期刊文献+
共找到1,630篇文章
< 1 2 82 >
每页显示 20 50 100
Geochemical characteristics and exploration significance of ultra-deep Sinian oil and gas from Well Tashen 5,Tarim Basin,NW China 被引量:3
1
作者 Zicheng Cao Anlai Ma +4 位作者 Qinqi Xu Quanyong Pan Kai Shang Fan Feng Yongli Liu 《Energy Geoscience》 EI 2024年第1期24-36,共13页
The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth ... The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth of 8780e8840 m,also the deepest in Asia in terms of oil discovery.In this paper,the geochemical characteristics of Sinian oil and gas from the well were investigated and compared with those of Cambrian oil and gas discovered in the same basin.The oil samples,with Pr/Ph ratio of 0.78 and a whole oil carbon isotopic value of31.6‰,have geochemical characteristics similar to those of Ordovician oils from the No.1 fault in the North Shuntuoguole area(also named Shunbei area)and the Middle Cambrian oil from wells Zhongshen 1(ZS1)and Zhongshen 5(ZS5)of Tazhong Uplift.The maturity of light hydrocarbons,diamondoids and aromatic fractions all suggest an approximate maturity of 1.5%e1.7%Ro for the samples.The(4-+3-)methyldiamantane concentration of the samples is 113.5 mg/g,indicating intense cracking with a cracking degree of about 80%,which is consistent with the high bottom hole temperature(179℃).The Sinian gas samples are dry with a dryness coefficient of 0.97.The gas is a mixture of kerogen-cracking gas and oil-cracking gas and has Ro values ranging between 1.5%and 1.7%,and methane carbon isotopic values of41.6‰.Based on the equivalent vitrinite reflectance(R_(eqv)=1.51%e1.61%)and the thermal evolution of source rocks from the Cambrian Yu'ertusi Formation of the same well,it is proposed that the Sinian oil and gas be mainly sourced from the Cambrian Yu'ertusi Formation during the Himalayan period but probably also be joined by hydrocarbon of higher maturity that migrated from other source rocks in deeper formations.The discovery of Sinian oil and gas from Well TS5 suggests that the ancient ultra-deep strata in the northern Tarim Basin have the potential for finding volatile oil or condensate reservoirs. 展开更多
关键词 Ultra-deep Sinian oil and gas oil-cracking Well Tashen 5 Tarim Basin
下载PDF
Risk assessment of oil and gas investment environment in countries along the Belt and Road Initiative 被引量:1
2
作者 Bao-Jun Tang Chang-Jing Ji +3 位作者 Yu-Xian Zheng Kang-Ning Liu Yi-Fei Ma Jun-Yu Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1429-1443,共15页
With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of inv... With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of investments, it is of significant importance to research the oil and gas investment environment in these countries for China's overseas investment macro-layout. This paper proposes an indicator system including 27 indicators from 6 dimensions. On this basis, game theory models combined with global entropy method and analytic hierarchy process are applied to determine the combined weights, and the TOPSIS-GRA model is utilized to assess the risks of oil and gas investment in 76 countries along the Initiative from 2014 to 2021. Finally, the GM(1,1) model is employed to predict risk values for 2022-2025. In conclusion, oil and gas resources and political factors have the greatest impact on investment environment risk, and 12 countries with greater investment potential are selected through cluster analysis in conjunction with the predicted results. The research findings may provide scientific decisionmaking recommendations for the Chinese government and oil enterprises to strengthen oil and gas investment cooperation with countries along the Belt and Road Initiative. 展开更多
关键词 Belt and Road Initiative oil and gas Investment Risk assessment
下载PDF
Miscibility of light oil and flue gas under thermal action 被引量:1
3
作者 XI Changfeng WANG Bojun +7 位作者 ZHAO Fang HUA Daode QI Zongyao LIU Tong ZHAO Zeqi TANG Junshi ZHOU You WANG Hongzhuang 《Petroleum Exploration and Development》 SCIE 2024年第1期164-171,共8页
The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and hi... The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions. 展开更多
关键词 light oil flue gas flooding thermal miscible flooding miscible law distillation phase transition minimum miscible pressure minimum miscible temperature
下载PDF
Discovery and inspiration of large-and medium-sized glutenite-rich oil and gas fields in the eastern South China Sea:An example from Paleogene Enping Formation in Huizhou 26 subsag,Pearl River Mouth Basin 被引量:1
4
