenced by anthropogenic, and natural drivers. Cosistency in high spatial resolution (30 m) satellite and high performance computing facilities are limiting factors to the process, with storage and analysis requirements. With this, we present the Google Earth Engine (GEE) based approach for long term mapping of mangrove forests and their surroundings. In this study, we used a GEE based approach: 1) to create atmospheric contamination free data from 1987-2017 from different Landsat satellite imagery;and 2) evaluating the random forest classifier and post classification change detection method. The obtained overall accuracy for the years 1987 and 2017 was determined to be 0.87 and 0.96, followed by a Kappa coefficient 0.80 and 0.94. The change detection results revealed a significant decrease in the agricultural area, while there was an increase in mangrove forest, shrimp/fish farm, and bareland area. The results suggest that interconversion of land use and land cover is affecting the landscape dynamics within the study area.展开更多
Rare earth elements (REE) were used to study the temporal and spatial processes of soil erosion from different depths and sections of a slope. Two simulated rainfall events were applied to a prepared plot with a slope...Rare earth elements (REE) were used to study the temporal and spatial processes of soil erosion from different depths and sections of a slope. Two simulated rainfall events were applied to a prepared plot with a slope of 22°. The total runoff and sediment yield were collected every minute during the rainfall events. During the first twenty minutes of the first rainfall event, the average rate of rill erosion and the accumulated sediment yield due to rill erosion was 0.5 and 0.3 times higher than for sheet erosion. During this time, most of the erosion occurred on the lower one third of the plot. After 20 min, rill erosion became the dominant process on the slope. The average acceleration in the rate of rill erosion, the rate of rill erosion and the accumulated sediment yield due to rill erosion were 42, 6 and 4 times higher than that of sheet erosion, respectively. During the first 35 minutes of the second rainfall event, the average acceleration in the rate of rill erosion was 6~9 times higher than that of sheet erosion. Afterwards, the slope became nearly stable with little change in either rill or sheet erosion rates. Initially, most of the rill erosion occurred in the lower third of the slope but later the preexisting rillhead in the middle section of the slope became reactivated and erosion in this section of the slope increased rapidly. These results indicate that REE tracer technology is a valuable tool for quantifying spatial and temporal changes in erosion from a soil slope.展开更多
The ecological quality of inland areas is an important aspect of the United Nations Sustainable Development Goals(UN SDGs).The ecological environment of Northwest China is vulnerable to changes in climate and land use...The ecological quality of inland areas is an important aspect of the United Nations Sustainable Development Goals(UN SDGs).The ecological environment of Northwest China is vulnerable to changes in climate and land use/land cover,and the changes in ecological quality in this arid region over the last two decades are not well understood.This makes it more difficult to advance the UN SDGs and develop appropriate measures at the regional level.In this study,we used the Moderate Resolution Imaging Spectroradiometer(MODIS)products to generate remote sensing ecological index(RSEI)on the Google Earth Engine(GEE)platform to examine the relationship between ecological quality and environment in Xinjiang during the last two decades(from 2000 to 2020).We analyzed a 21-year time series of the trends and spatial characteristics of ecological quality.We further assessed the importance of different environmental factors affecting ecological quality through the random forest algorithm using data from statistical yearbooks and land use products.Our results show that the RSEI constructed using the GEE platform can accurately reflect the ecological quality information in Xinjiang because the contribution of the first principal component was higher than 90.00%.The ecological quality in Xinjiang has increased significantly over the last two decades,with the northern part of this region having a better ecological quality than the southern part.The areas with slightly improved ecological quality accounted for 31.26%of the total land area of Xinjiang,whereas only 3.55%of the land area was classified as having a slightly worsen(3.16%)or worsen(0.39%)ecological quality.The vast majority of the deterioration in ecological quality mainly occurred in the barren areas Temperature,precipitation,closed shrublands,grasslands and savannas were the top five environmental factors affecting the changes in RSEI.Environmental factors were allocated different weights for different RSEI categories.In general,the recovery of ecological quality in Xinjiang has been controlled by climate and land use/land cover during the last two decades and policy-driven ecological restoration is therefore crucial.Rapid monitoring of inland ecological quality using the GEE platform is projected to aid in the advancement of the comprehensive assessment of the UN SDGs.展开更多
Annual Land Use/Land Cover(LULC)change information at medium spatial resolution(i.e.,at 30 m)is used in applications ranging from land management to achieving sustainable development goals related to food security.How...Annual Land Use/Land Cover(LULC)change information at medium spatial resolution(i.e.,at 30 m)is used in applications ranging from land management to achieving sustainable development goals related to food security.However,obtaining annual LULC information over large areas and long periods is challenging due to limitations on computational capabilities,training data,and workflow design.Using the Google Earth Engine(GEE),which provides a catalog of multi-source data and a cloud-based environment,we developed a novel methodology to generate a high accuracy 30-m LULC cover map collection of the Yangtze River Delta by integrating free and public LULC products with Landsat imagery.Our major contribution is a hybrid approach that includes three major components:1)a high-quality training dataset derived from multi-source LULC products,filtered by k-means clustering analysis;2)a yearly 39-band stack feature space,utilizing all available Landsat data and DEM data;and 3)a self-adaptive Random Forest(RF)method,introduced for LULC classification.Experimental results show that our proposed workflow achieves an average classification accuracy of 86.33%in the entire Delta.The results demonstrate the great potential of integrating multi-source LULC products for producing LULC maps of increased reliability.In addition,as the proposed workflow is based on open source data and the GEE cloud platform,it can be used anywhere by anyone in the world.展开更多
