期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Remaining oil distribution characteristics in an oil reservoir with ultra-high water-cut
1
作者 Hongmin Yu Youqi Wang +4 位作者 Li Zhang Qingxin Zhang Zhenhai Guo Benzhe Wang Tao Sun 《Energy Geoscience》 EI 2024年第1期219-223,共5页
An accurate mapping and understanding of remaining oil distribution is very important for water control and stabilize oil production of mature oilfields in ultra-high water-cut stage.Currently,the Tuo-21 Fault Block o... An accurate mapping and understanding of remaining oil distribution is very important for water control and stabilize oil production of mature oilfields in ultra-high water-cut stage.Currently,the Tuo-21 Fault Block of the Shengtuo Oilfield has entered the stage of ultra-high water cut(97.2%).Poor adaptability of the well pattern,ineffective water injection cycle and low efficiency of engineering measures(such as workover,re-perforation and utilization of high-capacity pumps)are the significant problems in the ultra-high water-cut reservoir.In order to accurately describe the oil and water flow characteristics,relative permeability curves at high water injection multiple(injected pore volume)and a semiquantitative method is applied to perform fine reservoir simulation of the Sand group 3e7 in the Block.An accurate reservoir model is built and history matching is performed.The distribution characteristics of remaining oil in lateral and vertical directions are quantitatively simulated and analyzed.The results show that the numerical simulation considering relative permeability at high injection multiple can reflect truly the remaining oil distribution characteristics after water flooding in an ultrahigh water-cut stage.The distribution of remaining oil saturation can be mapped more accurately and quantitatively by using the‘four-points and five-types’classification method,providing a basis for potential tapping of various remaining oil types of oil reservoirs in late-stage of development with high water-cut. 展开更多
关键词 Ultra-high water-cut High water injection multiple Four-points and five-types Numerical simulation Remaining oil distribution
下载PDF
A model study of residual oil distribution jointly using crosswell and borehole-surface electric potential methods 被引量:5
2
作者 苏本玉 藤光康宏 +1 位作者 徐敬领 宋建勇 《Applied Geophysics》 SCIE CSCD 2012年第1期19-26,114,共9页
Although high resolution can be provided by electrical logging, the measured electrical log range is narrow and is limited to near the well. Borehole-surface electric potential measurements are able to detect a wide e... Although high resolution can be provided by electrical logging, the measured electrical log range is narrow and is limited to near the well. Borehole-surface electric potential measurements are able to detect a wide enough range but its resolution is limited, particularly for reservoirs with complex oil and water distribution or complicated structure. In this study, we attempt to accurately locate the 3-D reservoir water and oil distribution by combining borehole-surface and crosswell electric potentials. First, the distributions of oil and water in both vertical and horizontal directions are detected by the borehole-surface and erosswell electric potential methods, respectively, and then the measured crosswell potential result is used to calibrate the measured borehole-surface electric potential data to improve vertical resolution so that the residual oil distribution is determined in a lower half-space with three dimensions. The evaluation of residual oil distribution is obtained by investigation of differences between the simulation results of the reservoir with and without water flooding. The finite difference numerical simulation results prove that the spatial residual oil distribution can be effectively determined by combining the crosswell and borehole-surface electric potentials. 展开更多
关键词 electric potential residual oil distribution crosswell electric potential borehole-surface electric potential
下载PDF
The effect of interbeds on distribution of i ncremental oil displaced by a polymer flood 被引量:3
3
作者 Hou Jian Du Qingjun +2 位作者 Lu Teng Zhou Kang Wang Rongrong 《Petroleum Science》 SCIE CAS CSCD 2011年第2期200-206,共7页
This paper discusses the effect of influencing factors on the distribution of incremental oil displaced by a polymer flood (extra-displaced oil) using numerical reservoir simulation. These factors include the locati... This paper discusses the effect of influencing factors on the distribution of incremental oil displaced by a polymer flood (extra-displaced oil) using numerical reservoir simulation. These factors include the location, area and permeability of a thin low-permeability interbed, and the perforation location relative to the interbed. Simulation results show the locations from where the incremental oil was displaced by the polymer solution. The interbed position from the oil formation top affects the location of extra-displaced oil. The interbed area has a slight influence on the whole shape of extra-displaced oil. Larger interbed area leads to higher partition extent of extra-displaced oil. Higher vertical permeability of interbeds contributes to worse partition extent of extra-displaced oil and the partition effect disappears if the ratio of vertical to horizontal permeability is more than 0.05. The perforation location relative to the interbed affects polymer displacement efficiency, and also has a significant effect on the distribution of extra-displaced oil in polymer flooding. 展开更多