作者 XU Changgui GAO Yangdong +4 位作者 LIU Jun PENG Guangrong LIU Pei XIONG Wanlin SONG Penglin 《Petroleum Exploration and Development》 SCIE 2024年第1期15-30,共16页
Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and ... Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and minerals were characterized microscopically,the measured trap sealing indexes were compared,the biomarker compounds of crude oil were extracted,the genesis of condensate gas was identified,and the reservoir-forming conditions were examined.On this basis,the Paleogene Enping Formation in the Huizhou 26 subsag was systematically analyzed for the potential of oil and gas resources,the development characteristics of large-scale high-quality conglomerate reservoirs,the trapping effectiveness of faults,the hydrocarbon migration and accumulation model,and the formation conditions and exploration targets of large-and medium-sized glutenite-rich oil and gas fields.The research results were obtained in four aspects.First,the Paleogene Wenchang Formation in the Huizhou 26 subsag develops extensive and thick high-quality source rocks of semi-deep to deep lacustrine subfacies,which have typical hydrocarbon expulsion characteristics of"great oil generation in the early stage and huge gas expulsion in the late stage",providing a sufficient material basis for hydrocarbon accumulation in the Enping Formation.Second,under the joint control of the steep slope zone and transition zone of the fault within the sag,the large-scale near-source glutenite reservoirs are highly heterogeneous,with the development scale dominated hierarchically by three factors(favorable facies zone,particle component,and microfracture).The(subaqueous)distributary channels near the fault system,with equal grains,a low mud content(<5%),and a high content of feldspar composition,are conducive to the development of sweet spot reservoirs.Third,the strike-slip pressurization trap covered by stable lake flooding mudstone is a necessary condition for oil and gas preservation,and the NE and nearly EW faults obliquely to the principal stress have the best control on traps.Fourth,the spatiotemporal configuration of high-quality source rocks,fault transport/sealing,and glutenite reservoirs controls the degree of hydrocarbon enrichment.From top to bottom,three hydrocarbon accumulation units,i.e.low-fill zone,transition zone,and high-fill zone,are recognized.The main area of the channel in the nearly pressurized source-connecting fault zone is favorable for large-scale hydrocarbon enrichment.The research results suggest a new direction for the exploration of large-scale glutenite-rich reservoirs in the Enping Formation of the Pearl River Mouth Basin,and present a major breakthrough in oil and gas exploration. 展开更多
关键词 Pearl River Mouth Basin Huizhou Sag Huizhou 26 subsag PALEOGENE Enping Formation GLUTENITE large-and medium-sized oil and gas field
下载PDF
Research on thermal insulation materials properties under HTHP conditions for deep oil and gas reservoir rock ITP-Coring 被引量:1
5
作者 Zhi-Qiang He He-Ping Xie +4 位作者 Ling Chen Jian-Ping Yang Bo Yu Zi-Jie Wei Ming-Zhong Gao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2625-2637,共13页
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability... Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development. 展开更多
关键词 Deep oil and gas reservoir rock In situ temperature-preserved coring(ITPCoring) Hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials) High-temperature and high-pressure(HTHP) Physical and mechanical properties
下载PDF
Evaluation of the oil and gas preservation conditions, source rocks, and hydrocarbongenerating potential of the Qiangtang Basin: New evidence from the scientific drilling project 被引量:4
6
作者 Li-jun Shen Jian-yong Zhang +4 位作者 Shao-yun Xiong Jian Wang Xiu-gen Fu Bo Zheng Zhong-wei Wang 《China Geology》 CAS CSCD 2023年第2期187-207,共21页
