The IAP (Institute of Atmospheric Physics) land-surface model (IAP94) is described. This model is a comprehensive one with detailed description for the processes of vegetation, snow and soil. Particular attention has ...The IAP (Institute of Atmospheric Physics) land-surface model (IAP94) is described. This model is a comprehensive one with detailed description for the processes of vegetation, snow and soil. Particular attention has been paid to the cases with three water phases in the surface media. On the basis of the mixture theory and the theory of fluid dynamics of porous media, the system of universal conservational equations for water and heat of soil, snow and vegetation canopy has been constructed. On this background, all important factors that may affect the water and heat balance in media can be considered naturally, and each factor and term possess distinct physical meaning. In the computation of water content and temperature, the water phase change and the heat transportation by water flow are taken into account. Moreover, particular attention has been given to the water vapor diffusion in soil for arid or semi-arid cases, and snow compaction. In the treatment of surface turbulent fluxes, the difference between aerodynamic and thermal roughness is taken into account. The aerodynamic roughness of vegetation is calculated as a function of canopy density, height and zero-plane displacement. An extrapolation of log linear and exponential relationship is used when calculating the wind profile within canopy. The model has been validated against field measurements in off-line simulations. The desirable model′s performance leads to the conclusion that the IAP94 is able to reproduce the main physical mechanisms governing the energy and water balances in the global land surface. Part II of the present study will concern the validation in a 3-D experiment coupled with the IAP Two-Level AGCM.展开更多
In order to further understand the land surface processes over the northern Tibetan Plateau, this study produced an off-line simulated examination at the Bujiao site on the northern Tibetan Plateau from June 2002 to A...In order to further understand the land surface processes over the northern Tibetan Plateau, this study produced an off-line simulated examination at the Bujiao site on the northern Tibetan Plateau from June 2002 to April 2004, using the Noah Land Surface Model (Noah LSM) and observed data from the CAMP/Tibet experiment. The observed data were neces- sarily corrected and the number of soil layers in the Noah LSM was changed from 4 to 10 to enable this off-line simulation and analysis. The main conclusions are as follows: the Noah LSM performed well on the northern Tibetan Plateau. The simulated net radiation, upward longwave radiation, and upward shortwave radiation demonstrated the same remarkable annual and seasonal variation as the observed data, especially the upward longwave radiation. The simulated soil temperatures were acceptably close to the observed temperatures, especially in the shallow soil layers. The simulated freezing and melting processes were shown to start from the surface soil layer and spread down to the deep soil layers, but they took longer than the observed processes. However, Noah LSM did not adequately simulate the soil moisture. Therefore, additional high-quality, long-term observations of land surface-atmosphere processes over the Tibetan Plateau will be a key factor in proper adiustments of the model parameters in the future.展开更多
The Simplified Simple Biosphere model (SSiB) is validated in off-line simulations against field measurements in the summer of 2001 from the China Heavy Rainfall Experiment and Study (CHeRES) over a grassland site loca...The Simplified Simple Biosphere model (SSiB) is validated in off-line simulations against field measurements in the summer of 2001 from the China Heavy Rainfall Experiment and Study (CHeRES) over a grassland site located in the lower reaches of the Yangtze River. When initialized and driven by the observed atmospheric forcing, the model reproduced the observed surface heat fluxes and surface skin temperature realistically. The model was also able to well simulate the variation of soil water content. The sensitivity experiments found that the leaf reflectance was the most significant parameter in improving the estimation of surface albedo during both wet and dry periods. This study suggests that the model is capable of simulating the physical processes and of assessing the impact of biophysical parameters that relate to land-atmosphere interactions over the eastern Asian monsoon regions, which is crucial for mesoscale atmospheric models.展开更多
Off-line experiments have been conducted with IAP94 land surface model on different surface types (cropland, forest and paddy field) in different seasons (spring, summer and autumn) over the Huaihe River basin. The si...Off-line experiments have been conducted with IAP94 land surface model on different surface types (cropland, forest and paddy field) in different seasons (spring, summer and autumn) over the Huaihe River basin. The simulated energy fluxes and canopy temperature by IAP94 agree quite well with the observations, simulation results also show that IAP94 can successfully simulate the tendency of total soil water content variation. The comparison;results between simulation and observation indicate that strong evaporation at the paddy field in summer should be paid more attention to within the land surface models, and model's performance leads to the conclusion that IAP94 is capable of reproducing the main physical mechanisms governing the land-surface processes in the East Asian semi-humid monsoon region.展开更多
