A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installe...A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installed along the pipeline acting as a sensor, The experiments show that the cable swells when exposed to oil and induced additional bending losses inside the fiber, and the optical attenuation of the fiber coated by a thin skin with periodical hardness is sensitive to deformation and vibration caused by oil leakage, tampering, or mechanical impact. The region where the additional attenuation occurred is detected and located by DOFS based on OTDR, the types of pipeline accidents are identified according to the characteristics of transmitted optical power received by an optical power meter, Another prototype of DOFS based on a forward traveling frequency-modulated continuous-wave (FMCW) is also proposed to monitor pipeline. The advantages and disadvantages of DOFSs based on OTDR and FMCW are discussed. The experiments show that DOFSs are capable of detecting and locating distant oil pipeline leakages and damages in real time with an estimated precision of ten meters over tens of kilometers.展开更多
This paper focuses on a strategic improving quality of"high quality assurance CAE (computer aided engineering) analysis model" to be used in development design. The authors present a case oftransaxle oil seal leak...This paper focuses on a strategic improving quality of"high quality assurance CAE (computer aided engineering) analysis model" to be used in development design. The authors present a case oftransaxle oil seal leakage in automotive drive trains, a technical reliability problem that generates bottlenecks for auto manufacturers around the world. The application of this model is used to analyze cavitation caused by the metal particles (foreign matter) generated through transaxle wear. This analyzing method primarily uses numerical simulation (CAE) to clarify the technological mechanism generating oil leaks as a result of foreign metallic substances entering oil seals in the drive train. Quality improvement using this CAE analyzing method was verified by successfully applying it to the technological problem of development design bottlenecks at auto manufacturers.展开更多
基金This project is supported by R&D Foundation of National Petroleum Corporation (CNPC) of China(No.2001411-4).
文摘A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installed along the pipeline acting as a sensor, The experiments show that the cable swells when exposed to oil and induced additional bending losses inside the fiber, and the optical attenuation of the fiber coated by a thin skin with periodical hardness is sensitive to deformation and vibration caused by oil leakage, tampering, or mechanical impact. The region where the additional attenuation occurred is detected and located by DOFS based on OTDR, the types of pipeline accidents are identified according to the characteristics of transmitted optical power received by an optical power meter, Another prototype of DOFS based on a forward traveling frequency-modulated continuous-wave (FMCW) is also proposed to monitor pipeline. The advantages and disadvantages of DOFSs based on OTDR and FMCW are discussed. The experiments show that DOFSs are capable of detecting and locating distant oil pipeline leakages and damages in real time with an estimated precision of ten meters over tens of kilometers.
文摘This paper focuses on a strategic improving quality of"high quality assurance CAE (computer aided engineering) analysis model" to be used in development design. The authors present a case oftransaxle oil seal leakage in automotive drive trains, a technical reliability problem that generates bottlenecks for auto manufacturers around the world. The application of this model is used to analyze cavitation caused by the metal particles (foreign matter) generated through transaxle wear. This analyzing method primarily uses numerical simulation (CAE) to clarify the technological mechanism generating oil leaks as a result of foreign metallic substances entering oil seals in the drive train. Quality improvement using this CAE analyzing method was verified by successfully applying it to the technological problem of development design bottlenecks at auto manufacturers.