Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env...Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.展开更多
This letter investigates the wavelet transform, as well as the principle and the method of the noise reduction based on wavelet transform, it chooses the threshold noise reduction, and discusses in detail the principl...This letter investigates the wavelet transform, as well as the principle and the method of the noise reduction based on wavelet transform, it chooses the threshold noise reduction, and discusses in detail the principles, features and design steps of the threshold method. Rigrsure, heursure, sqtwolog and minimization four kinds of threshold selection method are compared qualitatively, and quantitatively. The wavelet analysis toolbox of MATLAB helps to realize the computer simulation of the signal noise reduction. The graphics and calculated standard deviation of the various threshold noise reductions show that, when dealing with the actual pressure signal of the oil pipeline leakage, sqtwolog threshold selection method can effectively remove the noise. Aiming to the pressure signal of the oil pipeline leakage, the best choice is the wavelet threshold noise reduction with sqtwolog threshold. The leakage point is close to the actual position, with the relative error of less than 1%.展开更多
The purpose of this paper is to adopt the uniform confidence method in both water pipeline design and oil-gas pipeline design.Based on the importance of pipeline and consequence of its failure,oil and gas pipeline can...The purpose of this paper is to adopt the uniform confidence method in both water pipeline design and oil-gas pipeline design.Based on the importance of pipeline and consequence of its failure,oil and gas pipeline can be classified into three pipe classes,with exceeding probabilities over 50 years of 2%,5% and 10%,respectively.Performance-based design requires more information about ground motion,which should be obtained by evaluating seismic safety for pipeline engineering site.Different from a city's water pipeline network,the long-distance oil and gas pipeline system is a spatially linearly distributed system.For the uniform confidence of seismic safety,a long-distance oil and pipeline formed with pump stations and different-class pipe segments should be considered as a whole system when analyzing seismic risk.Considering the uncertainty of earthquake magnitude,the design-basis fault displacements corresponding to the different pipeline classes are proposed to improve deterministic seismic hazard analysis(DSHA).A new empirical relationship between the maximum fault displacement and the surface-wave magnitude is obtained with the supplemented earthquake data in East Asia.The estimation of fault displacement for a refined oil pipeline in Wenchuan MS8.0 earthquake is introduced as an example in this paper.展开更多
Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety man...Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety management.Aiming at the shortcomings of the BP Neural Network(BPNN)model,such as low learning efficiency,sensitivity to initial weights,and easy falling into a local optimal state,an Improved Sparrow Search Algorithm(ISSA)is adopted to optimize the initial weights and thresholds of BPNN,and an ISSA-BPNN failure pressure prediction model for corroded pipelines is established.Taking 61 sets of pipelines blasting test data as an example,the prediction model was built and predicted by MATLAB software,and compared with the BPNN model,GA-BPNN model,and SSA-BPNN model.The results show that the MAPE of the ISSA-BPNN model is 3.4177%,and the R2 is 0.9880,both of which are superior to its comparison model.Using the ISSA-BPNN model has high prediction accuracy and stability,and can provide support for pipeline inspection and maintenance.展开更多
Because pipeline has large pipe diameter, large throughout and high pressure, once pipeline leakage accident happens, the damage is quite serious. In addition, pipeline leakage accident caused by man-made drilling oil...Because pipeline has large pipe diameter, large throughout and high pressure, once pipeline leakage accident happens, the damage is quite serious. In addition, pipeline leakage accident caused by man-made drilling oil stolen every year results in huge economic losses on oilfield. Therefore, a real-time and accurate pipeline leak detection and location system not only can effectively decrease leakage loss and reduce the waste of manpower and material resources in patrolling work, but also is conductive to the management of oil pipeline and improvement of economic efficiency of enterprise. The paper determines leak detection and location project giving priority to negative pressure wave and supplemented by flow parameter analysis. The method not only can judge the accidence of leakage timely and accurately, but also can effectively avoid leakage false alarm caused by start or stop pumps in pipeline.展开更多
A mathematical model for optlmization design of the hot waxy crude oil transmission IZipelineis studied. The dimension-reducing method is selected to solve problems raised from multivariable,restricted and non-linear ...A mathematical model for optlmization design of the hot waxy crude oil transmission IZipelineis studied. The dimension-reducing method is selected to solve problems raised from multivariable,restricted and non-linear planning. And the optimization design model is applied to the practical design ofHejian Shijiazhuang oil transmission pipeline. outstanding economic and social benefits have beengained.展开更多
