The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take ...The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take advantage of these developments.Here we consider the case of many vehicles forming a queue,i.e.,vehicles traveling at a predetermined speed and distance apart.While the majority of existing studies on this subject have focused on the influence of the longitudinal vehicle spacing,vehicle speed,and the number of vehicles on aerodynamic drag and fuel economy,this study considers the lateral offset distance of the vehicle queue.The group fuel consumption savings rate is calculated and analyzed.As also demonstrated by experimental results,some aerodynamic benefits exist.Moreover,the fuel consumption saving rate of the vehicle queue decreases as the lateral offset distance increases.展开更多
Biodiesels produced from various feedstocks have been considered as alternative fuels used in internal combustion engines without major modifications.This research focuses on producing biodiesel from waste cooking oil...Biodiesels produced from various feedstocks have been considered as alternative fuels used in internal combustion engines without major modifications.This research focuses on producing biodiesel from waste cooking oil(WCOSD)by the catalytic cracking method using MgO as the catalyst and comparing the engine operating characteristics of the test engine when using WCOSD and traditional diesel(CD)as test fuels.As a result,the brake power of the test engine fueled WCOSD,and traditional diesel is similar.However,the engine fuel consumption in the case of using WCOSD is slight increases in some operating conditions.Also,the nitrogen oxides emissions of the test engine fueled WCOSD are higher than those of CD at all tested conditions.The trend is opposite for hydrocarbon emission as the HC emission of the engine fueled by WCOSD reduces 26.3%on average.The smoke emission of the test engine in case of using WCOSD is lower 17%on average than that of CD.However,the carbon monoxide emissions are lower at the low and medium loads and higher at the full loads.These results show that the new biodiesel has the same characteristics as those of commercial biodiesel and can be used as fuel for diesel engines.展开更多
Due to the need for energy conservation in buildings and the simultaneous benefit of cost savings, the development of a low firing rate load modulating residential oil burner is very desirable. One of the two main req...Due to the need for energy conservation in buildings and the simultaneous benefit of cost savings, the development of a low firing rate load modulating residential oil burner is very desirable. One of the two main requirements of such a burner is the development of a burner nozzle that is able to maintain the particle size distribution of the fuel spray in the desirable (small) size range for efficient and stable combustion. The other being the ability to vary the air flow rate and air distribution around the fuel nozzle in the burner for optimal combustion at the current fuel firing rate. In this paper, which deals with the first requirement, we show that by using pulse width modulation in the bypass channel of a commercial off-the-shelf bypass nozzle, this objective can be met. Here we present results of spray patterns and particle size distribution for a range of fuel firing rates. The results show that a desirable fuel spray pattern can be maintained over a fuel firing rate turndown ratio (Maximum Fuel Flow Rate/Minimum Fuel Flow Rate) of 3.7. Thus here we successfully demonstrate the ability to electronically vary the fuel firing rate by more than a factor of 3 while simultaneously maintaining good atomization.展开更多
In this work, by using an indirect method based on the correspondence between the amount of oxygen in the atmosphere and the quantity of fossil fuel in the Earth, the resources of fossil fuels were evaluated to be abo...In this work, by using an indirect method based on the correspondence between the amount of oxygen in the atmosphere and the quantity of fossil fuel in the Earth, the resources of fossil fuels were evaluated to be about 1.9 × 1016 ton. Unluckily, only a small part of these fuels is easily accessible. Nevertheless, their quantity is so high that it is reasonable to assume that fossil fuels will continue to dominate the global energy scene for several years. The extensive use of fossil fuels alters the ratio between oxygen and carbon dioxide in the atmosphere. The effects of this change are however so slow that they become important only on the geological time scale.展开更多