At present,there are many problems in the self-circular development model of"land transfer-real estate development-land financeurban sprawl"in China.The endogenous power of policy implementation is insuffici...At present,there are many problems in the self-circular development model of"land transfer-real estate development-land financeurban sprawl"in China.The endogenous power of policy implementation is insufficient,the top-level design is not systematic enough,the departmental linkage mechanism is flawed,the local basic data is weak,and there are difficulties in technical operation.According to the current situation,this paper puts forward the following policy suggestions:based on the establishment of financial transfer payment mechanism in rural areas,the construction of the system of man,land and money should be promoted in coordination,and a scientific monitoring system of urbanization degree should be established,so as to make up for the deficiency of the slow speed of"man urbanization"and make the new urbanization healthy and sustainable.展开更多
Energy used for industrial production, buildings and transport will be accumulated in Atmosphere and Earth land. Global use of energy is known and documented for a long period of time and proportion of fossil and rene...Energy used for industrial production, buildings and transport will be accumulated in Atmosphere and Earth land. Global use of energy is known and documented for a long period of time and proportion of fossil and renewable energy is also known. Calculated accumulated energy in Earth land from 1971 to 2018 corresponds to 40% of IPCC Global Energy Inventory and calculated Atmosphere temperature increase from 1971 to 2018 corresponds to 100% of actual measurements.展开更多
Taking agricultural development as the starting point,this paper explored the dynamic mechanism and implementation path of agricultural development in Qinba Mountainous Area from the perspective of man-land relationsh...Taking agricultural development as the starting point,this paper explored the dynamic mechanism and implementation path of agricultural development in Qinba Mountainous Area from the perspective of man-land relationship. It found the regular understanding of ecological changes in Qinba Mountains. It is a comprehensive review and exploration on agricultural development and environmental evolution,and aims to provide a historical reference for the development of the contemporary Qinba Mountains.展开更多
The Yarlung Zangbo River basin is a spacial zone in the south of Xizang, the types, distribution and causes of desertified lands have special features. The type, area, distribution and damage of desertification land i...The Yarlung Zangbo River basin is a spacial zone in the south of Xizang, the types, distribution and causes of desertified lands have special features. The type, area, distribution and damage of desertification land in the Yarlung Zangbo River basin are firstly analysed in detail by using latest investigation information. According to the classification criteria of desertified land types and grades, the desertified land in the Yarlung Zangbo River basin can be divided into three grades and five types: fixed sand (dune) land, semi bare sand and gravel land, semi fixed sand (dune) land, base sand and gravel land, and shifting sand (dune) land. The desertified lands in the basin are mainly distributed in the wide valley floor and tributary junction area. The main factors affecting desertification are fragile eco environment, climate warming and drying and over exploitation of land resources. The man made factors leading to desertification in the Yarlung Zangbo River basin are over cutting and over grazing, dominated by over grazing.展开更多
An integral method,combining support vector ma-chine (SVM) with remote-sensing analysis techniques,was ex-plored to monitor Hanoi’s dynamic change of land cover. The landsat thematic mapper (TM) image in 1993,the enh...An integral method,combining support vector ma-chine (SVM) with remote-sensing analysis techniques,was ex-plored to monitor Hanoi’s dynamic change of land cover. The landsat thematic mapper (TM) image in 1993,the enhanced the-matic mapper plus (ETM+) image in 2000,and the image with the charge-coupled device camera (CCD) on the China-Brazil earth resources satellite (CBERS) in 2008 were used. Six land-cover types,including built-up areas,woodland,cropland,sand,water body and unused land,were identified. The detected results showed visually the rapid urban expansion as well as land-cover change of Hanoi from 1993 to 2008. There were 12 637.54 hm2 cropland de-creased between 1993 and 2000,and 8 227.6 hm2 cropland de-creased between 2000 and 2008. Compared with cropland,wood-land firstly decreased and then increased,and the other types did not change significantly. The results indicate that CBERS dataset has the application potential in world resources researches.展开更多
