We have studied the self-consistent states of nano- and micro-particle polarized powders and structures consisting of parallel particle chains and have determined conditions under which the static dielectric permittiv...We have studied the self-consistent states of nano- and micro-particle polarized powders and structures consisting of parallel particle chains and have determined conditions under which the static dielectric permittivity of a disperse system is negative. It has been shown that in such system an electric current runs without ohmic losses. We present the arguments for the physics of spontaneous emergence of the electric field in disperse systems made up of electrically neutral particles. It has been determined the influence the phase boundaries of a disperse system has on the origin of spontaneous polarization state. The structures consisting of parallel chains of dielectric particles can exhibit spontaneous polarization. In this case the properties of the spherical structure are similar to those of the ball lightning. It has been established correspondence of the obtained theoretical results with the experimental data available in the literature.展开更多
Alkaline hydrazine liquid fuel cells(AHFC) have been highlighted in terms of high power performance with non-precious metal catalysts.Although Fe-N-C is a promising non-Pt electrocatalyst for oxygen reduction reaction...Alkaline hydrazine liquid fuel cells(AHFC) have been highlighted in terms of high power performance with non-precious metal catalysts.Although Fe-N-C is a promising non-Pt electrocatalyst for oxygen reduction reaction(ORR),the surface density of the active site is very low and the catalyst layer should be thick to acquire the necessary number of catalytic active sites.With this thick catalyst layer,it is important to have an optimum pore structure for effective reactant conveyance to active sites and an interface structure for faster charge transfer.Herein,we prepare a Fe-N-C catalyst with magnetite particles and hierarchical pore structure by steam activation.The steam activation process significantly improves the power performance of the AHFC as indicated by the lower IR and activation voltage losses.Based on a systematic characterization,we found that hierarchical pore structures improve the catalyst utilization efficiency of the AHFCs,and magnetite nanoparticles act as surface modifiers to reduce the interracial resistance between the electrode and the ion-exchange membrane.展开更多
Based on the principle of electron cyclotron maser(ECM),gyrotrons are among the most promising devices to generate powerful coherent terahertz(THz)radiation and play a vital role in numerous advanced THz applications....Based on the principle of electron cyclotron maser(ECM),gyrotrons are among the most promising devices to generate powerful coherent terahertz(THz)radiation and play a vital role in numerous advanced THz applications.Unfortunately,THz ECM systems using a conventional high-Q cavity were theoretically and experimentally demonstrated to suffer from strong ohmic losses,and,accordingly,the wave output efficiency was significantly reduced.A scheme to alleviate such a challenging problem is systematically investigated in this paper.The traveling-wave operation concept is employed in a 1-THz third harmonic gyrotron oscillator,which strengthens electron-wave interaction efficiency and reduces the ohmic dissipation,simultaneously.A lossy belt is added in the interaction circuit to stably constitute the traveling-wave interaction,and a down-tapered magnetic field is employed to further amplify the forward-wave(FW)component.The results demonstrate that the proportion of ohmic losses is nearly halved,and output efficiency is nearly doubled,which is promising for further advancement of high-power continuous-wave operation of the ECM-based devices.展开更多
In this work,we report the electromagnetic absorption(EMA) properties of composites consisting of micrometersized cobalt with flowerlike architecture synthesized by a facile hydrothermal reduction method.Compared wi...In this work,we report the electromagnetic absorption(EMA) properties of composites consisting of micrometersized cobalt with flowerlike architecture synthesized by a facile hydrothermal reduction method.Compared with the conventional spherical Co-paraffin composites,the flowerlike Co-paraffin composites are favorable with respect to EMA performance in the low frequency region,ascribing interfacial polarization loss and Ohmic loss to the improvement in the impedance match.展开更多
This paper presents a simplified zero-dimensional mathematical model for a self-humidifying proton exchange membrane(PEM)fuel cell stack of 1 k W.The model incorporates major electric and thermodynamic variables and p...This paper presents a simplified zero-dimensional mathematical model for a self-humidifying proton exchange membrane(PEM)fuel cell stack of 1 k W.The model incorporates major electric and thermodynamic variables and parameters involved in the operation of the PEM fuel cell under different operational conditions.Influence of each of these parameters and variables upon the operation and the performance of the PEM fuel cell are investigated.The mathematical equations are modeled by using Matlab-Simulink tools in order to simulate the operation of the developed model with a commercial available 1kW horizon PEM fuel cell stack(H-1000),which is used for the purposes of model validation and tuning of the developed model.The model can be extrapolated to higher wattage fuel cells of similar arrangements.New equation is presented to determine the impact of using air to supply the PEM fuel cell instead of pure oxygen upon the concentration losses and the output voltage when useful current is drawn from it.展开更多
文摘We have studied the self-consistent states of nano- and micro-particle polarized powders and structures consisting of parallel particle chains and have determined conditions under which the static dielectric permittivity of a disperse system is negative. It has been shown that in such system an electric current runs without ohmic losses. We present the arguments for the physics of spontaneous emergence of the electric field in disperse systems made up of electrically neutral particles. It has been determined the influence the phase boundaries of a disperse system has on the origin of spontaneous polarization state. The structures consisting of parallel chains of dielectric particles can exhibit spontaneous polarization. In this case the properties of the spherical structure are similar to those of the ball lightning. It has been established correspondence of the obtained theoretical results with the experimental data available in the literature.