关键词 Reservoir simulation polymer flooding interbed remaining oil distribution
下载PDF
Reclassification and distribution patterns of discovered oils in theDongying Depression, Bohai Bay Basin, China
4
作者 Bing You Jian-Fa Chen Zhi-Yong Ni 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期114-127,共14页
The Dongying Depression is an important petrolifeous province,with diverse source rocks and complex petroleum distribution patterns.A total of 32 crude oils were analyzed by the gas chromatographyemass spectrometry an... The Dongying Depression is an important petrolifeous province,with diverse source rocks and complex petroleum distribution patterns.A total of 32 crude oils were analyzed by the gas chromatographyemass spectrometry and isotopic compositions to better understanding the petroleum systems in the study area.Three oil types were classified by hierarchical cluster analyses.Type I and II oils have closely correlation with the discovered source rocks,which have been confirmed to be mainly derived from the lower third and upper forth member of the Eocene Shahejie Formation source rocks(Es3^(L) and Es4^(U)),respectively.Obviously,type III oils contain abundant gammacerane,tricyclic terpanes and C_(29) steranes and have lower values of δ13C than type I and II oils,indicating a completely different source rock and biological origins.Until recently,type III oils fail to match any of the discovered source rock,which contains main contribution of aquatic organism or/and bacteria inputs.In addition,the spacial distribution of these three oil types were discussed.Type I oils mainly distributed in the Es3 and Es4 reservoirs that closed to the generative kitchens.Type II oils occurred in the Es4 reservoirs in the sourthern slope of the depression,which probably caused by lateral migration along the horizontal fractures and sandstone layers within the Es4 interval.Differently,type III oils in the sourthern slope of the depression were mainly discovered in the Eocene Kongdian or Ordocician reservoirs,which suggests great exploration potential of deep underlying strata. 展开更多
关键词 Molecular biomarker oil-oil correlation oil distribution Kongdian Formation Dongying Depression
下载PDF
Research on Influence of Micro Structure on Residual Oil Distribution
5
作者 Xu Xin Cao Ying Li Lei 《International Journal of Technology Management》 2015年第2期127-129,共3页
Researching residual oil distribution not only is a difficulty in the world, but also is the pioneering research subject in different fields such as geology, physical geography and reservoir engineering. The modem geo... Researching residual oil distribution not only is a difficulty in the world, but also is the pioneering research subject in different fields such as geology, physical geography and reservoir engineering. The modem geology technique, well logging technology and reservoir engineering technique develops rapidly, which provides favorable conditions for researching residual oil distribution. 展开更多
关键词 detailed reservoir description residual oil distribution sedimentary characteristics heterogenous
下载PDF
Formation and distribution characteristics of Proterozoic–Lower Paleozoic marine giant oil and gas fields worldwide 被引量:3
6
作者 Xiao-Ping Liu Zhi-Jun Jin +5 位作者 Guo-Ping Bai Ming Guan Jie Liu Qing-Hua Pan Ting Li Yu-Jie Xing 《Petroleum Science》 SCIE CAS CSCD 2017年第2期237-260,共24页
There are rich oil and gas resources in marine carbonate strata worldwide.Although most of the oil and gas reserves discovered so far are mainly distributed in Mesozoic,Cenozoic,and upper Paleozoic strata,oil and gas ... There are rich oil and gas resources in marine carbonate strata worldwide.Although most of the oil and gas reserves discovered so far are mainly distributed in Mesozoic,Cenozoic,and upper Paleozoic strata,oil and gas exploration in the Proterozoic–Lower Paleozoic(PLP)strata—the oldest marine strata—has been very limited.To more clearly understand the oil and gas formation conditions and distributions in the PLP marine carbonate strata,we analyzed and characterized the petroleum geological conditions,oil and gas reservoir types,and their distributions in thirteen giant oil and gas fields worldwide.This study reveals the main factors controlling their formation and distribution.Our analyses show that the source rocks for these giant oil and gas fields are mainly shale with a great abundance of type I–II organic matter and a high thermal evolution extent.The reservoirs are mainly gas reservoirs,and the reservoir rocks are dominated by dolomite.The reservoir types are mainly karst and reef–shoal bodies with well-developed dissolved pores and cavities,intercrystalline pores,and fractures.These