This paper discusses the thermodynamic analysis of a gas turbine power plant located in the equatorial rainforest of southern Nigeria. Steady state monitoring and direct collection of data from the Mk IV Speedtronics ...This paper discusses the thermodynamic analysis of a gas turbine power plant located in the equatorial rainforest of southern Nigeria. Steady state monitoring and direct collection of data from the Mk IV Speedtronics system and log books in the control room was performed. The variation of operating conditions (ambient temperature, compressor discharge temperature, turbine inlet temperature, exhaust temperature and fuel mass flow rate) on the performance of gas turbine (thermal efficiency, net power output, heat rate, specific fuel consumption and compressor work) were investigated using various thermodynamic relations and equations. The results show that a degree rise in ambient temperature could be responsible for the following: 1.37% reduction in the net power output, 1.48% increase in power drop, 1.49% reduction in thermal efficiency, 2.16% increase in heat rate, 2.17% increase in specific fuel consumption and 0.3% increase in compressor work. Furthermore the thermal efficiency decreases by 0.006% for 1 kcal/kWh increase in heat rate and the heat transfer in the hot gas part was found to increase by 0.16% for a degree rise in ambient temperature. Also the work reveals that the gas turbine had a huge drop in power due to influence of site parameters in contrast to designed data.展开更多
Purpose–This research paper aims to investigate the effects of gradual deployment of market penetration rates(MPR)of connected vehicles(MPR of CVs)on delay time and fuel consumption.Design/methodology/approach–A rea...Purpose–This research paper aims to investigate the effects of gradual deployment of market penetration rates(MPR)of connected vehicles(MPR of CVs)on delay time and fuel consumption.Design/methodology/approach–A real-world origin-destination demand matrix survey was conducted in Boston,MA to identify the number of peak hour passing vehicles in the case study.Findings–The results showed that as the number of CVs(MPR)in the network increases,the total delay time decreases by an average of 14%and the fuel consumption decreases by an average of 56%,respectively,from scenarios 3 to 15 compared to scenario 2.Research limitations/implications–The first limitation of this study was considering a small network.The considered network shows a small part of the case study.Originality/value–This study can be a milestone for future research regarding gradual deployment of CVs’effects on transport networks.Efficient policy(s)may define based on the results of this network for Brockton transport network.展开更多
At first glance, the official figures of China's oil consumption in 2005 seem a bit confusing. With a robust economic growth and rising annual oil imports, China made the surprise announcement that its oil consump...At first glance, the official figures of China's oil consumption in 2005 seem a bit confusing. With a robust economic growth and rising annual oil imports, China made the surprise announcement that its oil consumption growth rate was dropping sharply, from 15.3 percent in 2004 to 2.1 percent in 2005. Earlier, China's Ministry展开更多
In this study, tractor power output, fuel consumption rate and work performance were indirectly predicted in order to develop an eco driving system. Firstly, equations were developed which could foretell tractor power...In this study, tractor power output, fuel consumption rate and work performance were indirectly predicted in order to develop an eco driving system. Firstly, equations were developed which could foretell tractor power output and fuel consumption rate using characteristic curves of tractor power output. Secondly, with actual engine revolution per minute (rpm) determined by initial engine rpm and work load, tractor power output and fuel consumption rate were forecasted. Thirdly, it was possible to foresee tractor work performance and fuel consumption rate by the speed signals of Global Positioning System (GPS). Lastly, precision of the eco driving system was evaluated through tractor Power Take-Off (PTO) test, and effects of the eco driving system were investigated in the plowing and rotary tilling operations. Engine rpm, power output, fuel consumption rate, work performance and fuel consumption rate per plot area were displayed on the eco driving system. Predicted tractor power outputs in the full load curve were well coincided with the actual power output of prototype, but small differences, 1 to 6 kW were found in the part load curve. Error of the fuel consumption rate was 0.5 to 3 L/h at the part load curve. It was shown that 69% and 53% of fuel consumption rates could be reduced in plowing and rotary tilling operations, respectively, when the eco driving system was installed in tractor.展开更多
针对航空发动机滑油箱油量测量值易受多个参数影响导致滑油消耗率难以计算和预测的问题,提出了一种改进的滑油量数据提取规则和滑油消耗率预测方法。基于密度聚类算法(Density-based spatial clustering of applications with noise,DBS...针对航空发动机滑油箱油量测量值易受多个参数影响导致滑油消耗率难以计算和预测的问题,提出了一种改进的滑油量数据提取规则和滑油消耗率预测方法。基于密度聚类算法(Density-based spatial clustering of applications with noise,DBSCAN)等方法对发动机数据进行了清洗,获取平稳飞行状态下滑油量数据。使用最小二乘法对滑油量进行拟合,得到了滑油消耗率,平均拟合优度达到了0.86。在此基础上,利用多层感知器(Multi-layer perception,MLP)建立了滑油消耗率与飞行状态参数之间的关系,预测结果与实际值的平均绝对百分比误差为1.15%。本文提出的方法能够满足实际工程需求,为评估航空发动机滑油系统的健康状况提供了可靠参考。展开更多
基金This study was financially supported by the National Natural Science Foundation of China(52072156)the Postdoctoral Foundation of China(2020M682269).