Based on the existing land-surface schemes and models,an improved Land-surface Process Model(LPM-ZD)has been developed.It has the following major characteristics:(1)The combination of physical equations and empirical ...Based on the existing land-surface schemes and models,an improved Land-surface Process Model(LPM-ZD)has been developed.It has the following major characteristics:(1)The combination of physical equations and empirical analytical formulae are used to construct the governing equations of soil temperature and moisture.Higher resolution of model level and physical equations are adopted for the upper soil layers,and for the lower soil layers,lower resolution of model level is adopted and empirical analytical formulae are used.(2)In land surface hydrological process,the sub-grid distribution of rainfall and its effects are taken into account. (3)A simple snow cover submodel has been used,which includes effects of snow cover on soil thermodynamics and hydrology,as well as albedo. By use of this model and three groups of point observation data,a series of“off-line”tests have been carried out.The simulation results indicate that land-surface process model has good performance and can well simulate diurnal and seasonal variation of land surface processes for many kinds of land surface covers(forest,grass,crops and desert)in different climate zone.The results simulated by the model are consistent with the observations.Later,by use of one group of observation data and the model,a series of sensitivity experiments have been done.It is shown that the model is much sensitive to some parameters,such as initial soil moisture,vegetation physical parameters as well as the proportion of the grid covered with rain.Therefore it is much important for land-surface process model to define these parameters as accurately as possible.展开更多
The advanced distributed hydrology-soil-vegetation model DHSVM,developed by Wigmosta et al.(1994)is introduced from US Pacific Northwest National Laboratory.To apply DHSVM in China for the first time some improvements...The advanced distributed hydrology-soil-vegetation model DHSVM,developed by Wigmosta et al.(1994)is introduced from US Pacific Northwest National Laboratory.To apply DHSVM in China for the first time some improvements have been made in terms of the basin characteristics: 1)to change evapotranspiration model,using the improved Penman-Monteith approach in place of the original one;2)to change the model structure,inserting datasets from 4 stations to grid cells for each river basin,instead of datasets from one or two stations;3)to develop new hydrology, vegetation and soil parameterization schemes for improving the simulated results,with focus on calculation and adjustment of 11 parameters,such as soil porosity (?),field capacity θ_(fc),leaf area index LAI,stochastic resistance γ_s,among the total 33 parameters.Then the improved DHSVM is driven by observed datasets for Luanhe River Basin and Sanggan River Basin,respectively.The simulated evapotranspiration(ET),runoff,snow water equivalent,water table,soil moisture and percolation are then gained as DHSVM outputs.The simulated ET shows that the highest peak appears in May or June instead of July or August.This is consistent with the real situations, owing to the improvement of ET model.The simulated runoff process and flood peak are quite consistent with the observed ones.The model efficiency values for Luanhe River and Sanggan River Basins are 0.89 and 0.82,respectively,which shows high simulating ability of the model system for both relatively humid and dry basins.展开更多
To support withdrawing and storing money from all levels of the bank for the customers in the real world, in this paper, we propose a proxy blind signature scheme and an off-line e-cash scheme based on the new proxy b...To support withdrawing and storing money from all levels of the bank for the customers in the real world, in this paper, we propose a proxy blind signature scheme and an off-line e-cash scheme based on the new proxy blind signature scheme. The pro- posed proxy blind signature is proven secure in the random oracle model under chosen-target computational Diffie-Hellman assump- tions, and the e-cash scheme can satisfy the security requirements of unforgeability, anonymity, and traceability.展开更多
The ^(nat)Mo(γ,xnp)^(95m,g)Nb photonuclear reaction was studied using the electron beam from the NSC KIPT linear accelerator LUE-40.The experiment was performed using the activation and off-line γ-ray spectrometric ...The ^(nat)Mo(γ,xnp)^(95m,g)Nb photonuclear reaction was studied using the electron beam from the NSC KIPT linear accelerator LUE-40.The experiment was performed using the activation and off-line γ-ray spectrometric technique.The experimental isomeric yield ratio(IR) was determined for the reaction products ^(95m,g)Nb at the bremsstrahlung end-point energy E_(γmax) range of 38-93 MeV.The obtained values of IR are in satisfactory agreement with the results of other studies and extend the range of previously known data.The theoretical values of the yields Y_(m,g)(E_(γmax)) and the IR for the isomeric pair ^(95m,g)Nb from the ^(nat)Mo(γ,xnp) reaction were calculated using the partial cross-sections σ(E) from the TALYS1.95 code for six different level density models.For the investigated range of E_(γmax),the theoretical dependence of IR on energy was confirmed-the IR smoothly increases with increasing energy.The comparison showed a noticeable difference(more than 3.85 times) in the experimental IR relative to all theoretical estimates.展开更多