The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of ... The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of well QK-1 and its supporting shallow boreholes for geological surveys(also referred to as the Project)completed in recent years contributes to a series of new discoveries and insights into the oil and gas preservation conditions and source rock evaluation of the Qiangtang Basin.These findings differ from previous views that the Qiangtang Basin has poor oil and gas preservation conditions and lacks high-quality source rocks.As revealed by well QK-1 and its supporting shallow boreholes in the Project,the Qiangtang Basin hosts two sets of high-quality regional seals,namely an anhydrite layer in the Quemo Co Formation and the gypsum-bearing mudstones in the Xiali Formation.Moreover,the Qiangtang Basin has favorable oil and gas preservation conditions,as verified by the comprehensive study of the sealing capacity of seals,basin structure,tectonic uplift,magmatic activity,and groundwater motion.Furthermore,the shallow boreholes have also revealed that the Qiangtang Basin has high-quality hydrocarbon source rocks in the Upper Triassic Bagong Formation,which are thick and widely distributed according to the geological and geophysical data.In addition,the petroleum geological conditions,such as the type,abundance,and thermal evolution of organic matter,indicate that the Qiangtang Basin has great hydrocarbon-generating potential. 展开更多
关键词 Scientific drilling project oil and gas preservation Source rock Quemo Co Formation oil and gas exploration engineering Qiangtang Basin Tibet
下载PDF
Geologic characteristics,exploration and production progress of shale oil and gas in the United States:An overview
7
作者 MCMAHON T P LARSON T E +1 位作者 ZHANG T SHUSTER M 《Petroleum Exploration and Development》 SCIE 2024年第4期925-948,共24页
We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins o... We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods:Middle Ordovician,Middle-Late Devonian,Early Carboniferous(Middle-Late Mississippi),Early Permian,Late Jurassic,and Late Cretaceous(Cenomanian-Turonian).Depositional environments for these shales include intra-cratonic basins,foreland basins,and passive continental margins.Paleozoic hydrocarbon-rich shales are mainly developed in six basins,including the Appalachian Basin(Utica and Marcellus shales),Anadarko Basin(Woodford Shale),Williston Basin(Bakken Shale),Arkoma Basin(Fayetteville Shale),Fort Worth Basin(Barnett Shale),and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin.The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin(Haynesville and Eagle Ford)or in various Rocky Mountain basins(Niobrara Formation,mainly in the Denver and Powder River basins).The detailed analysis of shale plays reveals that the shales are different in facies and mineral components,and"shale reservoirs"are often not shale at all.The United States is abundant in shale oil and gas,with the in-place resources exceeding 0.246×10^(12)t and 290×10^(12)m^(3),respectively.Before the emergence of horizontal well hydraulic fracturing technology to kick off the"shale revolution",the United States had experienced two decades of exploration and production practices,as well as theory and technology development.In 2007-2023,shale oil and gas production in the United States increased from approximately 11.2×10^(4)tons of oil equivalent per day(toe/d)to over 300.0×10^(4)toe/d.In 2017,the shale oil and gas production exceeded the conventional oil and gas production in the country.In 2023,the contribution from shale plays to the total U.S.oil and gas production remained above 60%.The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies,with much of the recent effort focused on“cube development”or“co-development”.Other efforts to improve productivity and efficiency include refracturing,enhanced oil recovery,and drilling of“U-shaped”wells.Given the significant resources base and continued technological improvements,shale oil and gas production will continue to contribute significant volumes to total U.S.hydrocarbon production. 展开更多
关键词 United States shale oil shale gas shale reservoirs unconventional reservoirs oil and gas production resource assessment
下载PDF
A STAMP-Game model for accident analysis in oil and gas industry
8
作者 Huixing Meng Xu An +4 位作者 Daiwei Li Shijun Zhao Enrico Zio Xuan Liu Jinduo Xing 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期2154-2167,共14页
Accidents in engineered systems are usually generated by complex socio-technical factors.It is beneficial to investigate the increasing complexity and coupling of these factors from the perspective of system safety.Ba... Accidents in engineered systems are usually generated by complex socio-technical factors.It is beneficial to investigate the increasing complexity and coupling of these factors from the perspective of system safety.Based on system and control theories,System-Theoretic Accident Model and Processes(STAMP)is a widely recognized approach for accident analysis.In this paper,we propose a STAMP-Game model to analyze accidents in oil and gas storage and transportation systems.Stakeholders in accident analysis by STAMP can be regarded as players