reservoirs arehighly heterogeneous.The burial depth of the reservoirs is highly variable and somewhat negatively correlated to the porosity.The cap rocks are mainly thick evaporites and shales,with the thickness of the cap rocks positively correlated to the oil and gas reserves.The development of high-quality evaporite cap rock is highly favorable for oil and gas preservation.We identified four hydrocarbon generation models,and that the major source rocks have undergone a long period of burial and thermal evolution and are characterized by early and long periods of hydrocarbon generation.These giant oil and gas fields have diverse types of reservoirs and are mainly distributed in paleo-uplifts,slope zones,and platform margin reef-shoal bodies.The main factors that control their formation and distribution were identified,enabling the prediction of new favorable areas for oil and gas exploration. 展开更多
关键词 Giant oil and gas field Proterozoic and LowerPaleozoic Marine carbonate rocks Petroleum geologicalconditions oil and gas distribution
下载PDF
An experimental study on oil droplet size distribution in subsurface oil releases 被引量:1
7
作者 LI Jianwei AN Wei +2 位作者 GAO Huiwang ZHAO Yupeng SUN Yonggen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第11期88-95,共8页
Oil droplet size distribution (ODSD) plays a critical role in the rising velocity and transport of oil droplets in subsurface oil releases. In this paper, subsurface oil release experiments were conducted to study O... Oil droplet size distribution (ODSD) plays a critical role in the rising velocity and transport of oil droplets in subsurface oil releases. In this paper, subsurface oil release experiments were conducted to study ODSD under different experimental conditions in a laboratory water tank observed by two high-speed cameras in March and April 2017. The correlation formulas Oh=lO.2Re-~ and Oh=39.2Re-1 (Re represents Reynolds number and Oh represents Ohnesorge number) were established to distinguish the boundaries of the three instability regimes in dimensionless space based on the experimental results. The oil droplet sizes from the experimental data showed an excellent match to the Rosin-Rammler distribution function with determination coefficients ranging from 0.86 to 1.00 for Lvda 10-1 oil. This paper also explored the influence factors on and change rules ofoil droplet size. The volume median diameter d50 decreased steadily with increasing jet velocity, and a sharp decrease occurred in the laminar-breakup regime. At Weber numbers (We) 〈100, the orifice diameter and oil viscosity appeared to have a large influence on the mean droplet diameter. At 100〈We〈1 000, the oil viscosity appeared to have a larger influence on the relative mean droplet diameter. 展开更多
关键词 oil droplet size distribution subsurface oil releases Rosin-Rammler distribution
下载PDF
Gulong shale oil enrichment mechanism and orderly distribution of conventional–unconventional oils in the Cretaceous Qingshankou Formation,Songliao Basin,NE China 被引量:2
8
作者 ZHANG Shuichang ZHANG Bin +6 位作者 WANG Xiaomei FENG Zihui HE Kun WANG Huajian FU Xiuli LIU Yuke YANG Chunlong 《Petroleum Exploration and Development》 SCIE 2023年第5期1045-1059,共15页
Through the study of organic matter enrichment,hydrocarbon generation and accumulation process of black shale of the Cretaceous Qingshankou Formation in the Songliao Basin,the enrichment mechanism of Gulong shale oil ... Through the study of organic matter enrichment,hydrocarbon generation and accumulation process of black shale of the Cretaceous Qingshankou Formation in the Songliao Basin,the enrichment mechanism of Gulong shale oil and the distribution of conventional–unconventional oil are revealed.The Songliao Basin is a huge interior lake basin formed in the Early Cretaceous under the control of the subduction and retreat of the western Pacific plate and the massive horizontal displacement of the Tanlu Fault Zone in Northeast China.During the deposition of the Qingshankou Formation,strong terrestrial hydrological cycle led to the lake level rise of the ancient Songliao Basin and the input of a large amount of nutrients,resulting in planktonic bacteria and algae flourish.Intermittent seawater intrusion events promoted the formation of salinization stratification and anoxic environment in the lake,which were beneficial to the enrichment of organic matters.Biomarkers analysis confirms that the biogenic organic matter of planktonic bacteria and algae modified by microorganisms plays an important role in the formation of high-quality source rocks with high oil generation capability.There are four favorable conditions for the enrichment of light shale oil in the Qingshankou Formation of the Gulong Sag,Songliao Basin:the moderate organic matter abundance and high oil potential provide sufficient material basis for oil enrichment;high degree of thermal evolution makes shale oil have high GOR and good mobility;low hydrocarbon expulsion efficiency leads to a high content of retained hydrocarbons in the source rock;and the confinement effect of intra-layer cement in the high maturity stage induces