Oil-gas two phase wax deposition is a fairly common and open-ended question in flow assurance of multiphase transportation pipelines.This paper investigated the two main aspects of oil-gas two phase wax deposition lay...Oil-gas two phase wax deposition is a fairly common and open-ended question in flow assurance of multiphase transportation pipelines.This paper investigated the two main aspects of oil-gas two phase wax deposition layer:apparent thickness and crystal structure characteristics.A typical highly paraffinic oil in Bohai Sea,China,was used as the experimental material to investigate the wax deposition thickness in oil-gas two phase under the influence of different oil temperatures,superficial gas/liquid phase velocities and gas-oil ratios by using multiphase flow loop experimental device.Just as in the classical theory of wax molecular diffusion,it showed that wax deposition thickness of oil-gas two phase increased with increasing oil temperature.Analysis of the impact of different superficial phase velocities found that the actual liquid flow heat transfer and shear stripping was the gas phase dominant mechanisms determining wax deposit thickness.In addition,the crystal structure of the wax deposition layer was characterized with the help of small-angle X-ray scattering(SAXS)for different circumferential positions,flow rates and gas-oil ratios.The bottom deposition layer had a complex crystal structure and high hardness,which were subject to change over flow rate variations.Furthermore,the SAXS results provided evidence that the indirect effect of the actual liquid velocity modified by the gas phase was the main mechanism.Our study of the effect of gas phase on the wax deposition of oil-gas two phase will help shed light onto the mechanism by which this important process occurs.Our findings address a very urgent need in the field of wax deposition of highly paraffinic oil to understand the flow security of oilgas two phase that occurs easily in multiphase field pipelines.展开更多
A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax depositi...A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy.展开更多
This paper investigated the effects of pre-heating treatment temperatures(T_(pre))on the flowability and wax deposition characteristics of a typical waxy crude oil after adding wax inhibitors.It is found that there is...This paper investigated the effects of pre-heating treatment temperatures(T_(pre))on the flowability and wax deposition characteristics of a typical waxy crude oil after adding wax inhibitors.It is found that there is little difference in wax precipitation exothermic characteristics of crude oils at different T_(pre),as well as the wax crystal solubility coefficient in the temperature range of 25-30℃.For the undoped crude oil,the flowability after wax precipitation gets much improved and the wax deposition is alleviated as T_(pre)increasing.At T_(pre)=50℃,the viscosity and wax deposition rate of crude oil adding wax inhibitors are higher than those of the undoped crude oil.When the T_(pre)increases to 60,70,and 80℃,the flowability of the doped crude oil are largely improved and the wax deposition is suppressed with the T_(pre)increase,but the wax content of wax deposit increases gradually.It is speculated that,on the one hand,the T_(pre)increase helps the dispersion of asphaltenes into smaller sizes,which facilitates the co-crystallization with paraffin waxes and generates more aggregated wax crystal flocs.This weakens the low-temperature gel structure and increases the solid concentration required for the crosslink to form the wax deposit.On the other hand,the decrease in viscosity increases the diffusion rate of wax molecules and accelerates the aging of wax deposits.The experimental results have important guiding significance for the pipeline transportation of doped crude oils.展开更多
The coupled formation of wax crystals and hydrates is a critical issue for the safety of deep-sea oil and gas exploration and subsea transport pipeline flow.Therefore,this paper conducts an experimental study on the c...The coupled formation of wax crystals and hydrates is a critical issue for the safety of deep-sea oil and gas exploration and subsea transport pipeline flow.Therefore,this paper conducts an experimental study on the characteristics of methane hydrate formation in a water-in-oil(W/O)system with different wax crystal contents and explores the influence of different initial experimental pressures on the induction period and maximum rate of hydrate formation.The wavelet function was introduced to process the reaction rate and calculate the maximum speed of hydrate formation.Notably,the higher the pressure,the smaller the maximum rate of hydrate formation.We observed that wax crystal precipitation increases the viscosity of the emulsion,which limits the diffusion of gas in the liquid phase during hydrate nucleation and thus delays the hydrate nucleation.The methane gas precipitation also affects the remaining fraction’s wax content and therefore affects the wax precipitation.Secondary hydrate formation was observed several times during the experiment,increasing the risk of pipeline blockage.Overall,this work provides insights into the effect of wax crystal precipitation on hydrate behaviour that could facilitate flow assurance applications in subsea multiphase pipelines and inform the safe transportation of oil and gas pipelines.展开更多