Land cover classification of mountainous environments continues to be a challenging remote sensing problem,owing to landscape complexities exhibited by the region.This study explored a multiple classifier system(MCS)a...Land cover classification of mountainous environments continues to be a challenging remote sensing problem,owing to landscape complexities exhibited by the region.This study explored a multiple classifier system(MCS)approach to the classification of mountain land cover for the Khumbu region in the Himalayas using Sentinel-2 images and a cloud-based model framework.The relationship between classification accuracy and MCS diversity was investigated,and the effects of different diversification and combination methods on MCS classification performance were comparatively assessed for this environment.We present ten MCS models that implement a homogeneous ensemble approach,using the high performing Random Forest(RF)algorithm as the selected classifier.The base classifiers of each MCS model were developed using different combinations of three diversity techniques:(1)distinct training sets,(2)Mean Decrease Accuracy feature selection,and(3)‘One-vs-All’problem reduction.The base classifier predictions of each RFMCS model were combined using:(1)majority vote,(2)weighted argmax,and(3)a meta RF classifier.All MCS models reported higher classification accuracies than the benchmark classifier(overall accuracy with 95% confidence interval:87.33%±0.97%),with the highest performing model reporting an overall accuracy(±95% confidence interval)of 90.95%±0.84%.Our key findings include:(1)MCS is effective in mountainous environments prone to noise from landscape complexities,(2)problem reduction is indicated as a stronger method over feature selection in improving the diversity of the MCS,(3)although the MCS diversity and accuracy have a positive correlation,our results suggest this is a weak relationship for mountainous classifications,and(4)the selected diversity methods improve the discriminability of MCS against vegetation and forest classes in mountainous land cover classifications and exhibit a cumulative effect on MCS diversity for this context.展开更多
Large amounts of data at various temporal and spatial scales require terabyte(TB) level storage and computation, both of which are not easy for researchers to access. Cloud data and computing services provide another ...Large amounts of data at various temporal and spatial scales require terabyte(TB) level storage and computation, both of which are not easy for researchers to access. Cloud data and computing services provide another solution to store, process, share and explore environmental data with low costs, stronger computation capacity and easy access. The purpose of this paper is to examine the benefits and challenges of using freely available satellite data products from Australian Geoscience DataCube and Google Earth Engine(GEE) online data with time series for integrative environmental analysis of the Macquarie-Castlereagh Basin in the last 15 years as a case study. Results revealed that the cloud platform simplifies the procedure of traditional catalog data processing and analysis. The integrated analysis based on the cloud computing and traditional methods represents a great potential as a low-cost, efficient and user-friendly method for global and regional environmental study. The user can save considerable time and cost on data integration. The research shows that there is an excellent promise in performing regional environmental analysis by using a cloud platform. The incoming challenge of the cloud platform is that not all kinds of data are available on the cloud platform. How data are integrated into a single platform while protecting or recognizing the data property, or how one portal can be used to explore data archived on different platforms represent considerable challenges.展开更多
Fire is a global phenomenon and a major source of aerosols from the terrestrial biosphere to the atmosphere.Most previous studies quantified the effect of fire aerosols on climate and atmospheric circulation,or on the...Fire is a global phenomenon and a major source of aerosols from the terrestrial biosphere to the atmosphere.Most previous studies quantified the effect of fire aerosols on climate and atmospheric circulation,or on the regional and site-scale terrestrial ecosystem productivity.So far,only one work has quantified their global impacts on terrestrial ecosystem productivity based on offline simulations,which,however,did not consider the impacts of aerosol–cloud interactions and aerosol–climate feedbacks.This study quantitatively assesses the influence of fire aerosols on the global annual gross primary productivity(GPP)of terrestrial ecosystems using simulations with the fully coupled global Earth system model CESM1.2.Results show that fire aerosols generally decrease GPP in vegetated areas,with a global total of−1.6 Pg C yr^−1,mainly because fire aerosols cool and dry the land surface and weaken the direct photosynthetically active radiation(PAR).The exception to this is the Amazon region,which is mainly due to a fire-aerosol-induced wetter land surface and increased diffuse PAR.This study emphasizes the importance of the influence of fire aerosols on climate in quantifying global-scale fire aerosols’impacts on terrestrial ecosystem productivity.展开更多
Due to the limitation of data sources, the application of Distributed Hydrological Models (DHMs) using earth observation data to research water resources is necessary. In this study, the BTOPMC (Block-wise use of TOPM...Due to the limitation of data sources, the application of Distributed Hydrological Models (DHMs) using earth observation data to research water resources is necessary. In this study, the BTOPMC (Block-wise use of TOPMODEL) model was applied for 2 basins in the tropical monsoon region. This is the first time that the land cover map of the CCI (Climate Change Initiative Land Cover Team) was prepared for input data instead of IGBP (International Geosphere-Biosphere Programme) land cover map as proposed in the demo version of the BTOPMC model. The calibration and validation results showed that the Nash-Sutcliffe coefficients for daily stream discharge were 77.5% and 68.7% at Cung Son station (Ba basin). The Nash-Sutcliffe coefficients for daily stream discharge were 79.4% and 69.0% at Binh Tuong station (Kone basin), respectively. Because of a stop in measuring the discharge at Binh Tuong station in 2007, this model was applied to simulate discharge during the period of 2008-2015. Furthermore, the effect of land cover on discharge at Cung Son station was considered. The annual discharge in 2010 at Cung Son decreased 8 m3/s in the comparison between two scenarios (land cover of 2000 and 2010). According to this result, it is possible to propose a wide application range of the DHMs model to the tropical monsoon river basins using earth observation data.展开更多