the efficient accumulation of light shale oil.The restoration of hydrocarbon accumulation process suggests that liquid hydrocarbons generated in the early(low–medium maturity)stage of the Qingshankou Formation source rocks accumulated in placanticline and slope after long-distance secondary migration,forming high-quality conventional and tight oil reservoirs.Light oil generated in the late(medium–high maturity)stage accumulated in situ,forming about 15 billion tons of Gulong shale oil resources,which finally enabled the orderly distribution of conventional–unconventional oils that are contiguous horizontally and superposed vertically within the basin,showing a complete pattern of“whole petroleum system”with conventional oil,tight oil and shale oil in sequence. 展开更多
关键词 Songliao Basin Cretaceous Qingshankou Formation Gulong shale oil organic carbon storage orderly distribution of conventional-unconventional oil fault sealing whole petroleum system shale oil enrichment
下载PDF
Sequence boundaries and regularities in the oil-gas distribution of the low swelling slope belt in the continental rift basin 被引量:3
9
作者 Xie Zongkui 《Mining Science and Technology》 EI CAS 2011年第3期419-425,共7页
Where are the zones more enriched in sand deposits in the down slope and deep depression of the low swelling slope belt? Are there any screening conditions for oil and gas there? These are the chief geological problem... Where are the zones more enriched in sand deposits in the down slope and deep depression of the low swelling slope belt? Are there any screening conditions for oil and gas there? These are the chief geological problems to be solved during exploration of a region. Taking the Paleogene system developed along the east slope belt of Chengdao as an example the concepts of sequence stratigraphy and sedimentary sequenc are applied. A new research method likened to a way ''to get a melon by following the vine'' is proposed to determine the direction for exploring within un-drilled or less-drilled areas. This is the process: ''the characteristics of the sequence boundary ? the forming mechanism of the stratigraphic sequence ? the conditions of oil and gas accumulation ? the distribution zones of oil and gas''. The relationship between the dynamic mechanism of stratigraphic sequence and the forming conditions for oil and gas accumulation establishes that the tectonic disturbance of the slope belt has significant responses as denudation and deposition. Above the stratigraphic sequence boundary there are large scale sand bodies of the low stand system tract (LST) that have developed in the low swelling slope belt and its deep depression. Below the sequence boundary there are the remaining sand bodies of the high stand system tract (HST). On the slope there is a convergence of mudstone layers of the extended system tract (EST) with the mudstone of the underlying strata, which constitutes the screening conditions for the reservoir of the down slope and deep depression. The distribution regularities in preferred sand bodies on the surface of the sequence boundary, and in the system tract, indicate the ordering of oil-gas deposits. From the higher stand down to the depth of the slope there are, in order, areas where exploration was unfavorable, major areas of stratigraphic overlap of oil-gas reservoirs, unconformity screened oil-gas reservoirs, and, finally, sandstone lens oil-gas reservoirs. The low swelling slope belt of Chengdao was tectonically active, which is typical for a continental rift basin. The methodology and results of the present paper are significant for the theory and practice of predicting subtle reservoir and selecting strategic areas for exploration. 展开更多
关键词 Continental rift basinLow swelling ChengdaoSequence boundary Subtle reservoirThe distribution regularity of oil and gas
下载PDF
PROBING INTO DEVELOPMENT OF SHORE OIL AND GAS RESOURCES AND DISTRIBUTION OF PETROLEUM INDUSTRY OF LIAONING PROVINCE
10
《聊城大学学报(自然科学版)》 1997年第4期82-83,88,共3页
关键词 GAS PROBING INTO DEVELOPMENT OF SHORE oil AND GAS RESOURCES AND distribution OF PETROLEUM INDUSTRY OF LIAONING PROVINCE
下载PDF
A hindcast of the Bohai Bay oil spill during June to August 2011 被引量:2
11
作者 YANG Yiqiu LI Yan +2 位作者 LIU Guimei PAN Qingqing WANG Zhaoyi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第11期21-26,共6页
An operational three-dimensional oil spill model is developed by the National Marine Environmental Forecasting Center(NMEFC), State Oceanic Administration, China, and the model has been running for 9 a. On June 4 an... An operational three-dimensional oil spill model is developed by the National Marine Environmental Forecasting Center(NMEFC), State Oceanic Administration, China, and the model has been running for 9 a. On June 4 and 17,2011, oil is spilled into the sea water from two separate oil platforms in the Bohai Bay, i.e., Platforms B and C of Penglai 19-3 oilfield. The spill causes pollution of thousands of square kilometres of sea area. The NMEFC’s oil spill model is employed to study the Penglai 19-3 oil-spill pollution during June to August 2011. The wind final analysis data of the NMEFC, which is based on a weather research and forecasting(WRF) model, are analyzed and corrected by comparing with the observation data. A corrected current filed is obtained by forcing the princeton ocean model(POM) with the corrected wind field. With the above marine environmental field forcing the oil spill model, the oil mass balance and oil distribution can be produced. The simulation is validated against the observation, and it is concluded that the oil spill model of the NMEFC is able to commendably simulate the oil spill distribution. Thus the NMEFC’s oil spill model can provide a tool in an environmental impact assessment after the event. 展开更多
