China is expanding its scope in looking for energy resources in foreign assets,participating actively in the international oil and gas market to ensure the domestic supply driven by economic growth.In mid-November 201...China is expanding its scope in looking for energy resources in foreign assets,participating actively in the international oil and gas market to ensure the domestic supply driven by economic growth.In mid-November 2013,Sinopec Group,the country’s largest refiner,announced it has officially completed the acquisition of one-third of Apache Corp.’s Egypt oil and gas business.On Aug 30,Sinopec and Apache had launched a global strategic partnership,with the展开更多
Well Zhongqiu 1 obtained highly productive oil-gas stream in the footwall of Zhongqiu structure, marking the strategic breakthrough of Qiulitag structural belt in the Tarim Basin. However, the oil and gas sources in Z...Well Zhongqiu 1 obtained highly productive oil-gas stream in the footwall of Zhongqiu structure, marking the strategic breakthrough of Qiulitag structural belt in the Tarim Basin. However, the oil and gas sources in Zhongqiu structural belt and the reservoir formation process in Zhongqiu 1 trap remain unclear, so study on these issues may provide important basis for the next step of oil and gas exploration and deployment in Qiulitage structural belt. In this study, a systematic correlation of oil and gas source in Well Zhongqiu 1 has been carried out. The oil in Well Zhongqiu 1 is derived from Triassic lacustrine mudstone, while the gas is a typical coal-derived gas and mainly from Jurassic coal measures. The oil charging in Well Zhongqiu 1 mainly took place during the sedimentary period from Jidike Formation to Kangcun Formation in Neogene, and the oil was mainly contributed by Triassic source rock;large-scale natural gas charging occurred in the sedimentary period of Kuqa Formation in Neogene, and the coal-derived gas generated in the late Jurassic caused large-scale gas invasion to the early Triassic crude oil reservoirs. The Zhongqiu 1 trap was formed earlier than or at the same period as the hydrocarbon generation and expulsion period of Triassic-Jurassic source rocks. Active faults provided paths for hydrocarbon migration. The source rocks-faults-traps matched well in time and space. Traps in the footwall of the Zhongqiu structural fault have similar reservoir-forming conditions with the Zhongqiu 1 trap, so they are favorable targets in the next step of exploration.展开更多
The Sichuan Basin is rich in shale oil and gas resources,with favorable geological conditions that the other shale reservoirs in China cannot match.Thus,the basin is an ideal option for fully"exploring petroleum ...The Sichuan Basin is rich in shale oil and gas resources,with favorable geological conditions that the other shale reservoirs in China cannot match.Thus,the basin is an ideal option for fully"exploring petroleum inside source kitchen"with respect to onshore shale oil and gas in China.This paper analyzes the characteristics of shale oil and gas resources in the United States and China,and points out that maturity plays an important role in controlling shale oil and gas composition.US shale oil and gas exhibit high proportions of light hydrocarbon and wet gas,whereas Chinese marine and transitional shale gas is mainly dry gas and continental shale oil is generally heavy.A comprehensive geological study of shale oil and gas in the Sichuan Basin reveals findings with respect to the following three aspects.First,there are multiple sets of organic-rich shale reservoirs of three types in the basin,such as the Cambrian Qiongzhusi Formation and Ordovician Wufeng Formation-Silurian Longmaxi Formation marine shale,Permian Longtan Formation transitional shale,Triassic Xujiahe Formation lake-swamp shale,and Jurassic lacustrine shale.Marine shale gas enrichment is mainly controlled by four elements:Deep-water shelf facies,moderate thermal evolution,calcium-rich and silicon-rich rock association,and closed roof/floor.Second,the"sweet section"is generally characterized by high total organic carbon,high gas content,large porosity,high brittle minerals content,high formation pressure,and the presence of lamellation/bedding and natural microfractures.Moreover,the"sweet area"is generally characterized by very thick organic-rich shale,moderate thermal evolution,good preservation conditions,and shallow burial depth,which are exemplified by the shale oil and gas in the Wufeng-Longmaxi Formation,Longtan Formation,and Daanzhai Member of the Ziliujing Formation.Third,the marine,transitional,and continental shale oil and gas resources in the Sichuan Basin account for 50%,25%,and 30%of the respective types of shale oil and gas geological resources in China,with great potential to become the cradle of the shale oil and gas industrial revolution in China.Following the"Conventional Daqing-Oil"(i.e.,the Daqing oilfield in the Songliao Basin)and the"Western Daqing-Oil&Gas"(i.e.,the Changqing oilfield in the Ordos Basin),the Southwest oil and gas field in the Sichuan Basin is expected to be built into a"Sichuan-Chongqing Daqing-Gas"in China.展开更多
