In the present work, the performance of oil-air two-phase flow under different lubricant oils was investigated. The simulation method was applied to study the influence of the oil viscosity on the flow pattern, veloci...In the present work, the performance of oil-air two-phase flow under different lubricant oils was investigated. The simulation method was applied to study the influence of the oil viscosity on the flow pattern, velocity distribution and Re number in oil-air lubrication by FLUENT software with VOF model to acquire the working performance of oil-air lubrication for high-speed ball bearing. This method was used to obtain the optimum lubrication conditions of high-speed ball bearing. The optimum operating conditions that produce the optimum flow pattern were provided. The optimum annular flow was obtained by PAO6 oil with the low viscosity. Reynolds number influences the fluid shape and distribution of oil and air in pipe. The annular flow can be formed when Reynolds number is an appropriate value. The velocity distribution of oil-air two-phase flow at outlet was also discussed by different oil viscosities. The simulating results show that due to the effect of the oil viscosity and flow pattern the velocity decreased and expanded gradually close to the pipe wall, and the velocity increased close to the central pipe. The simulation results provide the proposal for the design and operation of oil-air two-phase flow lubrication experiments in the present work. This work provides a useful method in designing oil-air lubrication with the optimum flow pattern and the optimum operating conditions.展开更多
Experimental Study on oil-water two-phase flow patterns and pressure loss was conducted on a horizontal steel pipe loop with 26.1mm inner diameter and 30m total length. The working fluids are white oil, diesel oil and...Experimental Study on oil-water two-phase flow patterns and pressure loss was conducted on a horizontal steel pipe loop with 26.1mm inner diameter and 30m total length. The working fluids are white oil, diesel oil and tap water. Several instruments, including a new type of liquid-probe are successfully integrated to identify 7 different flow patterns. The characteristics of the flow patterns and the transition process were observed and depicted in this paper. Investigation revealed that the pressure loss was mainly depended on the flow patterns.展开更多
A stainless steel apparatus of 18.5 m high and 0.05 m in inner diameter is developed, with the heavy oil from Lukeqin Xinjiang oil field as the test medium, to carry out the orthogonal experiments for the interactions...A stainless steel apparatus of 18.5 m high and 0.05 m in inner diameter is developed, with the heavy oil from Lukeqin Xinjiang oil field as the test medium, to carry out the orthogonal experiments for the interactions between heavy oil-water and heavy oil-water-gas. With the aid of observation window's, the pressure drop signal can be collected and the general multiple flow patterns of heavy oil-water-gas can be observed, including the bubble, slug, churn and annular ones. Compared with the conventional oil, the bubble flows are identified in three specific flow patterns which are the dispersed bubble (DB), the bubble gas-bubble heavy oil (Bg - Bo), and the bubble gas-intermittent heavy oil (Bg -Io). The slug flows are identified in two specific flow patterns which are the intermittent gas-bubble heavy oil (Ig - Bo) and the intermittent gas-intermittent heavy oil (Ig - Io). Compared with the observa- tions in the heavy oil-water experiment, it is found that the conventional models can not accurately predict the pressure gradient. And it is not water but heavy oil and water mixed phase that is in contact with the tube wall. So, based on the principle of the energy con- servation and the kinematic wave theory, a new method is proposed to calculate the frictional pressure gradient. Furthermore, with the new friction gradient calculation method and a due consideration of the flow characteristics of the heavy oil-water-gas high speed flow, a new model is built to predict the heavy oil-water-gas pressure gradient. The predictions are compared with the experiment data and the field data. The accuracy of the predictions shows the rationality and the applicability of the new model.展开更多
文摘In the present work, the performance of oil-air two-phase flow under different lubricant oils was investigated. The simulation method was applied to study the influence of the oil viscosity on the flow pattern, velocity distribution and Re number in oil-air lubrication by FLUENT software with VOF model to acquire the working performance of oil-air lubrication for high-speed ball bearing. This method was used to obtain the optimum lubrication conditions of high-speed ball bearing. The optimum operating conditions that produce the optimum flow pattern were provided. The optimum annular flow was obtained by PAO6 oil with the low viscosity. Reynolds number influences the fluid shape and distribution of oil and air in pipe. The annular flow can be formed when Reynolds number is an appropriate value. The velocity distribution of oil-air two-phase flow at outlet was also discussed by different oil viscosities. The simulating results show that due to the effect of the oil viscosity and flow pattern the velocity decreased and expanded gradually close to the pipe wall, and the velocity increased close to the central pipe. The simulation results provide the proposal for the design and operation of oil-air two-phase flow lubrication experiments in the present work. This work provides a useful method in designing oil-air lubrication with the optimum flow pattern and the optimum operating conditions.
基金the China National Petroleum Corporation (Grant No:970601) and the China National OffshoreOil Corporation (GrantNo:cnoocrc2003 001)
文摘Experimental Study on oil-water two-phase flow patterns and pressure loss was conducted on a horizontal steel pipe loop with 26.1mm inner diameter and 30m total length. The working fluids are white oil, diesel oil and tap water. Several instruments, including a new type of liquid-probe are successfully integrated to identify 7 different flow patterns. The characteristics of the flow patterns and the transition process were observed and depicted in this paper. Investigation revealed that the pressure loss was mainly depended on the flow patterns.
基金supported by the National Science and Techno-logy Major Project(Grant No.2008ZX05049-004-006HZ)
文摘A stainless steel apparatus of 18.5 m high and 0.05 m in inner diameter is developed, with the heavy oil from Lukeqin Xinjiang oil field as the test medium, to carry out the orthogonal experiments for the interactions between heavy oil-water and heavy oil-water-gas. With the aid of observation window's, the pressure drop signal can be collected and the general multiple flow patterns of heavy oil-water-gas can be observed, including the bubble, slug, churn and annular ones. Compared with the conventional oil, the bubble flows are identified in three specific flow patterns which are the dispersed bubble (DB), the bubble gas-bubble heavy oil (Bg - Bo), and the bubble gas-intermittent heavy oil (Bg -Io). The slug flows are identified in two specific flow patterns which are the intermittent gas-bubble heavy oil (Ig - Bo) and the intermittent gas-intermittent heavy oil (Ig - Io). Compared with the observa- tions in the heavy oil-water experiment, it is found that the conventional models can not accurately predict the pressure gradient. And it is not water but heavy oil and water mixed phase that is in contact with the tube wall. So, based on the principle of the energy con- servation and the kinematic wave theory, a new method is proposed to calculate the frictional pressure gradient. Furthermore, with the new friction gradient calculation method and a due consideration of the flow characteristics of the heavy oil-water-gas high speed flow, a new model is built to predict the heavy oil-water-gas pressure gradient. The predictions are compared with the experiment data and the field data. The accuracy of the predictions shows the rationality and the applicability of the new model.