关键词 oil spill HINDCAST Lagrangian random walk oil distribution swept area
下载PDF
The mechanism of hydraulic fracturing assisted oil displacement to enhance oil recovery in low and medium permeability reservoirs 被引量:2
12
作者 LIU Yikun WANG Fengjiao +8 位作者 WANG Yumei LI Binhui ZHANG Dong YANG Guang ZHI Jiqiang SUN Shuo WANG Xu DENG Qingjun XU He 《Petroleum Exploration and Development》 CSCD 2022年第4期864-873,共10页
Aiming at the technology of hydraulic fracturing assisted oil displacement which combines hydraulic fracturing,seepage and oil displacement,an experimental system of energy storage and flowback in fracturing assisted ... Aiming at the technology of hydraulic fracturing assisted oil displacement which combines hydraulic fracturing,seepage and oil displacement,an experimental system of energy storage and flowback in fracturing assisted oil displacement process has been developed and used to simulate the mechanism of percolation,energy storage,oil displacement and flowback of chemical agents in the whole process.The research shows that in hydraulic fracturing assisted oil displacement,the chemical agent could be directly pushed to the deeper area of the low and medium permeability reservoirs,avoiding the viscosity loss and adhesion retention of chemical agents near the pay zone;in addition,this technology could effectively enlarge the swept volume,improve the oil displacement efficiency,replenish formation energy,gather and exploit the scattered residual oil.For the reservoir with higher permeability,this measure takes effect fast,so to lower cost,and the high pressure hydraulic fracturing assisted oil displacement could be adopted directly.For the reservoir with lower permeability which is difficult to absorb water,hydraulic fracturing assisted oil displacement with surfactant should be adopted to reduce flow resistance of the reservoir and improve the water absorption capacity and development effect of the reservoir.The degree of formation energy deficit was the main factor affecting the effective swept range of chemical agents.Moreover,the larger the formation energy deficit was,the further the seepage distance of chemical agents was,accordingly,the larger the effective swept volume was,and the greater the increase of oil recovery was.Formation energy enhancement was the most important contribution to enhanced oil recovery(EOR),which was the key to EOR by the technology of hydraulic fracturing assisted oil displacement. 展开更多
关键词 hydraulic fracturing chemical flooding formation energy enhancement remaining oil distribution oil displacement mechanism enhancing oil recovery
下载PDF
Experimental study on the oil production characteristics during the waterflooding of different types of reservoirs in Ordos Basin, NW China 被引量:1
13
作者 XIAO Wenlian YANG Yubin +7 位作者 LI Min LI Nong YOU Jingxi ZHAO Jinzhou ZHENG Lingli ZHOU Kerning REN Jitian WANG Yue 《Petroleum Exploration and Development》 CSCD 2021年第4期935-945,共11页
Waterflooding experiments were conducted in micro-models(microscopic scale)and on plunger cores from low permeability,extra-low permeability and ultra-low permeability reservoirs in the Ordos Basin under different dis... Waterflooding experiments were conducted in micro-models(microscopic scale)and on plunger cores from low permeability,extra-low permeability and ultra-low permeability reservoirs in the Ordos Basin under different displacement pressures using the NMR techniques to find out pore-scale oil occurrence state,oil production characteristics and residual oil distribution during the process of waterflooding and analyze the effect of pore structure and displacement pressure on waterflooding efficiency.Under bound water condition,crude oil mainly occurs in medium and large pores in the low-permeability sample,while small pores and medium pores are the main distribution space of crude oil in extra-low permeability and ultra-low permeability samples.During the waterflooding,crude oil in the medium and large pores of the three types of samples are preferentially produced.With the decrease of permeability of the samples,the waterflooding front sequentially shows uniform displacement,network displacement and finger displacement,and correspondingly the oil recovery factors decrease successively.After waterflooding,the residual oil in low-permeability samples is mainly distributed in medium pores,and appears in membranous and angular dispersed phase;but that in the extra-low and ultra-low permeability samples is mainly distributed in small pores,and appears in continuous phase formed by a bypass flow and dispersed phase.The low-permeability samples have higher and stable oil displacement efficiency,while the oil displacement efficiency of the extra-low permeability and ultra-low permeability samples is lower,but increases to a certain extent with the increase of displacement pressure. 展开更多