Continuous exploration has triggered a heated debate on hydrocarbon resource potential in the southern slope zone of the Kuqa foreland basin,and sources of the Mesozoic-Cenozoic oil and gas have become a key problem t...Continuous exploration has triggered a heated debate on hydrocarbon resource potential in the southern slope zone of the Kuqa foreland basin,and sources of the Mesozoic-Cenozoic oil and gas have become a key problem to be solved in this region.Composition and organic geochemical parameters of crude oil and natural gas from the southern slope zone of the Kuqa foreland basin were illustrated in order to reveal their origin by using a combination of gas chromatograph(GC),gas chromatogram-mass spectrum(GC-MS)and carbon isotope analyses.The characteristics of crude oil,such as low density,viscosity,solidification point and sulfur content,and high wax content,indicate that source of the crude oil is continental.The biomarker compositions of crude oil are characterized by low to medium molecular weight compounds(n-C_(12) to n-C_(20)),high Pr/Ph ratios(>1.0),low phytane/n-C18 ratios(0.06-0.54),and predominant regular sterane C_(29).All biomarker parameters clearly indicate that the crude oil was derived mainly from algae and aquatic plankton and deposited under weak reduction-oxidation environment,and has the characteristics of mixed kerogens.The Cretaceous crude oil was mainly derived from the Triassic lacustrine source rocks,which also contributed to the Paleogene crude oil together with Jurassic coal source rocks.Natural gas is characterized by moderate methane content,high heavy hydrocarbon and nitrogen content,and no hydrogen sulfide.The methane and ethane in Paleogene natural gas are relatively rich in ^(13)C withδ^(13)C_(1) andδ^(13)C_(2) values ranging from-37.3‰to-31.2‰(mean=-34.25‰)and from-25‰to-21.3‰(mean=-23.09‰),respectively,indicating the coal-derived gas from the Middle and Lower Jurassic strata.Hydrocarbon products in the southern slope zone of the Kuqa foreland basin are primarily generated from source rocks in the mature stage.The low-amplitude structural and lithologic traps with the updip pinch-out sand bodies or plugging secondary fault at relatively high tectonic positions are the most favorable areas for discovery and breakthrough in the study area.Results of this study will provide useful information for controlling factors of reservoirs and oil and gas exploration deployment in the southern slope zone of the Kuqa foreland basin.展开更多
0 INTRODUCTION The breakthroughs in unconventional petroleum have a great impact on world petroleum industry and innovation in petroleum geology(Dou et al,2022;Jia,2017;Zou et al.,2015b,2014a;Yerkin,2012;Pollastro,200...0 INTRODUCTION The breakthroughs in unconventional petroleum have a great impact on world petroleum industry and innovation in petroleum geology(Dou et al,2022;Jia,2017;Zou et al.,2015b,2014a;Yerkin,2012;Pollastro,2007;Schmoker,1995).The exploration and development evolution from conventional petroleum to unconventional petroleum and more and more frequent industrial activities of exploring petroleum inside sources kitchen have deepened theoretical understanding of unconventional petroleum geology and promoted technical research and development(Jia et al.,2021,2017;Jin et al.,2021;Zhao W Z et al.,2020;Ma Y S et al.,2018,2012;Zou et al.,2018b,2016,2009;Dai et al.,2012).We have introduced and extended the theory of continuous hydrocarbon accumulation since 2008 and published several papers/books(in Chinese and English)with respect to unconventional petroleum geology since 2009,basically forming the theoretical framework for this discipline(Yang et al.,2022a,2021a,2019a,,2015a;Zou et al.,2019c,2017b,2014a,,2013a).In this paper,we present the background of unconventional petroleum geology,review the latest theoretical and technological progress in unconventional petroleum geology,introduce relevant thinking and practices in China,and explore the pathway of unconventional petroleum revolution and multi-energy coordinated development in super energy basins,hopefully to promote the unconventional petroleum geology and industry development.展开更多