of a game.Game theory can,thus,be adopted in accident analysis to depict the competition and cooperation between stakeholders.Subsequently,we established a game model to study the strategies of both supervisory and supervised entities.The obtained results demonstrate that the proposed game model allows for identifying the effectiveness deficiency of the supervisory entity,and the safety and protection altitudes of the supervised entity.The STAMP-Game model can generate quantitative parameters for supporting the behavior and strategy selections of the supervisory and supervised entities.The quantitative data obtained can be used to guide the safety improvement,to reduce the costs of safety regulation violation and accident risk. 展开更多
关键词 Accident analysis STAMP System engineering Gametheory oil and gas storage and transportation SYSTEMS
下载PDF
Formation,evolution,reconstruction of black shales and their influence on shale oil and gas resource
9
作者 Shi-zhen Li Qiu-chen Xu +11 位作者 Mu Liu Guo-heng Liu Yi-fan Li Wen-yang Wang Xiao-guang Yang Wei-bin Liu Yan-fei An Peng Sun Tao Liu Jiang-hui Ding Qian-chao Li Chao-gang Fang 《China Geology》 CAS CSCD 2024年第3期551-585,共35页
Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential en... Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment. 展开更多
关键词 Black shales Shale oil and gas Resource effects Sedimentary environment Sedimentary process Organic matter accumulation Diagenetic evolution Thermal evolution Organic matter and inorganic minerals Tectonic reconstruction oil and gas exploration engineering VEINS Fluid activity
下载PDF
Geochemical prerequisites for the formation of oil and gas accumulation zones in the South Turgay basin,Kazakhstan
10
作者 Rima Kopbosynkyzy Madisheva Vassiliy Sergeevich Portnov +3 位作者 Gulmadina Bulatovna Amangeldiyeva Akmaral Bakhytbekovna Demeuova Yessimkhan Sherekhanovich Seitkhaziyev Dulat Kalimovich Azhgaliev 《Acta Geochimica》 EI CAS CSCD 2024年第3期520-534,共15页
This study predicts favorable oil and gas source-rock formation conditions in the Aryskum Depression of the South Turgay Basin,Kazakhstan.This study assesses the thermal maturity and characteristics of organic matter ... This study predicts favorable oil and gas source-rock formation conditions in the Aryskum Depression of the South Turgay Basin,Kazakhstan.This study assesses the thermal maturity and characteristics of organic matter by determining its environmental conditions using data from geochemical analysis of core(pyrolysis)and oil(biomarkers and carbon isotopic compositions)samples.According to the geochemical parameters obtained by pyrolysis,the oil generation potential of the original rocks of most studied samples varies from poor to rich.The facies–genetic organic matter is predominantly humic and less frequently humus–sapropel,indicating organic matter accumulation in the studied samples were under moderately reducing conditions(kerogenⅢand Ⅱ types)and coastal–marine environments(kerogen typeⅠ).The carbon isotopic compositions of oils derived from the Jurassic deposits of the Aryskum Depression also indicate the sapropelic and mixed humic–sapropelic type of organic matter(kerogenⅡandⅠ).Biomarker analysis of oils indicates original organic matter formation in an anoxic environment. 展开更多
关键词 South Turgay Basin oil and gas potential Source rock Organic matter KEROGEN
下载PDF
Stress corrosion cracking behavior of buried oil and gas pipeline steel under the coexistence of magnetic field and sulfate-reducing bacteria
11
作者 Jian-Yu He Fei Xie +3 位作者 Dan Wang Guang-Xin Liu Ming Wu Yue Qin 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1320-1332,共13页
Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env... Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence. 展开更多
关键词 Magnetic field Sulfate-reducing bacteria Film layer Stress corrosion cracking oil and gas pipelines
下载PDF
Origin of condensate oil and natural gas in Bozhong 19-6 gas field,Bohai Bay Basin
12
作者 Jianyong Xu Wei Li 《Energy Geoscience》 EI 2024年第1期54-62,共9页