关键词 waterflooding characteristics oil occurrence state residual oil distribution NMR displacement efficiency Ordos Basin
下载PDF
Paleozoic Composite Petroleum System of North Africa:Hydrocarbon Distribution and Main Controlling Factors 被引量:1
14
作者 Bai Guoping Zheng Lei 《Petroleum Science》 SCIE CAS CSCD 2007年第1期21-29,共9页
North Africa, which is one of the main oil and gas producing regions in the world, is best known for its subsalt Paleozoic-Triassic reservoirs and Paleozoic source rocks. Hydrocarbon abundance varies greatly from one ... North Africa, which is one of the main oil and gas producing regions in the world, is best known for its subsalt Paleozoic-Triassic reservoirs and Paleozoic source rocks. Hydrocarbon abundance varies greatly from one structural domain to another areally and from one stratigraphic interval to another vertically. Analyses of the essential elements and geological processes of the Paleozoic petroleum system indicate that the distribution of the Lower Silurian shale source rocks, the development of a thick Mesozoic overburden, the presence of the Upper Triassic-Lower Jurassic evaporite seal are the most important factors goveming the distribution of the Paleozoic-sourced hydrocarbons in North Africa. The Mesozoic sequence plays a critical role for hydrocarbons to accumulate by enabling the maturation of the Paleozoic source rocks during the Mesozoic-Paleogene times and preserving the accumulated hydrocarbons. Basins and surrounding uplifts, particularly the latter, with a thick Mesozoic sequence and a regional evaporite seal generally have abundant hydrocarbons. Basins where only a thin Mesozoic overburden was developed tend to have a very poor to moderate hydrocarbon prospectivity. 展开更多
关键词 Paleozoic petroleum system oil and gas distribution main controls North Africa
下载PDF
The gradual subduction-collision evolution model of Proto-South China Sea and its control on oil and gas 被引量:1
15
作者 Xiaojun Xie Wu Tang +5 位作者 Gongcheng Zhang Zhigang Zhao Shuang Song Shixiang Liu Yibo Wang Jia Guo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期123-137,共15页
This study involved outcrop,drilling,seismic,gravity,and magnetic data to systematically document the geological records of the subduction process of Proto-South China Sea(PSCS)and establish its evolution model.The re... This study involved outcrop,drilling,seismic,gravity,and magnetic data to systematically document the geological records of the subduction process of Proto-South China Sea(PSCS)and establish its evolution model.The results indicate that a series of arc-shaped ophiolite belts and calcalkaline magmatic rocks are developed in northern Borneo,both of which have the characteristics of gradually changing younger from west to east,and are direct signs of subduction and collision of PSCS.At the same time,the subduction of PSCS led to the formation of three accretion zones from the south to the north in Borneo,the Kuching belt,Sibu belt,and Miri belt.The sedimentary formation of northern Borneo is characterized by a three-layer structure,with the oceanic basement at the bottom,overlying the deep-sea flysch deposits of the Rajang–Crocker group,and the molasse sedimentary sequence that is dominated by river-delta and shallow marine facies at the top,recording the whole subduction–collision–orogeny process of PSCS.Further,seismic reflection and tomography also confirmed the subduction and collision of PSCS.Based on the geological records of the subduction and collision of PSCS,combined with the comprehensive analysis of segmented expansion and key tectonic events in the South China Sea,we establish the“gradual”subduction-collision evolution model of PSCS.During the late Eocene to middle Miocene,the Zengmu,Nansha,and Liyue–Palawan blocks were separated by West Baram Line and Balabac Fault,which collided with the Borneo block and Kagayan Ridge successively from the west to the east,forming several foreland basin systems,and PSCS subducted and closed from the west to the east.The subduction and extinction of PSCS controlled the oil and gas distribution pattern of southern South China Sea(SSCS)mainly in three aspects.First,the“gradual”closure process of PSCS led to the continuous development of many large deltas in SSCS.Second,the deltas formed during the subduction–collision of PSCS controlled the development of source rocks in the basins of SSCS.Macroscopically,the distribution and scale of deltas controlled the distribution and scale of source rocks,forming two types of source rocks,namely,coal measures and terrestrial marine facies.Microscopically,the difference of terrestrial higher plants carried by the delta controlled the proportion of macerals of source rocks.Third,the difference of source rocks mainly controlled the distribution pattern of oil and gas in SSCS.Meanwhile,the difference in the scale of source rocks mainly controlled the difference in the amount of oil and gas discoveries,resulting in a huge amount of oil and gas discoveries in the basin of SSCS.Meanwhile,the difference of macerals of source rocks mainly controlled the difference of oil and gas generation,forming the oil and gas distribution pattern of“nearshore oil and far-shore gas”. 展开更多