The Arabic Language has a very rich vocabulary. More than 200 million peoplespeak this language as their native speaking, and over 1 billion people use it in severalreligion-related activities. In this paper a new tec...The Arabic Language has a very rich vocabulary. More than 200 million peoplespeak this language as their native speaking, and over 1 billion people use it in severalreligion-related activities. In this paper a new technique is presented for recognizing printedArabic characters. After a word is segmented, each character/word is entirely transformed into afeature vector. The features of printed Arabic characters include strokes and bays in variousdirections, endpoints, intersection points, loops, dots and zigzags. The word skeleton is decomposedinto a number of links in orthographic order, and then it is transferred into a sequence of symbolsusing vector quantization. Single hidden Markov model has been used for recognizing the printedArabic characters. Experimental results show that the high recognition rate depends on the number ofstates in each sample.展开更多
文摘The IAP (Institute of Atmospheric Physics) land-surface model (IAP94) is described. This model is a comprehensive one with detailed description for the processes of vegetation, snow and soil. Particular attention has been paid to the cases with three water phases in the surface media. On the basis of the mixture theory and the theory of fluid dynamics of porous media, the system of universal conservational equations for water and heat of soil, snow and vegetation canopy has been constructed. On this background, all important factors that may affect the water and heat balance in media can be considered naturally, and each factor and term possess distinct physical meaning. In the computation of water content and temperature, the water phase change and the heat transportation by water flow are taken into account. Moreover, particular attention has been given to the water vapor diffusion in soil for arid or semi-arid cases, and snow compaction. In the treatment of surface turbulent fluxes, the difference between aerodynamic and thermal roughness is taken into account. The aerodynamic roughness of vegetation is calculated as a function of canopy density, height and zero-plane displacement. An extrapolation of log linear and exponential relationship is used when calculating the wind profile within canopy. The model has been validated against field measurements in off-line simulations. The desirable model′s performance leads to the conclusion that the IAP94 is able to reproduce the main physical mechanisms governing the energy and water balances in the global land surface. Part II of the present study will concern the validation in a 3-D experiment coupled with the IAP Two-Level AGCM.
基金the National Natural Science Foundation of China (Nos. 41075053 and 41275016)
文摘In order to further understand the land surface processes over the northern Tibetan Plateau, this study produced an off-line simulated examination at the Bujiao site on the northern Tibetan Plateau from June 2002 to April 2004, using the Noah Land Surface Model (Noah LSM) and observed data from the CAMP/Tibet experiment. The observed data were neces- sarily corrected and the number of soil layers in the Noah LSM was changed from 4 to 10 to enable this off-line simulation and analysis. The main conclusions are as follows: the Noah LSM performed well on the northern Tibetan Plateau. The simulated net radiation, upward longwave radiation, and upward shortwave radiation demonstrated the same remarkable annual and seasonal variation as the observed data, especially the upward longwave radiation. The simulated soil temperatures were acceptably close to the observed temperatures, especially in the shallow soil layers. The simulated freezing and melting processes were shown to start from the surface soil layer and spread down to the deep soil layers, but they took longer than the observed processes. However, Noah LSM did not adequately simulate the soil moisture. Therefore, additional high-quality, long-term observations of land surface-atmosphere processes over the Tibetan Plateau will be a key factor in proper adiustments of the model parameters in the future.
基金This work was conducted under support from the Ministry of Science and Technology of China through the“973”project of“Research on the Formation Mechanism and Prediction Theory of Hazardous Weather over China”under Grant No.G1998040911.
文摘The Simplified Simple Biosphere model (SSiB) is validated in off-line simulations against field measurements in the summer of 2001 from the China Heavy Rainfall Experiment and Study (CHeRES) over a grassland site located in the lower reaches of the Yangtze River. When initialized and driven by the observed atmospheric forcing, the model reproduced the observed surface heat fluxes and surface skin temperature realistically. The model was also able to well simulate the variation of soil water content. The sensitivity experiments found that the leaf reflectance was the most significant parameter in improving the estimation of surface albedo during both wet and dry periods. This study suggests that the model is capable of simulating the physical processes and of assessing the impact of biophysical parameters that relate to land-atmosphere interactions over the eastern Asian monsoon regions, which is crucial for mesoscale atmospheric models.
基金National Key Porgramme for Developing Basic Sciences! (G1998040900-part1)Supported by the National Natural Science Foundatio
文摘Off-line experiments have been conducted with IAP94 land surface model on different surface types (cropland, forest and paddy field) in different seasons (spring, summer and autumn) over the Huaihe River basin. The simulated energy fluxes and canopy temperature by IAP94 agree quite well with the observations, simulation results also show that IAP94 can successfully simulate the tendency of total soil water content variation. The comparison;results between simulation and observation indicate that strong evaporation at the paddy field in summer should be paid more attention to within the land surface models, and model's performance leads to the conclusion that IAP94 is capable of reproducing the main physical mechanisms governing the land-surface processes in the East Asian semi-humid monsoon region.