文摘China is expanding its scope in looking for energy resources in foreign assets,participating actively in the international oil and gas market to ensure the domestic supply driven by economic growth.In mid-November 2013,Sinopec Group,the country’s largest refiner,announced it has officially completed the acquisition of one-third of Apache Corp.’s Egypt oil and gas business.On Aug 30,Sinopec and Apache had launched a global strategic partnership,with the
基金Supported by the China National Science and Technology Major Project(2016ZX05007-003)the National Natural Science Foundation of China(41802138)
文摘Well Zhongqiu 1 obtained highly productive oil-gas stream in the footwall of Zhongqiu structure, marking the strategic breakthrough of Qiulitag structural belt in the Tarim Basin. However, the oil and gas sources in Zhongqiu structural belt and the reservoir formation process in Zhongqiu 1 trap remain unclear, so study on these issues may provide important basis for the next step of oil and gas exploration and deployment in Qiulitage structural belt. In this study, a systematic correlation of oil and gas source in Well Zhongqiu 1 has been carried out. The oil in Well Zhongqiu 1 is derived from Triassic lacustrine mudstone, while the gas is a typical coal-derived gas and mainly from Jurassic coal measures. The oil charging in Well Zhongqiu 1 mainly took place during the sedimentary period from Jidike Formation to Kangcun Formation in Neogene, and the oil was mainly contributed by Triassic source rock;large-scale natural gas charging occurred in the sedimentary period of Kuqa Formation in Neogene, and the coal-derived gas generated in the late Jurassic caused large-scale gas invasion to the early Triassic crude oil reservoirs. The Zhongqiu 1 trap was formed earlier than or at the same period as the hydrocarbon generation and expulsion period of Triassic-Jurassic source rocks. Active faults provided paths for hydrocarbon migration. The source rocks-faults-traps matched well in time and space. Traps in the footwall of the Zhongqiu structural fault have similar reservoir-forming conditions with the Zhongqiu 1 trap, so they are favorable targets in the next step of exploration.
基金supported by the National Oil and Gas Major Project(Grant Nos.2017ZX05035&2016ZX05046)。
文摘The Sichuan Basin is rich in shale oil and gas resources,with favorable geological conditions that the other shale reservoirs in China cannot match.Thus,the basin is an ideal option for fully"exploring petroleum inside source kitchen"with respect to onshore shale oil and gas in China.This paper analyzes the characteristics of shale oil and gas resources in the United States and China,and points out that maturity plays an important role in controlling shale oil and gas composition.US shale oil and gas exhibit high proportions of light hydrocarbon and wet gas,whereas Chinese marine and transitional shale gas is mainly dry gas and continental shale oil is generally heavy.A comprehensive geological study of shale oil and gas in the Sichuan Basin reveals findings with respect to the following three aspects.First,there are multiple sets of organic-rich shale reservoirs of three types in the basin,such as the Cambrian Qiongzhusi Formation and Ordovician Wufeng Formation-Silurian Longmaxi Formation marine shale,Permian Longtan Formation transitional shale,Triassic Xujiahe Formation lake-swamp shale,and Jurassic lacustrine shale.Marine shale gas enrichment is mainly controlled by four elements:Deep-water shelf facies,moderate thermal evolution,calcium-rich and silicon-rich rock association,and closed roof/floor.Second,the"sweet section"is generally characterized by high total organic carbon,high gas content,large porosity,high brittle minerals content,high formation pressure,and the presence of lamellation/bedding and natural microfractures.Moreover,the"sweet area"is generally characterized by very thick organic-rich shale,moderate thermal evolution,good preservation conditions,and shallow burial depth,which are exemplified by the shale oil and gas in the Wufeng-Longmaxi Formation,Longtan Formation,and Daanzhai Member of the Ziliujing Formation.Third,the marine,transitional,and continental shale oil and gas resources in the Sichuan Basin account for 50%,25%,and 30%of the respective types of shale oil and gas geological resources in China,with great potential to become the cradle of the shale oil and gas industrial revolution in China.Following the"Conventional Daqing-Oil"(i.e.,the Daqing oilfield in the Songliao Basin)and the"Western Daqing-Oil&Gas"(i.e.,the Changqing oilfield in the Ordos Basin),the Southwest oil and gas field in the Sichuan Basin is expected to be built into a"Sichuan-Chongqing Daqing-Gas"in China.