It is crucial to investigate the urban agglomerations spatio-temporal evolution patterns and driving factors for analyzing the urban spatial structure-functional division and promoting the coordinated development of u...It is crucial to investigate the urban agglomerations spatio-temporal evolution patterns and driving factors for analyzing the urban spatial structure-functional division and promoting the coordinated development of urban agglomerations.In this study,a novel vegetation-building-nighttime light-adjusted index(VBNAI)was established for rapid and effective mapping of urban construction land(UCL)in Central Plains Urban Agglomeration(CPUA),China during 2000–2020 based on Google Earth Engine(GEE)platform.Compared with traditional indices,VBNAI can significantly decrease the blooming effect,Normalized Difference Vegetation Index(NDVI)saturation,and soil background of nighttime light data.In addition,the urban expansion indices and standard deviation ellipse model were synthetically adopted to analyze the spatio-temporal evolution pattern of urban expansion.The gravity model and the geographically weighted regression model were employed to determine the spatial interaction forces and drivers of urban expansion,respectively.The results showed that the VBNAI index has obvious advantages in efficiency and accuracy to extract UCL with the overall accuracy of more than 91%.The UCL of CPUA had increased by 4489.84 km2 during 2000–2020 with the gravity center moving towards southeast continuously.From 2000 to 2010,the urban expansion was in a‘center-hinterland’pattern which had benefit from the favorable effect of the traffic shaft belt.During 2010–2020,the urban network structure had basically established.Urban expansion had been influenced by a variety of socio-economic and demographic factors,and the impact degree varied from region to region.This study could provide scientific references for facilitating the intensive utilization of urban resources and optimizing the spatial development pattern of urban agglomeration.展开更多
This reflection on the moral consideration of nature begins with two classic arguments of environmental ethics which,while alerting to the growing human pressure on the environment,show the need to rethink the relatio...This reflection on the moral consideration of nature begins with two classic arguments of environmental ethics which,while alerting to the growing human pressure on the environment,show the need to rethink the relation of humans and natural world.In my view,Aldo Leopold’s land ethic,seconded by John Baird Callicott and Holmes Rolston III,is the approach in environmental ethics which not only postulates a broader comprehension of the universe of moral concern,but also lays the ground for a new ethical paradigm wherein the human,as a responsible member of the biotic community,has the duty to preserve the integrity,the balance and the beauty of the latter.展开更多
Classifying the types and measurin g sustainable development are important contents of theoretical studie s on sustainable development.Scient ifically reflecting the characteristics of sustainable development an d fav...Classifying the types and measurin g sustainable development are important contents of theoretical studie s on sustainable development.Scient ifically reflecting the characteristics of sustainable development an d favorably classify-ing the types of sustainable develop ment are the basis and objective of me asuring sustainable development.B y using the methods of coordinatively analyzin g man-land relationship and economi c analysis,especially by combining with constant elasticity of substitution(CES)production function,this paper advances average sustainable gross dom estic production(ASGDP),inquires into the mutually coordin ative and interdependent relationship between humane capital and natur al capital in the process of sustainabl e development.It also sets up an index system of measuring sustainable development and a type systemof sustainable deve lopment.then according to this index system,if firstly classifies the s ustainable develop-ment,moderate sustainable develop ment,and strong sustainable develo pment,and it also discuss them theoretical signifi-cance.Secondly,it probes into the minimum cost,structure optimizatio n and sustainable development.At la st,it dis-cuss the type classification of sustainable development on development sequence,and points out theoretically the amount of transitions among 8basic regional sustainable development types is 56.in the process of productive expan sion this transi-tion type embodies the input increase of humane capital is greatly larger than that of natural capital.On the c ontrary,econo-mized humane capital transition is a result of progressively decreasing marginal rate of technical substitu tion of humane capital to natural capital.展开更多
文摘There has been significant research in recent decades on Land use Land cover (LULC) changes and their influence on biodiversity but little to no research on its impact on air quality. This research seeks to demonstrate how geospatial technologies such as geographic information system (GIS) and remote sensing can be used to assess the effects of LULC changes on particulate matter emissions and their impact on air quality in the East Baton Rouge area. In pursuit of these objectives, this study uses LANDSAT imageries from the past 30 years specifically Landsat Thematic Mapper (TM C2L2) and Landsat 8 Operational Land Imager/Thermal Infrared (OLI/TIRS C2L2) covering 1991, 2001, 2011 and 2021 were collected, processed, and analyzed for the LULC change analysis using QGIS software. Additionally, Sentinel 5P and the Air quality index from the U.S. Environmental Protection Agency (EPA) were used to assess the air quality trend over the years to establish the correlation between LULC and air quality. Results showed an increasing trend in air quality over the past 3 decades with concentrations of CO, NO<sub>2</sub>, and PM2.5 abruptly falling however, urbanization and the population expanded throughout the time. The paper concludes by outlining a policy recommendation in the form of encouraging Louisiana residents to use alternative renewable energies rather than the over-dependence on coal-fired electric generating plants that have an impact on the environment.