A comprehensive and objective risk evaluation model of oil and gas pipelines based on an improved analytic hierarchy process(AHP)and technique for order preference by similarity to an ideal solution(TOPSIS)is establis...A comprehensive and objective risk evaluation model of oil and gas pipelines based on an improved analytic hierarchy process(AHP)and technique for order preference by similarity to an ideal solution(TOPSIS)is established to identify potential hazards in time.First,a barrier model and fault tree analysis are used to establish an index system for oil and gas pipeline risk evaluation on the basis of five important factors:corrosion,external interference,material/construction,natural disasters,and function and operation.Next,the index weight for oil and gas pipeline risk evaluation is computed by applying the improved AHP based on the five-scale method.Then,the TOPSIS of a multi-attribute decision-making theory is studied.The method for determining positive/negative ideal solutions and the normalized equation for benefit/cost indexes is improved to render TOPSIS applicable for the comprehensive risk evaluation of pipelines.The closeness coefficient of oil and gas pipelines is calculated by applying the improved TOPSIS.Finally,the weight and the closeness coefficient are combined to determine the risk level of pipelines.Empirical research using a long-distance pipeline as an example is conducted,and adjustment factors are used to verify the model.Results show that the risk evaluation model of oil and gas pipelines based on the improved AHP–TOPSIS is valuable and feasible.The model comprehensively considers the risk factors of oil and gas pipelines and provides comprehensive,rational,and scientific evaluation results.It represents a new decision-making method for systems engineering in pipeline enterprises and provides a comprehensive understanding of the safety status of oil and gas pipelines.The new system engineering decision-making method is important for preventing oil and gas pipeline accidents.展开更多
Oil product pipelines have features such as transporting multiple materials, ever-changing operating conditions, and synchronism between the oil input plan and the oil offloading plan. In this paper, an optimal model ...Oil product pipelines have features such as transporting multiple materials, ever-changing operating conditions, and synchronism between the oil input plan and the oil offloading plan. In this paper, an optimal model was established for a single-source multi-distribution oil pro- duct pipeline, and scheduling plans were made based on supply. In the model, time node constraints, oil offloading plan constraints, and migration of batch constraints were taken into consideration. The minimum deviation between the demanded oil volumes and the actual offloading volumes was chosen as the objective function, and a linear programming model was established on the basis of known time nodes' sequence. The ant colony optimization algo- rithm and simplex method were used to solve the model. The model was applied to a real pipeline and it performed well.展开更多
We developed a predictive model for the pipeline friction in the 520-730 m^3/h transmission range using the multi-layerperceptron-back-propagation(MLP-BP)method and analyzing the unit friction data after the pigging o...We developed a predictive model for the pipeline friction in the 520-730 m^3/h transmission range using the multi-layerperceptron-back-propagation(MLP-BP)method and analyzing the unit friction data after the pigging of a hot oil pipeline.In view of the shortcomings of the MLP-BP model,two optimization methods,the genetic algorithm(GA)and mind evolutionary algorithm(MEA),were used to optimize the MLP-BP model.The research results were applied to the standard friction prediction of three sections of a hot oil pipeline.After the GA and MEA optimizations,the average errors of the three sections were 0.0041 MPa for the GA and 0.0012 MPa for the MEA,and the mean-square errors were 0.083 and 0.067,respectively.The MEA-BP model prediction results were characterized by high precision and small dispersion.The MEABP prediction model was applied to the analysis of the wax formation 60 and 90 days after pigging.The analysis results showed that the model can effectively guide pipe pigging and optimization.There was little sample data for the individual transmission and oil temperature steps because the model was based on actual production data modeling and analysis,which may have affected the accuracy and adaptability of the model.展开更多
Problems involving wax deposition threaten seriously crude pipelines both economically and operationally. Wax deposition in oil pipelines is a complicated problem having a number of uncertainties and indeterminations....Problems involving wax deposition threaten seriously crude pipelines both economically and operationally. Wax deposition in oil pipelines is a complicated problem having a number of uncertainties and indeterminations. The Grey System Theory is a suitable theory for coping with systems in which some information is clear and some is not, so it is an adequate model for studying the process of wax deposition. In order to predict accurately wax deposition along a pipeline, the Grey Model was applied to fit the data of wax deposition rate and the thickness of the deposited wax layer on the pipe-wall, and to give accurate forecast on wax deposition in oil pipelines. The results showed that the average residential error of the Grey Prediction Model is smaller than 2%. They further showed that this model exhibited high prediction accuracy. Our investigation proved that the Grey Model is a viable means for forecasting wax deposition. These findings offer valuable references for the oil industry and for firms dealing with wax cleaning in oil pipelines.展开更多
On-site monitoring is very important for understanding formation mechanisms of frost hazards frequently occurring in pipeline foundation soils and for designing and deploying according mitigative measures in permafros...On-site monitoring is very important for understanding formation mechanisms of frost hazards frequently occurring in pipeline foundation soils and for designing and deploying according mitigative measures in permafrost regions.Significant thaw subsidence of ground surfaces along the ChinaRussia Crude Oil Pipeline(CRCOP) from Mo'he to Daqing,Heilongjiang Province,Northeast China have been observed at some segments underlain by ice-rich warm(>1.0°C) permafrost since the official operation in January 2011.Recent monitoring results of the thermal states of foundation soils at the kilometer post(KP) 304 site along the CRCOP are presented in this paper.The results indicate that during the period from 2012 to 2014,shallow soils(at the depths from0.8 to 4.0 m from ground surface) has warmed by approximately 1.0°C in the lateral range of 1.2 to 2.1 maway from the pipeline axis,and deeper permafrost(such as at the depth of 15 m,or the depth of zero annual amplitude of ground temperatures) by 0.08°C per year 4 m away from the pipe axis,and 0.07°C per year 5 m away from the pipeline axis.The results indicate an all-season talik has developed around and along the CRCOP.The thaw bulb,with a faster lateral expansion(compared with the vertical growth),enlarges in summer and shrinks in winter.This research will provide important references and bases for evaluating thermal influences of warm pipeline on permafrost and for design,construction,operation and maintenance of pipelines in permafrost regions.展开更多