文摘The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take advantage of these developments.Here we consider the case of many vehicles forming a queue,i.e.,vehicles traveling at a predetermined speed and distance apart.While the majority of existing studies on this subject have focused on the influence of the longitudinal vehicle spacing,vehicle speed,and the number of vehicles on aerodynamic drag and fuel economy,this study considers the lateral offset distance of the vehicle queue.The group fuel consumption savings rate is calculated and analyzed.As also demonstrated by experimental results,some aerodynamic benefits exist.Moreover,the fuel consumption saving rate of the vehicle queue decreases as the lateral offset distance increases.
文摘Biodiesels produced from various feedstocks have been considered as alternative fuels used in internal combustion engines without major modifications.This research focuses on producing biodiesel from waste cooking oil(WCOSD)by the catalytic cracking method using MgO as the catalyst and comparing the engine operating characteristics of the test engine when using WCOSD and traditional diesel(CD)as test fuels.As a result,the brake power of the test engine fueled WCOSD,and traditional diesel is similar.However,the engine fuel consumption in the case of using WCOSD is slight increases in some operating conditions.Also,the nitrogen oxides emissions of the test engine fueled WCOSD are higher than those of CD at all tested conditions.The trend is opposite for hydrocarbon emission as the HC emission of the engine fueled by WCOSD reduces 26.3%on average.The smoke emission of the test engine in case of using WCOSD is lower 17%on average than that of CD.However,the carbon monoxide emissions are lower at the low and medium loads and higher at the full loads.These results show that the new biodiesel has the same characteristics as those of commercial biodiesel and can be used as fuel for diesel engines.
文摘Due to the need for energy conservation in buildings and the simultaneous benefit of cost savings, the development of a low firing rate load modulating residential oil burner is very desirable. One of the two main requirements of such a burner is the development of a burner nozzle that is able to maintain the particle size distribution of the fuel spray in the desirable (small) size range for efficient and stable combustion. The other being the ability to vary the air flow rate and air distribution around the fuel nozzle in the burner for optimal combustion at the current fuel firing rate. In this paper, which deals with the first requirement, we show that by using pulse width modulation in the bypass channel of a commercial off-the-shelf bypass nozzle, this objective can be met. Here we present results of spray patterns and particle size distribution for a range of fuel firing rates. The results show that a desirable fuel spray pattern can be maintained over a fuel firing rate turndown ratio (Maximum Fuel Flow Rate/Minimum Fuel Flow Rate) of 3.7. Thus here we successfully demonstrate the ability to electronically vary the fuel firing rate by more than a factor of 3 while simultaneously maintaining good atomization.
文摘In this work, by using an indirect method based on the correspondence between the amount of oxygen in the atmosphere and the quantity of fossil fuel in the Earth, the resources of fossil fuels were evaluated to be about 1.9 × 1016 ton. Unluckily, only a small part of these fuels is easily accessible. Nevertheless, their quantity is so high that it is reasonable to assume that fossil fuels will continue to dominate the global energy scene for several years. The extensive use of fossil fuels alters the ratio between oxygen and carbon dioxide in the atmosphere. The effects of this change are however so slow that they become important only on the geological time scale.