The discovery of the Bozhong 19-6 gas field has opened a new frontier for deep gas exploration in the Bohai Bay Basin,with a great potential for further gas exploration.However,poor understanding of oil and gas origin... The discovery of the Bozhong 19-6 gas field has opened a new frontier for deep gas exploration in the Bohai Bay Basin,with a great potential for further gas exploration.However,poor understanding of oil and gas origin has been limiting the exploration progress in this area.To clarify the origin of condensate oil and gas in Bozhong 19-6 gas field,this study adequately utilized the organic geochemical analysis data to investigate the composition and geochemical characteristics of condensate oil and natural gas,and analyzed the relationship between condensate oil and the three sets of source rocks in the nearby subsags.Results show that the lighter components dominate the condensate oil,with a forward type predominance.The parent material of crude oil was primarily deposited in a shallow,clay-rich,low-salinity,weakly reducing aquatic environment.The condensate and natural gas have similar parent source characteristics and maturity,with Ro ranging from 1.4%to 1.6%.Both are products of high maturity stage,indicating that they are hydrocarbon compounds produced by the same group of source rocks in the same stage.Oil-sources correlation shows that condensate oil and gas mainly originate from the source rocks of the third member of Shahejie Formation in the nearby subsags of the Bozhong 19-6 structural belt. 展开更多
关键词 Bozhong Sag Natural gas Condensate oil Light hydrocarbon gas-source correlation oil-source correlation
下载PDF
Influence of lithospheric thickness distribution on oil and gas basins,China seas and adjacent areas
13
作者 Jing Ma Wanyin Wang +4 位作者 Hermann Zeyen Yimi Zhang Zhongsheng Li Tao He Dingding Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第4期1-14,共14页
The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and ... The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and gas basins is highly important.This research utilizes recently enhanced geological–geophysical data,including topographic,geoid,rock layer thickness,variable rock layer density,and interface depth data.Employing the principles of lithospheric isostasy and heat conduction,we compute the laterally varying lithospheric thickness in the China seas and adjacent areas.From these results,two pivotal parameters for different types of oil and gas basins were statistically analyzed:the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.A semiquantitative analysis was used to explore the connection between these parameters and the hydrocarbon abundance within the oil and gas basins.This study unveils distinct variations in lithospheric thickness among basins,with oil and gas rich basins exhibiting a thicker lithosphere in the superimposed basins of central China and a thinner lithosphere in the rift basins of eastern China.Notably,the relative fluctuations in lithospheric thickness in basins demonstrate significant disparities:basins rich in oil and gas often exhibit greater thickness fluctuations.Additionally,in the offshore basins of China,a conspicuous negative linear correlation is observed between the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.This study posits that deep-seated thermal upwelling results in lithospheric undulations and extensional thinning in oil and gas basins.Concurrently,sustained deep-seated heat influences sedimentary materials in basins,creating favorable conditions for oil and gas generation.The insights derived from this study contribute to a quantitative understanding of the intricate relationships between deep lithospheric structures and oil and gas basins.These findings provide valuable guidance for future oil and gas exploration in the studied areas. 展开更多
关键词 China seas and adjacent areas lithospheric thickness oil and gas basins
下载PDF
Research status and application of artificial intelligence large models in the oil and gas industry
14
作者 LIU He REN Yili +6 位作者 LI Xin DENG Yue WANG Yongtao CAO Qianwen DU Jinyang LIN Zhiwei WANG Wenjie 《Petroleum Exploration and Development》 SCIE 2024年第4期1049-1065,共17页
This article elucidates the concept of large model technology,summarizes the research status of large model technology both domestically and internationally,provides an overview of the application status of large mode... This article elucidates the concept of large model technology,summarizes the research status of large model technology both domestically and internationally,provides an overview of the application status of large models in vertical industries,outlines the challenges and issues confronted in applying large models in the oil and gas sector,and offers prospects for the application of large models in the oil and gas industry.The existing large models can be briefly divided into three categories:large language models,visual large models,and multimodal large models.The application of large models in the oil and gas industry is still in its infancy.Based