关键词 Proto-South China Sea gradual subduction-collision evolution model oil and gas distribution southern South China Sea BORNEO
下载PDF
Restoration of Eroded Thickness of the Neogene Strata in the Western Qaidam Basin and Its Significance for Oil and Gas Occurrence 被引量:3
16
作者 SUN Ping GUO Zeqing +1 位作者 HE Wenyuan LIU Weihong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第4期1352-1362,共11页
During the Pleistocene, the western Qaidam Basin has largely experienced strong structural reconstruction and strong erosion. First, the eroded thickness of Neogene strata was restored approximately by the stratigraph... During the Pleistocene, the western Qaidam Basin has largely experienced strong structural reconstruction and strong erosion. First, the eroded thickness of Neogene strata was restored approximately by the stratigraphic profile comparison method and plane trend surface restoring method; then, accurate calculation of erosion was recovered using vitrinite reflectance, and the erosion that was restored by the trend surface restoring method was corrected; finally, a distribution map of cumulative erosion was produced. This study marks an important achievement in that one of the most important parameters of basin tectonic evolution, sedimentary evolution, and oil and gas accumulation history has been obtained, and that a basic geological problem has been solved in the Qaidam Basin. The areas with high erosion and low erosion are shown in the map and a close relation between the distribution of oil and gas fields and erosion was recognized. Large and medium oil and gas fields are mainly distributed in areas with medium and low erosion. It is difficult to form large-scale oil and gas accumulation in areas in which erosion is more than 2000 m. The mechanism of the relation between oil and gas distribution and erosion is explained. This study will be of use in predicting the distribution of oil and gas. 展开更多
关键词 western Qaidam Basin eroded thickness restoration method distribution characteristics significance for oil and gas occurrence
下载PDF
Influence of the cage on the migration and distribution of lubricating oil inside a ball bearing 被引量:5
17
作者 He LIANG Yu ZHANG Wenzhong WANG 《Friction》 SCIE EI CAS CSCD 2022年第7期1035-1045,共11页
The migration and distribution of lubricant oil in a rolling bearing strongly affect the elastohydrodynamic lubrication performance between the balls and rings.However,oil re-lubrication is highly dependent on the bea... The migration and distribution of lubricant oil in a rolling bearing strongly affect the elastohydrodynamic lubrication performance between the balls and rings.However,oil re-lubrication is highly dependent on the bearing design,which is different from the ball-on-disc model.This study directly observed the distribution of the lubricant film in a custom-made model-bearing rig,with an outer ring replaced by a glass ring to allow full optical access.The influence of the cage type and surface properties were presented.The physical origin of the re-lubrication mechanism,including capillary flow and mechanical redistribution,was discussed. 展开更多
关键词 ball bearings oil distribution LUBRICATION CAGE
原文传递
Differential structure of Ordovician karst zone and hydrocarbon enrichment in paleogeomorphic units in Tahe area,Tarim Basin,NW China 被引量:3
18
作者 ZHANG San JIN Qjang +4 位作者 HU Mingyi HAN Qichao SUN Jianfang CHENG Fuqi ZHANG Xudong 《Petroleum Exploration and Development》 CSCD 2021年第5期1113-1125,共13页
Based on a large number of drilling,logging,seismic and production data,the differential structures of karst zone and hydrocarbon distribution in different paleogeomorphic units of the Tahe area,Tarim Basin,are discus... Based on a large number of drilling,logging,seismic and production data,the differential structures of karst zone and hydrocarbon distribution in different paleogeomorphic units of the Tahe area,Tarim Basin,are discussed by analyzing the karst drainages and flowing channels.The karst paleogeomorphy of Ordovician in Tahe area is composed of watershed,karst valley and karst basin.The watershed has epikarst zone of 57.8 m thick on average and vadose karst zone of 115.2 m thick on average with dense faults,fractures and medium-small fracture-caves,and 76.5%of wells in this area have cumulative production of more than 5×10^(4) t per well.The karst valleys have epikarst zone,vadose karst zone and runoff karst zone,with an average thickness of 14.6,26.4 and 132.6 m respectively.In the runoff karst zone,the caves of subsurface river are mostly filled by fine sediment,with a filling rate up to 86.8%,and 