基金the Natural Science Foundation of Zhejiang Province(Grant No.Y606017).
文摘This paper prohes into the relationship among individual benefits, benefits of the country. common benefits of all humans in land use and land resource security. The following balanced land use model is proposed: the harmonious and interactive relationship between man and nature, two main bodies of land ecological system, constitutes the mechanism of land resources security; The feedback relationship between man and nature is the basis for the land resources security and the core is the relationship among people established for the benefit equilibrium in land use. The conflicts in land use stem from the rarity of land resource and the solution to those conflicts in harmony helps land resource security.
文摘Monitoring and understanding the changes in mangrove ecosystems and their surroundings are required to determine how mangrove ecosystems are constantly changing while influenced by anthropogenic, and natural drivers. Cosistency in high spatial resolution (30 m) satellite and high performance computing facilities are limiting factors to the process, with storage and analysis requirements. With this, we present the Google Earth Engine (GEE) based approach for long term mapping of mangrove forests and their surroundings. In this study, we used a GEE based approach: 1) to create atmospheric contamination free data from 1987-2017 from different Landsat satellite imagery;and 2) evaluating the random forest classifier and post classification change detection method. The obtained overall accuracy for the years 1987 and 2017 was determined to be 0.87 and 0.96, followed by a Kappa coefficient 0.80 and 0.94. The change detection results revealed a significant decrease in the agricultural area, while there was an increase in mangrove forest, shrimp/fish farm, and bareland area. The results suggest that interconversion of land use and land cover is affecting the landscape dynamics within the study area.
文摘Rare earth elements (REE) were used to study the temporal and spatial processes of soil erosion from different depths and sections of a slope. Two simulated rainfall events were applied to a prepared plot with a slope of 22°. The total runoff and sediment yield were collected every minute during the rainfall events. During the first twenty minutes of the first rainfall event, the average rate of rill erosion and the accumulated sediment yield due to rill erosion was 0.5 and 0.3 times higher than for sheet erosion. During this time, most of the erosion occurred on the lower one third of the plot. After 20 min, rill erosion became the dominant process on the slope. The average acceleration in the rate of rill erosion, the rate of rill erosion and the accumulated sediment yield due to rill erosion were 42, 6 and 4 times higher than that of sheet erosion, respectively. During the first 35 minutes of the second rainfall event, the average acceleration in the rate of rill erosion was 6~9 times higher than that of sheet erosion. Afterwards, the slope became nearly stable with little change in either rill or sheet erosion rates. Initially, most of the rill erosion occurred in the lower third of the slope but later the preexisting rillhead in the middle section of the slope became reactivated and erosion in this section of the slope increased rapidly. These results indicate that REE tracer technology is a valuable tool for quantifying spatial and temporal changes in erosion from a soil slope.
基金the Key Laboratory Open Subjects of Xinjiang Uygur Autonomous Region Science and Technology Department(2020D04038)the Key Project of Natural Science Foundation of Xinjiang Uygur Autonomous Region(2021D01D06)the National Natural Science Foundation of China(41961059).
文摘The ecological quality of inland areas is an important aspect of the United Nations Sustainable Development Goals(UN SDGs).The ecological environment of Northwest China is vulnerable to changes in climate and land use/land cover,and the changes in ecological quality in this arid region over the last two decades are not well understood.This makes it more difficult to advance the UN SDGs and develop appropriate measures at the regional level.In this study,we used the Moderate Resolution Imaging Spectroradiometer(MODIS)products to generate remote sensing ecological index(RSEI)on the Google Earth Engine(GEE)platform to examine the relationship between ecological quality and environment in Xinjiang during the last two decades(from 2000 to 2020).We analyzed a 21-year time series of the trends and spatial characteristics of ecological quality.We further assessed the importance of different environmental factors affecting ecological quality through the random forest algorithm using data from statistical yearbooks and land use products.Our results show that the RSEI constructed using the GEE platform can accurately reflect the ecological quality information in Xinjiang because the contribution of the first principal component was higher than 90.00%.The ecological quality in Xinjiang has increased significantly over the last two decades,with the northern part of this region having a better ecological quality than the southern part.The areas with slightly improved ecological quality accounted for 31.26%of the total land area of Xinjiang,whereas only 3.55%of the land area was classified as having a slightly worsen(3.16%)or worsen(0.39%)ecological quality.The vast majority of the deterioration in ecological quality mainly occurred in the barren areas Temperature,precipitation,closed shrublands,grasslands and savannas were the top five environmental factors affecting the changes in RSEI.Environmental factors were allocated different weights for different RSEI categories.In general,the recovery of ecological quality in Xinjiang has been controlled by climate and land use/land cover during the last two decades and policy-driven ecological restoration is therefore crucial.Rapid monitoring of inland ecological quality using the GEE platform is projected to aid in the advancement of the comprehensive assessment of the UN SDGs.