Active layer is a key component for permafrost environment studies as many subsurface biological,biogeochemical,ecological,and pedogenic activities prevail in this layer.This study focuses on active layer temperature ...Active layer is a key component for permafrost environment studies as many subsurface biological,biogeochemical,ecological,and pedogenic activities prevail in this layer.This study focuses on active layer temperature monitoring in an area with sporadic permafrost at two adjacent sites along China-Russia Crude Oil Pipeline(CRCOP),NorthEast China.Site T1 is located in disturbed ground on the right-of-way(on-ROW)2 m away from the center of the oil pipeline.T2 is located in a natural and undisturbed site,around 16.6 m off-ROW.Our objective was to study seasonal variability of the active layer depth and thermal regime from October 2017 to September 2018.The monitoring sites consist of soil temperature probes arranged in a vertical array at different depths at both sites.The following parameters were computed:number of isothermal days(ID),freezing days(FD),thawing days(TD),freezing degree days(FDD),thawing degree days(TDD),number of freeze-thaw days(FTD).The mean air temperature in the monitoring period reached-3.2℃.The temperature profile indicates that the maximum active layer thickness observed during the study period was 10 m at T1 and 2 m at T2.The majority of the soil temperatures were above or close to 0℃,resulting in great values of TDD,especially in the first 4 m depth.TDD for T1 were predominant and ranged between 600-1160℃·days(0-4 m depth)reflecting the influence of oil temperature from the pipeline.In T2 borehole FDD were predominant for all the soil layer depths resulting in less permafrost degradation.This comparison emphasizes the significant influence of vegetation removal and the dispersed heat from the pipeline on the active layer thickness.展开更多
According to the investigations on the oil and gas pipelines such as the Lan-Cheng-Chong pipeline and the Southwest pipeline, there are two ways of laying pipeline: pipelines paralleling (approximately) to the main...According to the investigations on the oil and gas pipelines such as the Lan-Cheng-Chong pipeline and the Southwest pipeline, there are two ways of laying pipeline: pipelines paralleling (approximately) to the main slide direction and pipelines perpendicular (approximately) to the main slide direction. If earth-retaining walls have been built for pipelines paralleling to the main slide direction, they will prevent the lands from sliding; On the contrary, without earth-retaining walls, the sharp broken rocks in the backfilling soil will scratch the safeguard of the pipeline when the landslides take place. Pipelines perpendicular to the main slide direction can be classified into four types according to the relative positions between pipelines and landslides: Pipelines over the slide planes, pipelines inside the fracture strips of slide planes, pipelines below the slide planes and pipelines behind the backsides of landslides. The different dynamical mechanisms of the process in which landslide acts against pipelines are analyzed based on whether the pipelines are equipped with fixed frusta, because the sliding resistance depends on whether and how many fixed frusta are equipped and the distance between frusta.展开更多
A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installe...A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installed along the pipeline acting as a sensor, The experiments show that the cable swells when exposed to oil and induced additional bending losses inside the fiber, and the optical attenuation of the fiber coated by a thin skin with periodical hardness is sensitive to deformation and vibration caused by oil leakage, tampering, or mechanical impact. The region where the additional attenuation occurred is detected and located by DOFS based on OTDR, the types of pipeline accidents are identified according to the characteristics of transmitted optical power received by an optical power meter, Another prototype of DOFS based on a forward traveling frequency-modulated continuous-wave (FMCW) is also proposed to monitor pipeline. The advantages and disadvantages of DOFSs based on OTDR and FMCW are discussed. The experiments show that DOFSs are capable of detecting and locating distant oil pipeline leakages and damages in real time with an estimated precision of ten meters over tens of kilometers.展开更多
The thaw settlement of pipeline foundation soils in response to the operation of the first China-Russia Crude Oil Pipeline along the eastern flank of the northern Da Xing'anling Mountains in Northeast China was si...The thaw settlement of pipeline foundation soils in response to the operation of the first China-Russia Crude Oil Pipeline along the eastern flank of the northern Da Xing'anling Mountains in Northeast China was simulated in a physical model test(with a similitude ratio of 1/73) in a geotechnical centrifuge. Two pipes of a supported and an unsupported section were evaluated over a testing period for simulating 20 years of actual pipeline operation with seasonal cyclically changing oil and ambient temperatures. The results show that pipe settlement of the supported pipe was 45% of settlement of the unsupported pipe. Settlement for the unsupported section was approximately 35% of the thaw bulb depth below the initial pipe elevation, only 30% of that for the supported pipe due to the influence of the supports. The final thaw bulbs extended approximately 3.6 and 1.6 times of the pipe diameter below the unsupported and supported pipe bottom elevations, respectively. The sandbag supports kept frozen during the test period because of cooling effect of the thermosyphons. The maximum bending stress induced over the 20 m span length from bearing of the full cover over the pipe would be equivalent to40% specified minimum yield strength(SMYS). Potential buckling of the pipe should be considered as the ground thaws.This study also offers important data for calibration and validation of numerical simulation models.展开更多