Problems involving wax deposition threaten seriously crude pipelines both economically and operationally. Wax deposition in oil pipelines is a complicated problem having a number of uncertainties and indeterminations....Problems involving wax deposition threaten seriously crude pipelines both economically and operationally. Wax deposition in oil pipelines is a complicated problem having a number of uncertainties and indeterminations. The Grey System Theory is a suitable theory for coping with systems in which some information is clear and some is not, so it is an adequate model for studying the process of wax deposition. In order to predict accurately wax deposition along a pipeline, the Grey Model was applied to fit the data of wax deposition rate and the thickness of the deposited wax layer on the pipe-wall, and to give accurate forecast on wax deposition in oil pipelines. The results showed that the average residential error of the Grey Prediction Model is smaller than 2%. They further showed that this model exhibited high prediction accuracy. Our investigation proved that the Grey Model is a viable means for forecasting wax deposition. These findings offer valuable references for the oil industry and for firms dealing with wax cleaning in oil pipelines.展开更多
Most of the crude oils contain waxes which precipitate when temperature drops, resulting in deposition in pipelines and production equipment. It is necessary to set up a model which can predict the wax appearance tem-...Most of the crude oils contain waxes which precipitate when temperature drops, resulting in deposition in pipelines and production equipment. It is necessary to set up a model which can predict the wax appearance tem-perature and the amount of solid precipitated in the different conditions. A modified thermodynamic solid-liquid equilibrium model to calculate wax precipitation in crude oil systems has been developed recently. The assumption that precipitated waxes consist of several solid phases is adopted in this research, and the solid-solid transition is also considered in the modified model. The properties of the pseudo-components are determined by using empirical correlations. New correlations for properties of solid-solid and solid-liquid transitions are also established in this work on the basis of the data from the literature. The results predicted by the proposed model for three crude oil systems are compared with the experimental data and the calculated results from the literature, and good agreement is observed.展开更多
Wax deposition during crude oil production,transportation,and processing has been a headache since the early days of oil utilization.It may lead to low mobility ratios,blockage of production tubing/pipelines as well a...Wax deposition during crude oil production,transportation,and processing has been a headache since the early days of oil utilization.It may lead to low mobility ratios,blockage of production tubing/pipelines as well as fouling of surface and processing facilities,among others.These snags cause massive financial constraints increasing projects’turnover.Decades of meticulous research have been dedicated to this problem that is worth a review.Thus,this paper reviews the mechanisms,experimentation,thermodynamic and kinetic modeling,prediction,and remediation techniques of wax deposition.An overall assessment suggests that available models are more accurate for single than multi-phase flows while the kind of remediation and deployment depend on the environment and severity level.In severe cases,both chemical and mechanical are synergistically deployed.Moreover,future prospective research areas that require attention are proposed.Generally,this review could be a valuable tool for novice researchers as well as a foundation for further research on this topic.展开更多
During deep water oil well testing, the low temperature environment is easy to cause wax precipitation, which affects the normal operation of the test and increases operating costs and risks. Therefore, a numerical me...During deep water oil well testing, the low temperature environment is easy to cause wax precipitation, which affects the normal operation of the test and increases operating costs and risks. Therefore, a numerical method for predicting the wax precipitation region in oil strings was proposed based on the temperature and pressure fields of deep water test string and the wax precipitation calculation model. And the factors affecting the wax precipitation region were analyzed. The results show that: the wax precipitation region decreases with the increase of production rate, and increases with the decrease of geothermal gradient, increase of water depth and drop of water-cut of produced fluid, and increases slightly with the increase of formation pressure. Due to the effect of temperature and pressure fields, wax precipitation region is large in test strings at the beginning of well production. Wax precipitation region gradually increases with the increase of shut-in time. These conclusions can guide wax prevention during the testing of deep water oil well, to ensure the success of the test.展开更多
Machining is a mechanical process where excess material from a work is removed to produce a product. At the moment different ferrous, non-ferrous materials and industrial blue wax have been used for prototype models. ...Machining is a mechanical process where excess material from a work is removed to produce a product. At the moment different ferrous, non-ferrous materials and industrial blue wax have been used for prototype models. However such materials is very expensive. Hence an attempt is made to substitute these materials by the palm oil based bio-wax produced in Malaysia. In this research, the authors will analyze and investigate whether there is a possibility to use the palm oil based bio-wax material to substitute with the petroleum based industrial-wax. Experimental analyses are carried out to investigate the capability and the strength of the palm oil based bio-wax material. The matrix blends were prepared of fatty acids from oleo-chemicals, palm oil wax, natural ash fibre and low linear density polyethylene (LLDPE) by stirring and melt-mixing. Sample b!ends are machined with lathe machining process. The sample blends showed there was no built edge formation and good smooth surface production.展开更多