84.9%of wells in this area have cumulative production of less than 2×10^(4) t per well.The karst basin has no karst zone,but only fault-karst reservoirs in local fault zones,which are up to 600 m thick and closely developed within 1 km around faults.Different karst landforms have different water flowing pattern,forming different karst zone structures and resulting in differential distribution of oil and gas.The watershed has been on the direction of oil and gas migration,so medium-small sized connected fracture-caves in this area have high filling degree of oil and gas,and most wells in this area have high production.Most caves in subsurface river are filled due to strong sedimentation and transportation of the river,so the subsurface river sediment has low hydrocarbon abundance and more low production oil wells.The faults linking source rock are not only the water channels but also the oil-gas migration pathways,where the karst fractures and caves provide huge reservoir space for oil and gas accumulation. 展开更多
关键词 PALEOKARST karst drainage watershed fracture-cave structure oil and gas distribution Tahe oilfield ORDOVICIAN Tarim Basin
下载PDF
Differences and controlling factors of composite hydrocarbon accumulations in the Tazhong uplift, Tarim Basin, NW China 被引量:2
19
作者 JIANG Tongwen HAN Jianfa +5 位作者 WU Guanghui YU Hongfeng SU Zhou XIONG Chang CHEN Jun ZHANG Huifang 《Petroleum Exploration and Development》 2020年第2期229-241,共13页
Based on three-dimensional seismic interpretation, structural and sedimentary feature analysis, and examination of fluid properties and production dynamics, the regularity and main controlling factors of hydrocarbon a... Based on three-dimensional seismic interpretation, structural and sedimentary feature analysis, and examination of fluid properties and production dynamics, the regularity and main controlling factors of hydrocarbon accumulation in the Tazhong uplift, Tarim Basin are investigated. The results show that the oil and gas in the Tazhong uplift has the characteristics of complex accumulation mainly controlled by faults, and more than 80% of the oil and gas reserves are enriched along fault zones. There are large thrust and strike-slip faults in the Tazhong uplift, and the coupling relationship between the formation and evolution of the faults and accumulation determine the difference in complex oil and gas accumulations. The active scale and stage of faults determine the fullness of the traps and the balance of the phase, that is, the blocking of the transport system, the insufficient filling of oil and gas, and the unsteady state of fluid accumulation are dependent on the faults. The multi-period tectonic sedimentary evolution controls the differences of trap conditions in the fault zones, and the multi-phase hydrocarbon migration and accumulation causes the differences of fluid distribution in the fault zones. The theory of differential oil and gas accumulation controlled by fault is the key to the overall evaluation, three-dimensional development and discovery of new reserves in the Tazhong uplift. 展开更多
关键词 Tarim Basin Tazhong uplift fault zone complex oil and gas accumulation oil and gas distribution difference main controlling factor
下载PDF
DBT parameters and dynamic monitoring during reservoir development, and distribution region prediction of remaining oil:A case study on the Sha-3~3 oil reservoir in the Liubei region, Nanpu sag 被引量:1
20
作者 XU YaoHui WANG TieGuan +2 位作者 CHEN NengXue YANG CuiMin WANG QiaoLi 《Science China Earth Sciences》 SCIE EI CAS 2012年第12期2018-2025,共8页
In this study, compositional characteristics of crude oil, including the variation of aliphatic, aromatic and pyrrolic nitrogen compounds, were systematically monitored and investigated in a high water-cut oil reservo... In this study, compositional characteristics of crude oil, including the variation of aliphatic, aromatic and pyrrolic nitrogen compounds, were systematically monitored and investigated in a high water-cut oil reservoir over a short time.The results showed that among the widely used parameters indicative of oil maturity and migration, tetramethyl/monomethyl DBT and tricyclic terpane/(tricyclic terpane+C30 hopanoid) varied remarkably, and a positive correlation was observed between these two parameters.The variation of each of these parameters during waterflooding development was correlated with the flow effect of crude promoted by the water drive in oil reservoirs.A solid consistency was observed among the results of numerical simulation and development; the direction and pathway of waterflooding crude was indicated by Tetramethyl/monomethyl DBT, and the distribution region prediction of remaining oil hereby obtained.Therefore, these two parameters could be used as molecular tracers for the oil during waterflooding.This study would be of practical significance for geochemical dynamic monitoring and reservoir development. 展开更多
关键词 DBT parameters geochemical dynamic monitoring distribution of remaining oil crude promoting Sha-33 oil reservoir in Liubei region
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部