It is important to determine the insulation thickness in the design of the buried hot oil pipelines.The economic thickness of the insulation layer not only meets the needs of the project but also maximizes the investm...It is important to determine the insulation thickness in the design of the buried hot oil pipelines.The economic thickness of the insulation layer not only meets the needs of the project but also maximizes the investment and environmental benefits.However,as a significant evaluation,the environmental factors haven’t been considered in the previous study.Considering this factor,the mathematical model of economic insulation thickness of the buried hot oil pipelines is built in this paper,which is solved by the golden section method while considering the costs of investment,operation,environment,the time value of money.The environmental cost is determined according to the pollutant discharge calculated through relating heat loss of the pipelines to the air emission while building the model.The results primarily showed that the most saving fuel is natural gas,followed by LPG,fuel oil,and coal.The fuel consumption for identical insulation thickness is in the order:coal,fuel oil,LPG,and natural gas.When taking the environmental costs into account,the thicker the economic insulation layer is,the higher cost it will be.Meanwhile,the more pollutant discharge,the thicker the economic insulation layer will be.展开更多
The cold-region eco-environments along the China-Russia Crude Oil Pipeline (CRCOP) in northern Northeast China are in disequilibrium due to the combined influences of pronounced climate warming and intensive anthropog...The cold-region eco-environments along the China-Russia Crude Oil Pipeline (CRCOP) in northern Northeast China are in disequilibrium due to the combined influences of pronounced climate warming and intensive anthropogenic activities.This is evidenced by the sharp areal reduction and northward shifting of the boreal forests,shrinking of wetlands,enhancing of soil erosion,accelerating degradation of permafrost and deteriorating of cold-region eco-environments.The degradation of permafrost plays an important role as an internal drive in the eco-environmental changes.Many components of the cold-region eco-environments,including frozen ground,forests,wetlands and peatlands,forest fires and 'heating island effect' of rapid urbanization,are interdependent,interactive,and integrated in the boreal ecosystems.The construction and long-term operation of the CRCOP system will inevitably disturb the cold-region environments along the pipeline.Therefore,a mandatory and carefully-elaborated environ-mental impact statement is indispensable for the proper mitigation of the ensued adverse impacts.Proper management,effective protection and practical rehabilitation of the damaged cold-region environments are a daunting,costly and long-term commitment.The recommended measures for protection and restoration of permafrost eco-environments along the pipeline route include adequate investigation,assessment and monitoring of permafrost and cold-region environments,compliance of pipeline construction and operation codes for environmental management,proper and timely re-vegetation,returning the cultivated lands to forests and grasslands,and effective mitigation of forest fire hazards.展开更多
According to the engineering investigation of long-distance oil and gas pipelines, the criterions and measures of route selection are drawn as follows: the flat landform is the first choice in route alignment. The fo...According to the engineering investigation of long-distance oil and gas pipelines, the criterions and measures of route selection are drawn as follows: the flat landform is the first choice in route alignment. The foot of mountain is the first choice when the route passes by the valley. The route should pass by but the shady and deposited slope and not in sunny and erosive slope as possible as it can. The pipeline should be vertical to contour climbing and descending the mountain except steep slope. Tunnel can be used in crossing foothill. Perpendicularly traversing the river is better than beveling; the worst choice is to put the pipeline along the river. Bypass is the best choice in karsts area. The order of route selection should be pre-choosing, investigation, optimization and adjustment.展开更多
The oilfield construction and long-distance oil pipeline engineering has been developed extensively in China. The risk assessment of oil industry will, however, be an important objective to cope with the development o...The oilfield construction and long-distance oil pipeline engineering has been developed extensively in China. The risk assessment of oil industry will, however, be an important objective to cope with the development of oil industry , The risk assessment of oil industry has many subjects worthy to be studied.The major purpose of the paper is to research the risk cases of long-distance oil pipeline engineering in Ganshu and Shaanxi provinces.展开更多
-Based on the calculation model for the floating laying of the offshore oil pipeline, this paper analyses in detail the internal force, and deformation of the pipeline under a definite structural form (pipeline and bu...-Based on the calculation model for the floating laying of the offshore oil pipeline, this paper analyses in detail the internal force, and deformation of the pipeline under a definite structural form (pipeline and buoy) and the way of pulling. The obtained results can be used for the buoy deployment, structure design, and the determination of pulling parameters (the pulling force of the cable and its length, etc.), providing an effective analysis method for floating pipeline-laying. A calculation example is given to show the related calculation process and the main results are analyzed and discussed.展开更多
基金supported by the National Science Foundation of China(Grant numbers 52274062)Natural Science Foundation of Liaoning Province(Grant numbers 2022-MS-362)。
文摘Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.