on open-source large language models,some oil and gas enterprises have released large language model products using methods like fine-tuning and retrieval augmented generation.Scholars have attempted to develop scenario-specific models for oil and gas operations by using visual/multimodal foundation models.A few researchers have constructed pre-trained foundation models for seismic data processing and interpretation,as well as core analysis.The application of large models in the oil and gas industry faces challenges such as current data quantity and quality being difficult to support the training of large models,high research and development costs,and poor algorithm autonomy and control.The application of large models should be guided by the needs of oil and gas business,taking the application of large models as an opportunity to improve data lifecycle management,enhance data governance capabilities,promote the construction of computing power,strengthen the construction of“artificial intelligence+energy”composite teams,and boost the autonomy and control of large model technology. 展开更多
关键词 foundation model large language mode visual large model multimodal large model large model of oil and gas industry pre-training fine-tuning
下载PDF
Characteristics and Trends of Deep Oil and Gas Research in China (1984-2024)—Research from the Perspective of CiteSpace
15
作者 Zhichao Liu Yuxin Shen 《Journal of Geoscience and Environment Protection》 2024年第10期255-276,共22页
Deep oil and gas refer to oil and gas resources buried at a significant depth below the surface. Compared with conventional oil and gas, deep oil and gas often face more complex geological conditions and technological... Deep oil and gas refer to oil and gas resources buried at a significant depth below the surface. Compared with conventional oil and gas, deep oil and gas often face more complex geological conditions and technological challenges, therefore, the development and exploitation of these oil and gas resources require advanced technology and equipment. Use bibliometrics to study academic literature. Select available data and download it in “RefWorks” format. Import the data into Cite Space 6.3.R2 software for author collaboration and keyword emergence analysis and visualization. Use Microsoft Excel 2016 software to analyze the annual publication volume, literature institutions, and disciplinary distribution of domestic and international scholarly literature. Research has found that: 1) The institution with the highest number of publications in the field of deep oil and gas in China is the China Petroleum Exploration and Development Research Institute;The author with the highest number of publications is Zhu Guangyou;The author with the highest citation frequency is Jia Chengzao;The research work in the field of deep oil and gas in China is mainly led by national level fund projects. 2) The research hot-spots of deep oil and gas in China are showing a trend of shifting from Jilin and Henan to Xinjiang and Sichuan. 3) The research on deep oil and gas fields in the Paleogene of China is mainly concentrated in Henan Province and Shandong Province. The Lower Tertiary, Cambrian and Jurassic are respectively concentrated in Dongpu Sag, Dongying Sag, Sichuan Basin, Tarim Basin in Xinjiang, the Junggar Basin and Qaidam Basin in Qinghai. The Sinian, Ordovician, Cretaceous, and Neogene systems are mainly concentrated in Sichuan, Xinjiang, and Qinghai provinces. The Permian system is mainly located in the southwest and Northwest of China. This article uses a new research perspective and methodology to systematically analyze the current situation and future development trends of deep oil and gas exploration and development in China, which is of great significance for promoting effective exploration and development of deep oil and gas resources. 展开更多
关键词 Deep oil and gas CITESPACE BIBLIOMETRICS Knowledge Graph
下载PDF
Risk measurement of international oil and gas projects based on the Value at Risk method 被引量:2
16
作者 Cheng Cheng Zhen Wang +1 位作者 Ming-Ming Liu Xiao-Hang Ren 《Petroleum Science》 SCIE CAS CSCD 2019年第1期199-216,共18页