文摘This paper discusses the thermodynamic analysis of a gas turbine power plant located in the equatorial rainforest of southern Nigeria. Steady state monitoring and direct collection of data from the Mk IV Speedtronics system and log books in the control room was performed. The variation of operating conditions (ambient temperature, compressor discharge temperature, turbine inlet temperature, exhaust temperature and fuel mass flow rate) on the performance of gas turbine (thermal efficiency, net power output, heat rate, specific fuel consumption and compressor work) were investigated using various thermodynamic relations and equations. The results show that a degree rise in ambient temperature could be responsible for the following: 1.37% reduction in the net power output, 1.48% increase in power drop, 1.49% reduction in thermal efficiency, 2.16% increase in heat rate, 2.17% increase in specific fuel consumption and 0.3% increase in compressor work. Furthermore the thermal efficiency decreases by 0.006% for 1 kcal/kWh increase in heat rate and the heat transfer in the hot gas part was found to increase by 0.16% for a degree rise in ambient temperature. Also the work reveals that the gas turbine had a huge drop in power due to influence of site parameters in contrast to designed data.
文摘Purpose–This research paper aims to investigate the effects of gradual deployment of market penetration rates(MPR)of connected vehicles(MPR of CVs)on delay time and fuel consumption.Design/methodology/approach–A real-world origin-destination demand matrix survey was conducted in Boston,MA to identify the number of peak hour passing vehicles in the case study.Findings–The results showed that as the number of CVs(MPR)in the network increases,the total delay time decreases by an average of 14%and the fuel consumption decreases by an average of 56%,respectively,from scenarios 3 to 15 compared to scenario 2.Research limitations/implications–The first limitation of this study was considering a small network.The considered network shows a small part of the case study.Originality/value–This study can be a milestone for future research regarding gradual deployment of CVs’effects on transport networks.Efficient policy(s)may define based on the results of this network for Brockton transport network.
文摘At first glance, the official figures of China's oil consumption in 2005 seem a bit confusing. With a robust economic growth and rising annual oil imports, China made the surprise announcement that its oil consumption growth rate was dropping sharply, from 15.3 percent in 2004 to 2.1 percent in 2005. Earlier, China's Ministry
文摘In this study, tractor power output, fuel consumption rate and work performance were indirectly predicted in order to develop an eco driving system. Firstly, equations were developed which could foretell tractor power output and fuel consumption rate using characteristic curves of tractor power output. Secondly, with actual engine revolution per minute (rpm) determined by initial engine rpm and work load, tractor power output and fuel consumption rate were forecasted. Thirdly, it was possible to foresee tractor work performance and fuel consumption rate by the speed signals of Global Positioning System (GPS). Lastly, precision of the eco driving system was evaluated through tractor Power Take-Off (PTO) test, and effects of the eco driving system were investigated in the plowing and rotary tilling operations. Engine rpm, power output, fuel consumption rate, work performance and fuel consumption rate per plot area were displayed on the eco driving system. Predicted tractor power outputs in the full load curve were well coincided with the actual power output of prototype, but small differences, 1 to 6 kW were found in the part load curve. Error of the fuel consumption rate was 0.5 to 3 L/h at the part load curve. It was shown that 69% and 53% of fuel consumption rates could be reduced in plowing and rotary tilling operations, respectively, when the eco driving system was installed in tractor.
文摘针对航空发动机滑油箱油量测量值易受多个参数影响导致滑油消耗率难以计算和预测的问题,提出了一种改进的滑油量数据提取规则和滑油消耗率预测方法。基于密度聚类算法(Density-based spatial clustering of applications with noise,DBSCAN)等方法对发动机数据进行了清洗,获取平稳飞行状态下滑油量数据。使用最小二乘法对滑油量进行拟合,得到了滑油消耗率,平均拟合优度达到了0.86。在此基础上,利用多层感知器(Multi-layer perception,MLP)建立了滑油消耗率与飞行状态参数之间的关系,预测结果与实际值的平均绝对百分比误差为1.15%。本文提出的方法能够满足实际工程需求,为评估航空发动机滑油系统的健康状况提供了可靠参考。