文摘This letter investigates the wavelet transform, as well as the principle and the method of the noise reduction based on wavelet transform, it chooses the threshold noise reduction, and discusses in detail the principles, features and design steps of the threshold method. Rigrsure, heursure, sqtwolog and minimization four kinds of threshold selection method are compared qualitatively, and quantitatively. The wavelet analysis toolbox of MATLAB helps to realize the computer simulation of the signal noise reduction. The graphics and calculated standard deviation of the various threshold noise reductions show that, when dealing with the actual pressure signal of the oil pipeline leakage, sqtwolog threshold selection method can effectively remove the noise. Aiming to the pressure signal of the oil pipeline leakage, the best choice is the wavelet threshold noise reduction with sqtwolog threshold. The leakage point is close to the actual position, with the relative error of less than 1%.
基金supported by the National Scientific and Technological support project MST (2006BAC13B02-0106)spe-cial research funds from the Public Institute of China,Institute of Geophysics (IGP),China Earthquake Ad-ministration (CEA) (DQJB06A01)The contribution No. is 10FE3004,IGP,CEA
文摘The purpose of this paper is to adopt the uniform confidence method in both water pipeline design and oil-gas pipeline design.Based on the importance of pipeline and consequence of its failure,oil and gas pipeline can be classified into three pipe classes,with exceeding probabilities over 50 years of 2%,5% and 10%,respectively.Performance-based design requires more information about ground motion,which should be obtained by evaluating seismic safety for pipeline engineering site.Different from a city's water pipeline network,the long-distance oil and gas pipeline system is a spatially linearly distributed system.For the uniform confidence of seismic safety,a long-distance oil and pipeline formed with pump stations and different-class pipe segments should be considered as a whole system when analyzing seismic risk.Considering the uncertainty of earthquake magnitude,the design-basis fault displacements corresponding to the different pipeline classes are proposed to improve deterministic seismic hazard analysis(DSHA).A new empirical relationship between the maximum fault displacement and the surface-wave magnitude is obtained with the supplemented earthquake data in East Asia.The estimation of fault displacement for a refined oil pipeline in Wenchuan MS8.0 earthquake is introduced as an example in this paper.
文摘Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety management.Aiming at the shortcomings of the BP Neural Network(BPNN)model,such as low learning efficiency,sensitivity to initial weights,and easy falling into a local optimal state,an Improved Sparrow Search Algorithm(ISSA)is adopted to optimize the initial weights and thresholds of BPNN,and an ISSA-BPNN failure pressure prediction model for corroded pipelines is established.Taking 61 sets of pipelines blasting test data as an example,the prediction model was built and predicted by MATLAB software,and compared with the BPNN model,GA-BPNN model,and SSA-BPNN model.The results show that the MAPE of the ISSA-BPNN model is 3.4177%,and the R2 is 0.9880,both of which are superior to its comparison model.Using the ISSA-BPNN model has high prediction accuracy and stability,and can provide support for pipeline inspection and maintenance.
文摘Because pipeline has large pipe diameter, large throughout and high pressure, once pipeline leakage accident happens, the damage is quite serious. In addition, pipeline leakage accident caused by man-made drilling oil stolen every year results in huge economic losses on oilfield. Therefore, a real-time and accurate pipeline leak detection and location system not only can effectively decrease leakage loss and reduce the waste of manpower and material resources in patrolling work, but also is conductive to the management of oil pipeline and improvement of economic efficiency of enterprise. The paper determines leak detection and location project giving priority to negative pressure wave and supplemented by flow parameter analysis. The method not only can judge the accidence of leakage timely and accurately, but also can effectively avoid leakage false alarm caused by start or stop pumps in pipeline.
文摘A mathematical model for optlmization design of the hot waxy crude oil transmission IZipelineis studied. The dimension-reducing method is selected to solve problems raised from multivariable,restricted and non-linear planning. And the optimization design model is applied to the practical design ofHejian Shijiazhuang oil transmission pipeline. outstanding economic and social benefits have beengained.