基金sponsored by the National Science and Technology Major Project in the 13th Five-Year Plan(Nos.2016ZX05003-001,2017ZX05001-002)the Science and Technology Project of the China Petroleum and Natural Gas Co.Ltd.(No.KT2018-02-06)。
文摘Continuous exploration has triggered a heated debate on hydrocarbon resource potential in the southern slope zone of the Kuqa foreland basin,and sources of the Mesozoic-Cenozoic oil and gas have become a key problem to be solved in this region.Composition and organic geochemical parameters of crude oil and natural gas from the southern slope zone of the Kuqa foreland basin were illustrated in order to reveal their origin by using a combination of gas chromatograph(GC),gas chromatogram-mass spectrum(GC-MS)and carbon isotope analyses.The characteristics of crude oil,such as low density,viscosity,solidification point and sulfur content,and high wax content,indicate that source of the crude oil is continental.The biomarker compositions of crude oil are characterized by low to medium molecular weight compounds(n-C_(12) to n-C_(20)),high Pr/Ph ratios(>1.0),low phytane/n-C18 ratios(0.06-0.54),and predominant regular sterane C_(29).All biomarker parameters clearly indicate that the crude oil was derived mainly from algae and aquatic plankton and deposited under weak reduction-oxidation environment,and has the characteristics of mixed kerogens.The Cretaceous crude oil was mainly derived from the Triassic lacustrine source rocks,which also contributed to the Paleogene crude oil together with Jurassic coal source rocks.Natural gas is characterized by moderate methane content,high heavy hydrocarbon and nitrogen content,and no hydrogen sulfide.The methane and ethane in Paleogene natural gas are relatively rich in ^(13)C withδ^(13)C_(1) andδ^(13)C_(2) values ranging from-37.3‰to-31.2‰(mean=-34.25‰)and from-25‰to-21.3‰(mean=-23.09‰),respectively,indicating the coal-derived gas from the Middle and Lower Jurassic strata.Hydrocarbon products in the southern slope zone of the Kuqa foreland basin are primarily generated from source rocks in the mature stage.The low-amplitude structural and lithologic traps with the updip pinch-out sand bodies or plugging secondary fault at relatively high tectonic positions are the most favorable areas for discovery and breakthrough in the study area.Results of this study will provide useful information for controlling factors of reservoirs and oil and gas exploration deployment in the southern slope zone of the Kuqa foreland basin.
基金supported by the Petro China Science and Technology Project (No.2021DJ18)National Special Program for High-Level Talents (the fourth batch)the PetroChina,national ministries,academical universities and research institutes。
文摘0 INTRODUCTION The breakthroughs in unconventional petroleum have a great impact on world petroleum industry and innovation in petroleum geology(Dou et al,2022;Jia,2017;Zou et al.,2015b,2014a;Yerkin,2012;Pollastro,2007;Schmoker,1995).The exploration and development evolution from conventional petroleum to unconventional petroleum and more and more frequent industrial activities of exploring petroleum inside sources kitchen have deepened theoretical understanding of unconventional petroleum geology and promoted technical research and development(Jia et al.,2021,2017;Jin et al.,2021;Zhao W Z et al.,2020;Ma Y S et al.,2018,2012;Zou et al.,2018b,2016,2009;Dai et al.,2012).We have introduced and extended the theory of continuous hydrocarbon accumulation since 2008 and published several papers/books(in Chinese and English)with respect to unconventional petroleum geology since 2009,basically forming the theoretical framework for this discipline(Yang et al.,2022a,2021a,2019a,,2015a;Zou et al.,2019c,2017b,2014a,,2013a).In this paper,we present the background of unconventional petroleum geology,review the latest theoretical and technological progress in unconventional petroleum geology,introduce relevant thinking and practices in China,and explore the pathway of unconventional petroleum revolution and multi-energy coordinated development in super energy basins,hopefully to promote the unconventional petroleum geology and industry development.