基金Under the auspices of the National Key Research and Development Program of China(No.2017YFB0504205)National Natural Science Foundation of China(No.41571378)Natural Science Research Project of Higher Education in Anhui Provence(No.KJ2020A0089)。
文摘Annual Land Use/Land Cover(LULC)change information at medium spatial resolution(i.e.,at 30 m)is used in applications ranging from land management to achieving sustainable development goals related to food security.However,obtaining annual LULC information over large areas and long periods is challenging due to limitations on computational capabilities,training data,and workflow design.Using the Google Earth Engine(GEE),which provides a catalog of multi-source data and a cloud-based environment,we developed a novel methodology to generate a high accuracy 30-m LULC cover map collection of the Yangtze River Delta by integrating free and public LULC products with Landsat imagery.Our major contribution is a hybrid approach that includes three major components:1)a high-quality training dataset derived from multi-source LULC products,filtered by k-means clustering analysis;2)a yearly 39-band stack feature space,utilizing all available Landsat data and DEM data;and 3)a self-adaptive Random Forest(RF)method,introduced for LULC classification.Experimental results show that our proposed workflow achieves an average classification accuracy of 86.33%in the entire Delta.The results demonstrate the great potential of integrating multi-source LULC products for producing LULC maps of increased reliability.In addition,as the proposed workflow is based on open source data and the GEE cloud platform,it can be used anywhere by anyone in the world.
文摘At present,there are many problems in the self-circular development model of"land transfer-real estate development-land financeurban sprawl"in China.The endogenous power of policy implementation is insufficient,the top-level design is not systematic enough,the departmental linkage mechanism is flawed,the local basic data is weak,and there are difficulties in technical operation.According to the current situation,this paper puts forward the following policy suggestions:based on the establishment of financial transfer payment mechanism in rural areas,the construction of the system of man,land and money should be promoted in coordination,and a scientific monitoring system of urbanization degree should be established,so as to make up for the deficiency of the slow speed of"man urbanization"and make the new urbanization healthy and sustainable.
文摘Energy used for industrial production, buildings and transport will be accumulated in Atmosphere and Earth land. Global use of energy is known and documented for a long period of time and proportion of fossil and renewable energy is also known. Calculated accumulated energy in Earth land from 1971 to 2018 corresponds to 40% of IPCC Global Energy Inventory and calculated Atmosphere temperature increase from 1971 to 2018 corresponds to 100% of actual measurements.
基金Supported by Major Project Research of Philosophy and Social Science Research of Ministry of Education"General History of Chinese Agricultural Civilization"(13JZD036)
文摘Taking agricultural development as the starting point,this paper explored the dynamic mechanism and implementation path of agricultural development in Qinba Mountainous Area from the perspective of man-land relationship. It found the regular understanding of ecological changes in Qinba Mountains. It is a comprehensive review and exploration on agricultural development and environmental evolution,and aims to provide a historical reference for the development of the contemporary Qinba Mountains.
文摘The Yarlung Zangbo River basin is a spacial zone in the south of Xizang, the types, distribution and causes of desertified lands have special features. The type, area, distribution and damage of desertification land in the Yarlung Zangbo River basin are firstly analysed in detail by using latest investigation information. According to the classification criteria of desertified land types and grades, the desertified land in the Yarlung Zangbo River basin can be divided into three grades and five types: fixed sand (dune) land, semi bare sand and gravel land, semi fixed sand (dune) land, base sand and gravel land, and shifting sand (dune) land. The desertified lands in the basin are mainly distributed in the wide valley floor and tributary junction area. The main factors affecting desertification are fragile eco environment, climate warming and drying and over exploitation of land resources. The man made factors leading to desertification in the Yarlung Zangbo River basin are over cutting and over grazing, dominated by over grazing.