基金supported by the National Key Research and Development Program of China(Grant Nos.2017YFC0805804,2017YFC0805801)
文摘A comprehensive and objective risk evaluation model of oil and gas pipelines based on an improved analytic hierarchy process(AHP)and technique for order preference by similarity to an ideal solution(TOPSIS)is established to identify potential hazards in time.First,a barrier model and fault tree analysis are used to establish an index system for oil and gas pipeline risk evaluation on the basis of five important factors:corrosion,external interference,material/construction,natural disasters,and function and operation.Next,the index weight for oil and gas pipeline risk evaluation is computed by applying the improved AHP based on the five-scale method.Then,the TOPSIS of a multi-attribute decision-making theory is studied.The method for determining positive/negative ideal solutions and the normalized equation for benefit/cost indexes is improved to render TOPSIS applicable for the comprehensive risk evaluation of pipelines.The closeness coefficient of oil and gas pipelines is calculated by applying the improved TOPSIS.Finally,the weight and the closeness coefficient are combined to determine the risk level of pipelines.Empirical research using a long-distance pipeline as an example is conducted,and adjustment factors are used to verify the model.Results show that the risk evaluation model of oil and gas pipelines based on the improved AHP–TOPSIS is valuable and feasible.The model comprehensively considers the risk factors of oil and gas pipelines and provides comprehensive,rational,and scientific evaluation results.It represents a new decision-making method for systems engineering in pipeline enterprises and provides a comprehensive understanding of the safety status of oil and gas pipelines.The new system engineering decision-making method is important for preventing oil and gas pipeline accidents.
基金part of the Program of"Study on the mechanism of complex heat and mass transfer during batch transport process in products pipelines"funded under the National Natural Science Foundation of China(grant number 51474228)
文摘Oil product pipelines have features such as transporting multiple materials, ever-changing operating conditions, and synchronism between the oil input plan and the oil offloading plan. In this paper, an optimal model was established for a single-source multi-distribution oil pro- duct pipeline, and scheduling plans were made based on supply. In the model, time node constraints, oil offloading plan constraints, and migration of batch constraints were taken into consideration. The minimum deviation between the demanded oil volumes and the actual offloading volumes was chosen as the objective function, and a linear programming model was established on the basis of known time nodes' sequence. The ant colony optimization algo- rithm and simplex method were used to solve the model. The model was applied to a real pipeline and it performed well.
基金supported by National Natural Science Foundation of China(51904327,51774311)Natural Science Foundation of Shandong Province of China(ZR2017MEE022)+1 种基金China Postdoctoral Science Foundation(2019TQ0354,2019M662468)Qingdao postdoctoral researchers applied research project.
文摘We developed a predictive model for the pipeline friction in the 520-730 m^3/h transmission range using the multi-layerperceptron-back-propagation(MLP-BP)method and analyzing the unit friction data after the pigging of a hot oil pipeline.In view of the shortcomings of the MLP-BP model,two optimization methods,the genetic algorithm(GA)and mind evolutionary algorithm(MEA),were used to optimize the MLP-BP model.The research results were applied to the standard friction prediction of three sections of a hot oil pipeline.After the GA and MEA optimizations,the average errors of the three sections were 0.0041 MPa for the GA and 0.0012 MPa for the MEA,and the mean-square errors were 0.083 and 0.067,respectively.The MEA-BP model prediction results were characterized by high precision and small dispersion.The MEABP prediction model was applied to the analysis of the wax formation 60 and 90 days after pigging.The analysis results showed that the model can effectively guide pipe pigging and optimization.There was little sample data for the individual transmission and oil temperature steps because the model was based on actual production data modeling and analysis,which may have affected the accuracy and adaptability of the model.
基金Financially supported by Sinopec Corp (2001101).
文摘Problems involving wax deposition threaten seriously crude pipelines both economically and operationally. Wax deposition in oil pipelines is a complicated problem having a number of uncertainties and indeterminations. The Grey System Theory is a suitable theory for coping with systems in which some information is clear and some is not, so it is an adequate model for studying the process of wax deposition. In order to predict accurately wax deposition along a pipeline, the Grey Model was applied to fit the data of wax deposition rate and the thickness of the deposited wax layer on the pipe-wall, and to give accurate forecast on wax deposition in oil pipelines. The results showed that the average residential error of the Grey Prediction Model is smaller than 2%. They further showed that this model exhibited high prediction accuracy. Our investigation proved that the Grey Model is a viable means for forecasting wax deposition. These findings offer valuable references for the oil industry and for firms dealing with wax cleaning in oil pipelines.
基金supported by the National Natural Science Foundation Program of China on"Formation mechanisms and mitigative measures for thaw settlement of foundation soils of the China-Russia Crude Oil Pipeline"(Grant No.41171055)the State Key Laboratory of Frozen Soils Engineering Research Projects of China on"Monitoring on thaw settlement of permafrost around the China-Russia Crude Oil Pipeline"(Grant No.SKLFSE-ZY-11)and"Research on isotope tracing and radar detection of permafrost along the China-Russia Crude Oil Pipeline route"(Grant No.SKLFSE-201302)
文摘On-site monitoring is very important for understanding formation mechanisms of frost hazards frequently occurring in pipeline foundation soils and for designing and deploying according mitigative measures in permafrost regions.Significant thaw subsidence of ground surfaces along the ChinaRussia Crude Oil Pipeline(CRCOP) from Mo'he to Daqing,Heilongjiang Province,Northeast China have been observed at some segments underlain by ice-rich warm(>1.0°C) permafrost since the official operation in January 2011.Recent monitoring results of the thermal states of foundation soils at the kilometer post(KP) 304 site along the CRCOP are presented in this paper.The results indicate that during the period from 2012 to 2014,shallow soils(at the depths from0.8 to 4.0 m from ground surface) has warmed by approximately 1.0°C in the lateral range of 1.2 to 2.1 maway from the pipeline axis,and deeper permafrost(such as at the depth of 15 m,or the depth of zero annual amplitude of ground temperatures) by 0.08°C per year 4 m away from the pipe axis,and 0.07°C per year 5 m away from the pipeline axis.The results indicate an all-season talik has developed around and along the CRCOP.The thaw bulb,with a faster lateral expansion(compared with the vertical growth),enlarges in summer and shrinks in winter.This research will provide important references and bases for evaluating thermal influences of warm pipeline on permafrost and for design,construction,operation and maintenance of pipelines in permafrost regions.