文摘Based on the existing land-surface schemes and models,an improved Land-surface Process Model(LPM-ZD)has been developed.It has the following major characteristics:(1)The combination of physical equations and empirical analytical formulae are used to construct the governing equations of soil temperature and moisture.Higher resolution of model level and physical equations are adopted for the upper soil layers,and for the lower soil layers,lower resolution of model level is adopted and empirical analytical formulae are used.(2)In land surface hydrological process,the sub-grid distribution of rainfall and its effects are taken into account. (3)A simple snow cover submodel has been used,which includes effects of snow cover on soil thermodynamics and hydrology,as well as albedo. By use of this model and three groups of point observation data,a series of“off-line”tests have been carried out.The simulation results indicate that land-surface process model has good performance and can well simulate diurnal and seasonal variation of land surface processes for many kinds of land surface covers(forest,grass,crops and desert)in different climate zone.The results simulated by the model are consistent with the observations.Later,by use of one group of observation data and the model,a series of sensitivity experiments have been done.It is shown that the model is much sensitive to some parameters,such as initial soil moisture,vegetation physical parameters as well as the proportion of the grid covered with rain.Therefore it is much important for land-surface process model to define these parameters as accurately as possible.
文摘The advanced distributed hydrology-soil-vegetation model DHSVM,developed by Wigmosta et al.(1994)is introduced from US Pacific Northwest National Laboratory.To apply DHSVM in China for the first time some improvements have been made in terms of the basin characteristics: 1)to change evapotranspiration model,using the improved Penman-Monteith approach in place of the original one;2)to change the model structure,inserting datasets from 4 stations to grid cells for each river basin,instead of datasets from one or two stations;3)to develop new hydrology, vegetation and soil parameterization schemes for improving the simulated results,with focus on calculation and adjustment of 11 parameters,such as soil porosity (?),field capacity θ_(fc),leaf area index LAI,stochastic resistance γ_s,among the total 33 parameters.Then the improved DHSVM is driven by observed datasets for Luanhe River Basin and Sanggan River Basin,respectively.The simulated evapotranspiration(ET),runoff,snow water equivalent,water table,soil moisture and percolation are then gained as DHSVM outputs.The simulated ET shows that the highest peak appears in May or June instead of July or August.This is consistent with the real situations, owing to the improvement of ET model.The simulated runoff process and flood peak are quite consistent with the observed ones.The model efficiency values for Luanhe River and Sanggan River Basins are 0.89 and 0.82,respectively,which shows high simulating ability of the model system for both relatively humid and dry basins.
基金Supported by the National Natural Science Foundation of China(61272501)the National Key Basic Research Program(973Program)(2012CB315905)the Specialized Research Fund for the Doctoral Program of Higher Education(20091102110004)
文摘To support withdrawing and storing money from all levels of the bank for the customers in the real world, in this paper, we propose a proxy blind signature scheme and an off-line e-cash scheme based on the new proxy blind signature scheme. The pro- posed proxy blind signature is proven secure in the random oracle model under chosen-target computational Diffie-Hellman assump- tions, and the e-cash scheme can satisfy the security requirements of unforgeability, anonymity, and traceability.
文摘The ^(nat)Mo(γ,xnp)^(95m,g)Nb photonuclear reaction was studied using the electron beam from the NSC KIPT linear accelerator LUE-40.The experiment was performed using the activation and off-line γ-ray spectrometric technique.The experimental isomeric yield ratio(IR) was determined for the reaction products ^(95m,g)Nb at the bremsstrahlung end-point energy E_(γmax) range of 38-93 MeV.The obtained values of IR are in satisfactory agreement with the results of other studies and extend the range of previously known data.The theoretical values of the yields Y_(m,g)(E_(γmax)) and the IR for the isomeric pair ^(95m,g)Nb from the ^(nat)Mo(γ,xnp) reaction were calculated using the partial cross-sections σ(E) from the TALYS1.95 code for six different level density models.For the investigated range of E_(γmax),the theoretical dependence of IR on energy was confirmed-the IR smoothly increases with increasing energy.The comparison showed a noticeable difference(more than 3.85 times) in the experimental IR relative to all theoretical estimates.
文摘The Arabic Language has a very rich vocabulary. More than 200 million peoplespeak this language as their native speaking, and over 1 billion people use it in severalreligion-related activities. In this paper a new technique is presented for recognizing printedArabic characters. After a word is segmented, each character/word is entirely transformed into afeature vector. The features of printed Arabic characters include strokes and bays in variousdirections, endpoints, intersection points, loops, dots and zigzags. The word skeleton is decomposedinto a number of links in orthographic order, and then it is transferred into a sequence of symbolsusing vector quantization. Single hidden Markov model has been used for recognizing the printedArabic characters. Experimental results show that the high recognition rate depends on the number ofstates in each sample.