International oil and gas projects feature high capital-intensity, high risks and contract diversity. Therefore, in order to help decision makers make more reasonable decisions under uncertainty, it is necessary to me... International oil and gas projects feature high capital-intensity, high risks and contract diversity. Therefore, in order to help decision makers make more reasonable decisions under uncertainty, it is necessary to measure the risks of international oil and gas projects. For this purpose, this paper constructs a probabilistic model that is based on the traditional economic evaluation model, and introduces value at risk(VaR) which is a valuable risk measure tool in finance, and applies Va R to measure the risks of royalty contracts, production share contracts and service contracts of an international oil and gas project. Besides, this paper compares the influences of different risk factors on the net present value(NPV) of the project by using the simulation results. The results indicate:(1) risks have great impacts on the project's NPV, therefore, if risks are overlooked, the decision may be wrong.(2) A simulation method is applied to simulate the stochastic distribution of risk factors in the probabilistic model. Therefore, the probability is related to the project's NPV, overcoming the inherent limitation of the traditional economic evaluation method.(3) VaR is a straightforward risk measure tool, and can be applied to evaluate the risks of international oil and gas projects. It is helpful for decision making. 展开更多
关键词 RISK measurement Value at RISK INTERNATIONAL oil and gas projects FISCAL TERMS - Probabilistic model
下载PDF
Fuzzy logic applied to value of information assessment in oil and gas projects 被引量:2
17
作者 Martin Vilela Gbenga Oluyemi Andrei Petrovski 《Petroleum Science》 SCIE CAS CSCD 2019年第5期1208-1220,共13页
The concept of value of information(VOI)has been widely used in the oil industry when making decisions on the acquisition of new data sets for the development and operation of oil fields.The classical approach to VOI ... The concept of value of information(VOI)has been widely used in the oil industry when making decisions on the acquisition of new data sets for the development and operation of oil fields.The classical approach to VOI assumes that the outcome of the data acquisition process produces crisp values,which are uniquely mapped onto one of the deterministic reservoir models representing the subsurface variability.However,subsurface reservoir data are not always crisp;it can also be fuzzy and may correspond to various reservoir models to different degrees.The classical approach to VOI may not,therefore,lead to the best decision with regard to the need to acquire new data.Fuzzy logic,introduced in the 1960 s as an alternative to the classical logic,is able to manage the uncertainty associated with the fuzziness of the data.In this paper,both classical and fuzzy theoretical formulations for VOI are developed and contrasted using inherently vague data.A case study,which is consistent with the future development of an oil reservoir,is used to compare the application of both approaches to the estimation of VOI.The results of the VOI process show that when the fuzzy nature of the data is included in the assessment,the value of the data decreases.In this case study,the results of the assessment using crisp data and fuzzy data change the decision from"acquire"the additional data(in the former)to"do not acquire"the additional data(in the latter).In general,different decisions are reached,depending on whether the fuzzy nature of the data is considered during the evaluation.The implications of these results are significant in a domain such as the oil and gas industry(where investments are huge).This work strongly suggests the need to define the data as crisp or fuzzy for use in VOI,prior to implementing the assessment to select and define the right approach. 展开更多
关键词 Value of information Fuzzy logic Uncertainty and risk management oil and gas industry
下载PDF
Investment in deepwater oil and gas exploration projects:a multi-factor analysis with a real options model 被引量:5
18
作者 Xin-Hua Qiu Zhen Wang Qing Xue 《Petroleum Science》 SCIE CAS CSCD 2015年第3期525-533,共9页
Deepwater oil and gas projects embody high risks from geology and engineering aspects, which exert substantial influence on project valuation. But the uncer- tainties may be converted to additional value to the projec... Deepwater oil and gas projects embody high risks from geology and engineering aspects, which exert substantial influence on project valuation. But the uncer- tainties may be converted to additional value to the projects in the case of flexible management. Given the flexibility of project management, this paper extends the classical real options model to a multi-factor model which contains oil price, geology, and engineering uncertainties. It then gives an application example of the new model to evaluate deepwater oil and gas projects with a numerical analytical method. Compared with other methods and models, this multi-factor real options model contains more project information. It reflects the potential value deriving not only from oil price variation but also from geology and engi- neering uncertainties, which provides more accurate and reliable valuation information for decision makers. 展开更多