基金supported by the GIST Research Institute(GRI)grant funded by GIST in 2021supported by the KBSI grants(C140140 and C140110)。
文摘Alkaline hydrazine liquid fuel cells(AHFC) have been highlighted in terms of high power performance with non-precious metal catalysts.Although Fe-N-C is a promising non-Pt electrocatalyst for oxygen reduction reaction(ORR),the surface density of the active site is very low and the catalyst layer should be thick to acquire the necessary number of catalytic active sites.With this thick catalyst layer,it is important to have an optimum pore structure for effective reactant conveyance to active sites and an interface structure for faster charge transfer.Herein,we prepare a Fe-N-C catalyst with magnetite particles and hierarchical pore structure by steam activation.The steam activation process significantly improves the power performance of the AHFC as indicated by the lower IR and activation voltage losses.Based on a systematic characterization,we found that hierarchical pore structures improve the catalyst utilization efficiency of the AHFCs,and magnetite nanoparticles act as surface modifiers to reduce the interracial resistance between the electrode and the ion-exchange membrane.
基金supported in part by Beijing Science Foundation for Distinguished Young Scholars(Grant No.JQ21011)the National Natural Science Foundation of China(Grant Nos.U1830201 and 61531002)Newton Advanced Fellowship from Royal Society in the United Kingdom(Grant No.NAF/R1/180121)
文摘Based on the principle of electron cyclotron maser(ECM),gyrotrons are among the most promising devices to generate powerful coherent terahertz(THz)radiation and play a vital role in numerous advanced THz applications.Unfortunately,THz ECM systems using a conventional high-Q cavity were theoretically and experimentally demonstrated to suffer from strong ohmic losses,and,accordingly,the wave output efficiency was significantly reduced.A scheme to alleviate such a challenging problem is systematically investigated in this paper.The traveling-wave operation concept is employed in a 1-THz third harmonic gyrotron oscillator,which strengthens electron-wave interaction efficiency and reduces the ohmic dissipation,simultaneously.A lossy belt is added in the interaction circuit to stably constitute the traveling-wave interaction,and a down-tapered magnetic field is employed to further amplify the forward-wave(FW)component.The results demonstrate that the proportion of ohmic losses is nearly halved,and output efficiency is nearly doubled,which is promising for further advancement of high-power continuous-wave operation of the ECM-based devices.
文摘In this work,we report the electromagnetic absorption(EMA) properties of composites consisting of micrometersized cobalt with flowerlike architecture synthesized by a facile hydrothermal reduction method.Compared with the conventional spherical Co-paraffin composites,the flowerlike Co-paraffin composites are favorable with respect to EMA performance in the low frequency region,ascribing interfacial polarization loss and Ohmic loss to the improvement in the impedance match.
文摘This paper presents a simplified zero-dimensional mathematical model for a self-humidifying proton exchange membrane(PEM)fuel cell stack of 1 k W.The model incorporates major electric and thermodynamic variables and parameters involved in the operation of the PEM fuel cell under different operational conditions.Influence of each of these parameters and variables upon the operation and the performance of the PEM fuel cell are investigated.The mathematical equations are modeled by using Matlab-Simulink tools in order to simulate the operation of the developed model with a commercial available 1kW horizon PEM fuel cell stack(H-1000),which is used for the purposes of model validation and tuning of the developed model.The model can be extrapolated to higher wattage fuel cells of similar arrangements.New equation is presented to determine the impact of using air to supply the PEM fuel cell instead of pure oxygen upon the concentration losses and the output voltage when useful current is drawn from it.