基金supported by the National Natural Science Foundation of China(NNSFC)(No.41672310)Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA2003020102)+4 种基金China’s Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0905)the NNSFC(Nos.U1703244 and 41630636)National Key Research and Development Program(2017YFC0405101)the Major Program of Bureau of International Cooperation of the Chinese Academy of Sciences(131B62KYSB20170012)Foundation of the State Key Laboratory of Frozen Soil Engineering(No.SKLFSE-ZY-20)。
文摘Active layer is a key component for permafrost environment studies as many subsurface biological,biogeochemical,ecological,and pedogenic activities prevail in this layer.This study focuses on active layer temperature monitoring in an area with sporadic permafrost at two adjacent sites along China-Russia Crude Oil Pipeline(CRCOP),NorthEast China.Site T1 is located in disturbed ground on the right-of-way(on-ROW)2 m away from the center of the oil pipeline.T2 is located in a natural and undisturbed site,around 16.6 m off-ROW.Our objective was to study seasonal variability of the active layer depth and thermal regime from October 2017 to September 2018.The monitoring sites consist of soil temperature probes arranged in a vertical array at different depths at both sites.The following parameters were computed:number of isothermal days(ID),freezing days(FD),thawing days(TD),freezing degree days(FDD),thawing degree days(TDD),number of freeze-thaw days(FTD).The mean air temperature in the monitoring period reached-3.2℃.The temperature profile indicates that the maximum active layer thickness observed during the study period was 10 m at T1 and 2 m at T2.The majority of the soil temperatures were above or close to 0℃,resulting in great values of TDD,especially in the first 4 m depth.TDD for T1 were predominant and ranged between 600-1160℃·days(0-4 m depth)reflecting the influence of oil temperature from the pipeline.In T2 borehole FDD were predominant for all the soil layer depths resulting in less permafrost degradation.This comparison emphasizes the significant influence of vegetation removal and the dispersed heat from the pipeline on the active layer thickness.
文摘According to the investigations on the oil and gas pipelines such as the Lan-Cheng-Chong pipeline and the Southwest pipeline, there are two ways of laying pipeline: pipelines paralleling (approximately) to the main slide direction and pipelines perpendicular (approximately) to the main slide direction. If earth-retaining walls have been built for pipelines paralleling to the main slide direction, they will prevent the lands from sliding; On the contrary, without earth-retaining walls, the sharp broken rocks in the backfilling soil will scratch the safeguard of the pipeline when the landslides take place. Pipelines perpendicular to the main slide direction can be classified into four types according to the relative positions between pipelines and landslides: Pipelines over the slide planes, pipelines inside the fracture strips of slide planes, pipelines below the slide planes and pipelines behind the backsides of landslides. The different dynamical mechanisms of the process in which landslide acts against pipelines are analyzed based on whether the pipelines are equipped with fixed frusta, because the sliding resistance depends on whether and how many fixed frusta are equipped and the distance between frusta.
基金This project is supported by R&D Foundation of National Petroleum Corporation (CNPC) of China(No.2001411-4).