关键词 Investment decision - Real options Multi-factor model Option pricing - Deepwater oil and gas
下载PDF
Bargaining strategy of oil companies in international oil and gas development Projects-Based on a bilateral bargaining model
19
作者 Qing Xue Cheng Cheng +1 位作者 Zhen Wang Ming-Ming Liu 《Petroleum Science》 SCIE CAS CSCD 2021年第4期1270-1279,共10页
Bargaining between the host country and oil companies is very common to international oil and gas development projects.The existence of information asymmetry gives the host country an endogenous bargaining advantage.F... Bargaining between the host country and oil companies is very common to international oil and gas development projects.The existence of information asymmetry gives the host country an endogenous bargaining advantage.Foreign oil companies might change their unfavorable negotiating position by changing the order of bidding and adjusting bidding strategies.This paper introduces both factors into a bilateral bargaining model to study the impact of information asymmetry and bidding order on the strategy and equilibrium returns of oil companies.According to the ownership of the right to bid first,two scenarios are designed for the model to compare the equilibrium returns of the host country and oil companies.The results show that:1)There is a first-mover advantage in the process of bilateral bidding,so oil companies better bid first;2)The information asymmetry will lead to a higher nominal income ratio of oil companies and a lower nominal income ratio of the host country,but it doesn’t affect the total income ratio at all. 展开更多
关键词 International oil and gas development project Information asymmetry Cooperation strategy Bilateral bidding model
下载PDF
Whole petroleum system and ordered distribution pattern of conventional and unconventional oil and gas reservoirs 被引量:21
20
作者 Cheng-Zao Jia Xiong-Qi Pang Yan Song 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期1-19,共19页
The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some... The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some new concepts as composite petroleum system,total petroleum system,total composite petroleum system,were proposed,but they do not account for the vast unconventional oil and gas reservoirs within the system,which is not formed and distributed in traps dominantly by buoyancedriven.Therefore,the petroleum system concept is no longer adequate in dealing with all the oil and gas accumulations in a basin where significant amount of the unconventional oil and gas resources are present in addition to the conventional oil and gas accumulations.This paper looked into and analyzed the distribution characteristics of conventional and unconventional oil/gas reservoirs and their differences and correlations in petroliferous basins in China and North America,and then proposed whole petroleum system(WPS)concept,the WPS is defined as a natural system that encompasses all the conventional and unconventional oil and gas,reservoirs and resources originated from organic matter in source rocks,the geological elements and processes involving the formation,evolution,and distribution of these oil and gas,reservoirs and resources.It is found in the WPS that there are three kinds of hydrocarbons dynamic fields,three kinds of original hydrocarbons,three kinds of reservoir rocks,and the coupling of these three essential elements lead to the basic ordered distribution model of shale oil/gas reservoirs contacting or interbeded with tight oil/gas reservoirs and separated conventional oil/gas reservoirs from source rocks upward,which is expressed as“S\T-C”.Abnormal conditions lead to other three special ordered distribution models:The first is that with shale oil/gas reservoirs separated from tight oil/gas reservoirs.The second is that with two direction ordered distributions from source upward and downward.The third is with lateral distribution from source outside. 展开更多
关键词 Conventional and unconventional oil and gas Petroleum system Whole petroleum system Hydrocarbon reservoirs ordered distribution model Fossil energy
下载PDF
上一页 1 2 82 下一页 到第
使用帮助 返回顶部