Composition and molecular mass distribution of n-alkanes in asphaltenes of crude oils of different ages and in wax deposits formed in the borehole equipment were studied. In asphaltenes, n-alkanes from C12 to C60 were...Composition and molecular mass distribution of n-alkanes in asphaltenes of crude oils of different ages and in wax deposits formed in the borehole equipment were studied. In asphaltenes, n-alkanes from C12 to C60 were detected. The high molecular weight paraffins in asphaltenes would form a crystalline phase with a melting point of 80–90 ℃. The peculiarities of the redistribution of high molecular paraffin hydrocarbons between oil and the corresponding wax deposit were detected. In the oils, the high molecular weight paraffinic hydrocarbons C50–C60were found, which were not practically detected in the corresponding wax deposits.展开更多
In this work, the influence of the dissolution of methane(CH_(4)) gas on the wax crystal of waxy crude oil and the effect on the rheology of crude oil by dissolved CH_(4) were studied comprehensively. A self-deign hig...In this work, the influence of the dissolution of methane(CH_(4)) gas on the wax crystal of waxy crude oil and the effect on the rheology of crude oil by dissolved CH_(4) were studied comprehensively. A self-deign high-pressure micro visualization device was developed to analyze wax crystals before and after gas dissolution. The crude oil from Shengli and Nanyang was tested by the device under various gas pressures. Results showed that the viscosity, maximum shear stress and equilibrium shear stress of Shengli crude oil decreased with the increasing pressure of the dissolved CH_(4). Due to the supersaturation of dissolved gas, the viscosity, maximum shear stress and equilibrium shear stress of Nanyang crude oil decreased initially and increased with the increasing pressure of dissolved CH_(4). The change in rheology of the dissolved gas crude oil can be a combined influence of gas pressure and dissolution mechanisms caused by CH_(4). Additionally, the wax precipitation point of Shengli crude oil decreased at the saturated dissolution of CH_(4), while Nanyang crude oil showed an increasing wax precipitation temperature.Notably, the wax precipitation area, number of wax particles, and average diameter of wax crystal in both crude oils gradually decreased with dissolution. However, a saturation of CH_(4) caused a small amount of precipitation of wax crystals in Nanyang crude oil, and the small wax crystals were aggregated to form the large wax crystals. The dissolution of CH_(4) gas can affect the wax crystallization process, crystallization ability, and morphology of wax crystals that resulted in significant variation in the rheology of crude oil.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52274061&52004039&51974037)China Postdoctoral Science Foundation(Grant No.2023T160717&2021M693908)+2 种基金CNPC Innovation Found(Grant No.2022DQ02-0501),Changzhou Applied Basic Research Program(Grant No.CJ20230030)The major project of universities affiliated with Jiangsu Province basic science(natural science)research(Grant No.21KJA440001)Jiangsu Qinglan Project,Changzhou Longcheng Talent Plan-Youth Science and Technology Talent Recruitment Project。
文摘Oil-gas two phase wax deposition is a fairly common and open-ended question in flow assurance of multiphase transportation pipelines.This paper investigated the two main aspects of oil-gas two phase wax deposition layer:apparent thickness and crystal structure characteristics.A typical highly paraffinic oil in Bohai Sea,China,was used as the experimental material to investigate the wax deposition thickness in oil-gas two phase under the influence of different oil temperatures,superficial gas/liquid phase velocities and gas-oil ratios by using multiphase flow loop experimental device.Just as in the classical theory of wax molecular diffusion,it showed that wax deposition thickness of oil-gas two phase increased with increasing oil temperature.Analysis of the impact of different superficial phase velocities found that the actual liquid flow heat transfer and shear stripping was the gas phase dominant mechanisms determining wax deposit thickness.In addition,the crystal structure of the wax deposition layer was characterized with the help of small-angle X-ray scattering(SAXS)for different circumferential positions,flow rates and gas-oil ratios.The bottom deposition layer had a complex crystal structure and high hardness,which were subject to change over flow rate variations.Furthermore,the SAXS results provided evidence that the indirect effect of the actual liquid velocity modified by the gas phase was the main mechanism.Our study of the effect of gas phase on the wax deposition of oil-gas two phase will help shed light onto the mechanism by which this important process occurs.Our findings address a very urgent need in the field of wax deposition of highly paraffinic oil to understand the flow security of oilgas two phase that occurs easily in multiphase field pipelines.
文摘A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy.
基金The authors thank the financial support from the National Natural Science Foundation of China(51904327,U19B2012)China University of Petroleum Innovation Project(22CX06050A).