基金Supported by the National Natural Science Foundation of China (70873117)
文摘An integral method,combining support vector ma-chine (SVM) with remote-sensing analysis techniques,was ex-plored to monitor Hanoi’s dynamic change of land cover. The landsat thematic mapper (TM) image in 1993,the enhanced the-matic mapper plus (ETM+) image in 2000,and the image with the charge-coupled device camera (CCD) on the China-Brazil earth resources satellite (CBERS) in 2008 were used. Six land-cover types,including built-up areas,woodland,cropland,sand,water body and unused land,were identified. The detected results showed visually the rapid urban expansion as well as land-cover change of Hanoi from 1993 to 2008. There were 12 637.54 hm2 cropland de-creased between 1993 and 2000,and 8 227.6 hm2 cropland de-creased between 2000 and 2008. Compared with cropland,wood-land firstly decreased and then increased,and the other types did not change significantly. The results indicate that CBERS dataset has the application potential in world resources researches.
文摘Land cover classification of mountainous environments continues to be a challenging remote sensing problem,owing to landscape complexities exhibited by the region.This study explored a multiple classifier system(MCS)approach to the classification of mountain land cover for the Khumbu region in the Himalayas using Sentinel-2 images and a cloud-based model framework.The relationship between classification accuracy and MCS diversity was investigated,and the effects of different diversification and combination methods on MCS classification performance were comparatively assessed for this environment.We present ten MCS models that implement a homogeneous ensemble approach,using the high performing Random Forest(RF)algorithm as the selected classifier.The base classifiers of each MCS model were developed using different combinations of three diversity techniques:(1)distinct training sets,(2)Mean Decrease Accuracy feature selection,and(3)‘One-vs-All’problem reduction.The base classifier predictions of each RFMCS model were combined using:(1)majority vote,(2)weighted argmax,and(3)a meta RF classifier.All MCS models reported higher classification accuracies than the benchmark classifier(overall accuracy with 95% confidence interval:87.33%±0.97%),with the highest performing model reporting an overall accuracy(±95% confidence interval)of 90.95%±0.84%.Our key findings include:(1)MCS is effective in mountainous environments prone to noise from landscape complexities,(2)problem reduction is indicated as a stronger method over feature selection in improving the diversity of the MCS,(3)although the MCS diversity and accuracy have a positive correlation,our results suggest this is a weak relationship for mountainous classifications,and(4)the selected diversity methods improve the discriminability of MCS against vegetation and forest classes in mountainous land cover classifications and exhibit a cumulative effect on MCS diversity for this context.
基金Under the auspices of National Key Research and Development Program of China(No.2016YFA0600304)
文摘Large amounts of data at various temporal and spatial scales require terabyte(TB) level storage and computation, both of which are not easy for researchers to access. Cloud data and computing services provide another solution to store, process, share and explore environmental data with low costs, stronger computation capacity and easy access. The purpose of this paper is to examine the benefits and challenges of using freely available satellite data products from Australian Geoscience DataCube and Google Earth Engine(GEE) online data with time series for integrative environmental analysis of the Macquarie-Castlereagh Basin in the last 15 years as a case study. Results revealed that the cloud platform simplifies the procedure of traditional catalog data processing and analysis. The integrated analysis based on the cloud computing and traditional methods represents a great potential as a low-cost, efficient and user-friendly method for global and regional environmental study. The user can save considerable time and cost on data integration. The research shows that there is an excellent promise in performing regional environmental analysis by using a cloud platform. The incoming challenge of the cloud platform is that not all kinds of data are available on the cloud platform. How data are integrated into a single platform while protecting or recognizing the data property, or how one portal can be used to explore data archived on different platforms represent considerable challenges.
基金This study was co-supported by the National Key R&D Program of China[grant number 2017YFA0604302]the National Natural Science Foundation of China[grant numbers 41475099 and 41875137]the Chinese Academy of Sciences Key Research Program of Frontier Sciences[grant number QYZDY-SSW-DQC002].
文摘Fire is a global phenomenon and a major source of aerosols from the terrestrial biosphere to the atmosphere.Most previous studies quantified the effect of fire aerosols on climate and atmospheric circulation,or on the regional and site-scale terrestrial ecosystem productivity.So far,only one work has quantified their global impacts on terrestrial ecosystem productivity based on offline simulations,which,however,did not consider the impacts of aerosol–cloud interactions and aerosol–climate feedbacks.This study quantitatively assesses the influence of fire aerosols on the global annual gross primary productivity(GPP)of terrestrial ecosystems using simulations with the fully coupled global Earth system model CESM1.2.Results show that fire aerosols generally decrease GPP in vegetated areas,with a global total of−1.6 Pg C yr^−1,mainly because fire aerosols cool and dry the land surface and weaken the direct photosynthetically active radiation(PAR).The exception to this is the Amazon region,which is mainly due to a fire-aerosol-induced wetter land surface and increased diffuse PAR.This study emphasizes the importance of the influence of fire aerosols on climate in quantifying global-scale fire aerosols’impacts on terrestrial ecosystem productivity.