文摘This paper investigated the effects of pre-heating treatment temperatures(T_(pre))on the flowability and wax deposition characteristics of a typical waxy crude oil after adding wax inhibitors.It is found that there is little difference in wax precipitation exothermic characteristics of crude oils at different T_(pre),as well as the wax crystal solubility coefficient in the temperature range of 25-30℃.For the undoped crude oil,the flowability after wax precipitation gets much improved and the wax deposition is alleviated as T_(pre)increasing.At T_(pre)=50℃,the viscosity and wax deposition rate of crude oil adding wax inhibitors are higher than those of the undoped crude oil.When the T_(pre)increases to 60,70,and 80℃,the flowability of the doped crude oil are largely improved and the wax deposition is suppressed with the T_(pre)increase,but the wax content of wax deposit increases gradually.It is speculated that,on the one hand,the T_(pre)increase helps the dispersion of asphaltenes into smaller sizes,which facilitates the co-crystallization with paraffin waxes and generates more aggregated wax crystal flocs.This weakens the low-temperature gel structure and increases the solid concentration required for the crosslink to form the wax deposit.On the other hand,the decrease in viscosity increases the diffusion rate of wax molecules and accelerates the aging of wax deposits.The experimental results have important guiding significance for the pipeline transportation of doped crude oils.
基金supported by National Natural Science Foundation of China(Major Program No.U19B200052)Science and Technology Innovation Seedling Project of Sichuan Province,China(No.2021079)+2 种基金NationalNatural Science Foundation Young Scientists Fund of China(No.51904259)School-Level Key Program of Chengdu Technological University,China(Nos.2021ZR0062022ZR019).
文摘The coupled formation of wax crystals and hydrates is a critical issue for the safety of deep-sea oil and gas exploration and subsea transport pipeline flow.Therefore,this paper conducts an experimental study on the characteristics of methane hydrate formation in a water-in-oil(W/O)system with different wax crystal contents and explores the influence of different initial experimental pressures on the induction period and maximum rate of hydrate formation.The wavelet function was introduced to process the reaction rate and calculate the maximum speed of hydrate formation.Notably,the higher the pressure,the smaller the maximum rate of hydrate formation.We observed that wax crystal precipitation increases the viscosity of the emulsion,which limits the diffusion of gas in the liquid phase during hydrate nucleation and thus delays the hydrate nucleation.The methane gas precipitation also affects the remaining fraction’s wax content and therefore affects the wax precipitation.Secondary hydrate formation was observed several times during the experiment,increasing the risk of pipeline blockage.Overall,this work provides insights into the effect of wax crystal precipitation on hydrate behaviour that could facilitate flow assurance applications in subsea multiphase pipelines and inform the safe transportation of oil and gas pipelines.
基金Financially supported by Sinopec Corp (2001101).
文摘Problems involving wax deposition threaten seriously crude pipelines both economically and operationally. Wax deposition in oil pipelines is a complicated problem having a number of uncertainties and indeterminations. The Grey System Theory is a suitable theory for coping with systems in which some information is clear and some is not, so it is an adequate model for studying the process of wax deposition. In order to predict accurately wax deposition along a pipeline, the Grey Model was applied to fit the data of wax deposition rate and the thickness of the deposited wax layer on the pipe-wall, and to give accurate forecast on wax deposition in oil pipelines. The results showed that the average residential error of the Grey Prediction Model is smaller than 2%. They further showed that this model exhibited high prediction accuracy. Our investigation proved that the Grey Model is a viable means for forecasting wax deposition. These findings offer valuable references for the oil industry and for firms dealing with wax cleaning in oil pipelines.
基金Supported by the National Natural Science Foundation of China (No.10272029).
文摘Most of the crude oils contain waxes which precipitate when temperature drops, resulting in deposition in pipelines and production equipment. It is necessary to set up a model which can predict the wax appearance tem-perature and the amount of solid precipitated in the different conditions. A modified thermodynamic solid-liquid equilibrium model to calculate wax precipitation in crude oil systems has been developed recently. The assumption that precipitated waxes consist of several solid phases is adopted in this research, and the solid-solid transition is also considered in the modified model. The properties of the pseudo-components are determined by using empirical correlations. New correlations for properties of solid-solid and solid-liquid transitions are also established in this work on the basis of the data from the literature. The results predicted by the proposed model for three crude oil systems are compared with the experimental data and the calculated results from the literature, and good agreement is observed.
基金contributions from colleagues and support from Sinopec Company limited(Project P19018-2)the National Natural Science Foundation of China(52174047)。
文摘Wax deposition during crude oil production,transportation,and processing has been a headache since the early days of oil utilization.It may lead to low mobility ratios,blockage of production tubing/pipelines as well as fouling of surface and processing facilities,among others.These snags cause massive financial constraints increasing projects’turnover.Decades of meticulous research have been dedicated to this problem that is worth a review.Thus,this paper reviews the mechanisms,experimentation,thermodynamic and kinetic modeling,prediction,and remediation techniques of wax deposition.An overall assessment suggests that available models are more accurate for single than multi-phase flows while the kind of remediation and deployment depend on the environment and severity level.In severe cases,both chemical and mechanical are synergistically deployed.Moreover,future prospective research areas that require attention are proposed.Generally,this review could be a valuable tool for novice researchers as well as a foundation for further research on this topic.
基金Supported by the National Key Basic Research and Development Program(973 Program),China(2015CB251205)
文摘During deep water oil well testing, the low temperature environment is easy to cause wax precipitation, which affects the normal operation of the test and increases operating costs and risks. Therefore, a numerical method for predicting the wax precipitation region in oil strings was proposed based on the temperature and pressure fields of deep water test string and the wax precipitation calculation model. And the factors affecting the wax precipitation region were analyzed. The results show that: the wax precipitation region decreases with the increase of production rate, and increases with the decrease of geothermal gradient, increase of water depth and drop of water-cut of produced fluid, and increases slightly with the increase of formation pressure. Due to the effect of temperature and pressure fields, wax precipitation region is large in test strings at the beginning of well production. Wax precipitation region gradually increases with the increase of shut-in time. These conclusions can guide wax prevention during the testing of deep water oil well, to ensure the success of the test.
文摘Machining is a mechanical process where excess material from a work is removed to produce a product. At the moment different ferrous, non-ferrous materials and industrial blue wax have been used for prototype models. However such materials is very expensive. Hence an attempt is made to substitute these materials by the palm oil based bio-wax produced in Malaysia. In this research, the authors will analyze and investigate whether there is a possibility to use the palm oil based bio-wax material to substitute with the petroleum based industrial-wax. Experimental analyses are carried out to investigate the capability and the strength of the palm oil based bio-wax material. The matrix blends were prepared of fatty acids from oleo-chemicals, palm oil wax, natural ash fibre and low linear density polyethylene (LLDPE) by stirring and melt-mixing. Sample b!ends are machined with lathe machining process. The sample blends showed there was no built edge formation and good smooth surface production.
文摘Composition and molecular mass distribution of n-alkanes in asphaltenes of crude oils of different ages and in wax deposits formed in the borehole equipment were studied. In asphaltenes, n-alkanes from C12 to C60 were detected. The high molecular weight paraffins in asphaltenes would form a crystalline phase with a melting point of 80–90 ℃. The peculiarities of the redistribution of high molecular paraffin hydrocarbons between oil and the corresponding wax deposit were detected. In the oils, the high molecular weight paraffinic hydrocarbons C50–C60were found, which were not practically detected in the corresponding wax deposits.
基金the National Natural Science Foundation of China (51774315, 51574274)the Natural Science Found of Hebei Province (E2020203013) for the support of this work。
文摘In this work, the influence of the dissolution of methane(CH_(4)) gas on the wax crystal of waxy crude oil and the effect on the rheology of crude oil by dissolved CH_(4) were studied comprehensively. A self-deign high-pressure micro visualization device was developed to analyze wax crystals before and after gas dissolution. The crude oil from Shengli and Nanyang was tested by the device under various gas pressures. Results showed that the viscosity, maximum shear stress and equilibrium shear stress of Shengli crude oil decreased with the increasing pressure of the dissolved CH_(4). Due to the supersaturation of dissolved gas, the viscosity, maximum shear stress and equilibrium shear stress of Nanyang crude oil decreased initially and increased with the increasing pressure of dissolved CH_(4). The change in rheology of the dissolved gas crude oil can be a combined influence of gas pressure and dissolution mechanisms caused by CH_(4). Additionally, the wax precipitation point of Shengli crude oil decreased at the saturated dissolution of CH_(4), while Nanyang crude oil showed an increasing wax precipitation temperature.Notably, the wax precipitation area, number of wax particles, and average diameter of wax crystal in both crude oils gradually decreased with dissolution. However, a saturation of CH_(4) caused a small amount of precipitation of wax crystals in Nanyang crude oil, and the small wax crystals were aggregated to form the large wax crystals. The dissolution of CH_(4) gas can affect the wax crystallization process, crystallization ability, and morphology of wax crystals that resulted in significant variation in the rheology of crude oil.