文摘Due to the limitation of data sources, the application of Distributed Hydrological Models (DHMs) using earth observation data to research water resources is necessary. In this study, the BTOPMC (Block-wise use of TOPMODEL) model was applied for 2 basins in the tropical monsoon region. This is the first time that the land cover map of the CCI (Climate Change Initiative Land Cover Team) was prepared for input data instead of IGBP (International Geosphere-Biosphere Programme) land cover map as proposed in the demo version of the BTOPMC model. The calibration and validation results showed that the Nash-Sutcliffe coefficients for daily stream discharge were 77.5% and 68.7% at Cung Son station (Ba basin). The Nash-Sutcliffe coefficients for daily stream discharge were 79.4% and 69.0% at Binh Tuong station (Kone basin), respectively. Because of a stop in measuring the discharge at Binh Tuong station in 2007, this model was applied to simulate discharge during the period of 2008-2015. Furthermore, the effect of land cover on discharge at Cung Son station was considered. The annual discharge in 2010 at Cung Son decreased 8 m3/s in the comparison between two scenarios (land cover of 2000 and 2010). According to this result, it is possible to propose a wide application range of the DHMs model to the tropical monsoon river basins using earth observation data.
基金Under the auspices of Social Science and Humanity on Young Fund of the Ministry of Education of China(No.21YJCZH100)the Scientific Research Project on Outstanding Young of the Fujian Agriculture and Forestry University(No.XJQ201920)+1 种基金the Science and Technology Innovation Special Fund Project of Fujian Agriculture and Forestry University(No.CXZX2021032)the Forestry Peak Discipline Construction Project of Fujian Agriculture and Forestry University(No.72202200205)。
文摘It is crucial to investigate the urban agglomerations spatio-temporal evolution patterns and driving factors for analyzing the urban spatial structure-functional division and promoting the coordinated development of urban agglomerations.In this study,a novel vegetation-building-nighttime light-adjusted index(VBNAI)was established for rapid and effective mapping of urban construction land(UCL)in Central Plains Urban Agglomeration(CPUA),China during 2000–2020 based on Google Earth Engine(GEE)platform.Compared with traditional indices,VBNAI can significantly decrease the blooming effect,Normalized Difference Vegetation Index(NDVI)saturation,and soil background of nighttime light data.In addition,the urban expansion indices and standard deviation ellipse model were synthetically adopted to analyze the spatio-temporal evolution pattern of urban expansion.The gravity model and the geographically weighted regression model were employed to determine the spatial interaction forces and drivers of urban expansion,respectively.The results showed that the VBNAI index has obvious advantages in efficiency and accuracy to extract UCL with the overall accuracy of more than 91%.The UCL of CPUA had increased by 4489.84 km2 during 2000–2020 with the gravity center moving towards southeast continuously.From 2000 to 2010,the urban expansion was in a‘center-hinterland’pattern which had benefit from the favorable effect of the traffic shaft belt.During 2010–2020,the urban network structure had basically established.Urban expansion had been influenced by a variety of socio-economic and demographic factors,and the impact degree varied from region to region.This study could provide scientific references for facilitating the intensive utilization of urban resources and optimizing the spatial development pattern of urban agglomeration.
文摘This reflection on the moral consideration of nature begins with two classic arguments of environmental ethics which,while alerting to the growing human pressure on the environment,show the need to rethink the relation of humans and natural world.In my view,Aldo Leopold’s land ethic,seconded by John Baird Callicott and Holmes Rolston III,is the approach in environmental ethics which not only postulates a broader comprehension of the universe of moral concern,but also lays the ground for a new ethical paradigm wherein the human,as a responsible member of the biotic community,has the duty to preserve the integrity,the balance and the beauty of the latter.
文摘Classifying the types and measurin g sustainable development are important contents of theoretical studie s on sustainable development.Scient ifically reflecting the characteristics of sustainable development an d favorably classify-ing the types of sustainable develop ment are the basis and objective of me asuring sustainable development.B y using the methods of coordinatively analyzin g man-land relationship and economi c analysis,especially by combining with constant elasticity of substitution(CES)production function,this paper advances average sustainable gross dom estic production(ASGDP),inquires into the mutually coordin ative and interdependent relationship between humane capital and natur al capital in the process of sustainabl e development.It also sets up an index system of measuring sustainable development and a type systemof sustainable deve lopment.then according to this index system,if firstly classifies the s ustainable develop-ment,moderate sustainable develop ment,and strong sustainable develo pment,and it also discuss them theoretical signifi-cance.Secondly,it probes into the minimum cost,structure optimizatio n and sustainable development.At la st,it dis-cuss the type classification of sustainable development on development sequence,and points out theoretically the amount of transitions among 8basic regional sustainable development types is 56.in the process of productive expan sion this transi-tion type embodies the input increase of humane capital is greatly larger than that of natural capital.On the c ontrary,econo-mized humane capital transition is a result of progressively decreasing marginal rate of technical substitu tion of humane capital to natural capital.