文摘A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installed along the pipeline acting as a sensor, The experiments show that the cable swells when exposed to oil and induced additional bending losses inside the fiber, and the optical attenuation of the fiber coated by a thin skin with periodical hardness is sensitive to deformation and vibration caused by oil leakage, tampering, or mechanical impact. The region where the additional attenuation occurred is detected and located by DOFS based on OTDR, the types of pipeline accidents are identified according to the characteristics of transmitted optical power received by an optical power meter, Another prototype of DOFS based on a forward traveling frequency-modulated continuous-wave (FMCW) is also proposed to monitor pipeline. The advantages and disadvantages of DOFSs based on OTDR and FMCW are discussed. The experiments show that DOFSs are capable of detecting and locating distant oil pipeline leakages and damages in real time with an estimated precision of ten meters over tens of kilometers.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA20030201)National Natural Science Foundation of China (41672310)+1 种基金the National Key Research and Development Program (Nos. 2017YFC0405101 and 2016YFC0802103)the Research Project of the State Key Laboratory of Frozen Soil Engineering (SKLFSE-ZY-20)。
文摘The thaw settlement of pipeline foundation soils in response to the operation of the first China-Russia Crude Oil Pipeline along the eastern flank of the northern Da Xing'anling Mountains in Northeast China was simulated in a physical model test(with a similitude ratio of 1/73) in a geotechnical centrifuge. Two pipes of a supported and an unsupported section were evaluated over a testing period for simulating 20 years of actual pipeline operation with seasonal cyclically changing oil and ambient temperatures. The results show that pipe settlement of the supported pipe was 45% of settlement of the unsupported pipe. Settlement for the unsupported section was approximately 35% of the thaw bulb depth below the initial pipe elevation, only 30% of that for the supported pipe due to the influence of the supports. The final thaw bulbs extended approximately 3.6 and 1.6 times of the pipe diameter below the unsupported and supported pipe bottom elevations, respectively. The sandbag supports kept frozen during the test period because of cooling effect of the thermosyphons. The maximum bending stress induced over the 20 m span length from bearing of the full cover over the pipe would be equivalent to40% specified minimum yield strength(SMYS). Potential buckling of the pipe should be considered as the ground thaws.This study also offers important data for calibration and validation of numerical simulation models.
基金funded by the National Natural Science Foundation of China(NO.51704236)the Graduate Innovation and Practice Ability Development Program of Xi’an Shiyou University(NO.YCS19113037).
文摘It is important to determine the insulation thickness in the design of the buried hot oil pipelines.The economic thickness of the insulation layer not only meets the needs of the project but also maximizes the investment and environmental benefits.However,as a significant evaluation,the environmental factors haven’t been considered in the previous study.Considering this factor,the mathematical model of economic insulation thickness of the buried hot oil pipelines is built in this paper,which is solved by the golden section method while considering the costs of investment,operation,environment,the time value of money.The environmental cost is determined according to the pollutant discharge calculated through relating heat loss of the pipelines to the air emission while building the model.The results primarily showed that the most saving fuel is natural gas,followed by LPG,fuel oil,and coal.The fuel consumption for identical insulation thickness is in the order:coal,fuel oil,LPG,and natural gas.When taking the environmental costs into account,the thicker the economic insulation layer is,the higher cost it will be.Meanwhile,the more pollutant discharge,the thicker the economic insulation layer will be.
基金funding from the Chinese Academy of Sciences Knowledge Innovation Program (Grant No. KZCX2-YW-311)the Chinese Academy of Sciences 100-Talents Program (HuiJun Jin)
文摘The cold-region eco-environments along the China-Russia Crude Oil Pipeline (CRCOP) in northern Northeast China are in disequilibrium due to the combined influences of pronounced climate warming and intensive anthropogenic activities.This is evidenced by the sharp areal reduction and northward shifting of the boreal forests,shrinking of wetlands,enhancing of soil erosion,accelerating degradation of permafrost and deteriorating of cold-region eco-environments.The degradation of permafrost plays an important role as an internal drive in the eco-environmental changes.Many components of the cold-region eco-environments,including frozen ground,forests,wetlands and peatlands,forest fires and 'heating island effect' of rapid urbanization,are interdependent,interactive,and integrated in the boreal ecosystems.The construction and long-term operation of the CRCOP system will inevitably disturb the cold-region environments along the pipeline.Therefore,a mandatory and carefully-elaborated environ-mental impact statement is indispensable for the proper mitigation of the ensued adverse impacts.Proper management,effective protection and practical rehabilitation of the damaged cold-region environments are a daunting,costly and long-term commitment.The recommended measures for protection and restoration of permafrost eco-environments along the pipeline route include adequate investigation,assessment and monitoring of permafrost and cold-region environments,compliance of pipeline construction and operation codes for environmental management,proper and timely re-vegetation,returning the cultivated lands to forests and grasslands,and effective mitigation of forest fire hazards.
文摘According to the engineering investigation of long-distance oil and gas pipelines, the criterions and measures of route selection are drawn as follows: the flat landform is the first choice in route alignment. The foot of mountain is the first choice when the route passes by the valley. The route should pass by but the shady and deposited slope and not in sunny and erosive slope as possible as it can. The pipeline should be vertical to contour climbing and descending the mountain except steep slope. Tunnel can be used in crossing foothill. Perpendicularly traversing the river is better than beveling; the worst choice is to put the pipeline along the river. Bypass is the best choice in karsts area. The order of route selection should be pre-choosing, investigation, optimization and adjustment.
文摘The oilfield construction and long-distance oil pipeline engineering has been developed extensively in China. The risk assessment of oil industry will, however, be an important objective to cope with the development of oil industry , The risk assessment of oil industry has many subjects worthy to be studied.The major purpose of the paper is to research the risk cases of long-distance oil pipeline engineering in Ganshu and Shaanxi provinces.
文摘-Based on the calculation model for the floating laying of the offshore oil pipeline, this paper analyses in detail the internal force, and deformation of the pipeline under a definite structural form (pipeline and buoy) and the way of pulling. The obtained results can be used for the buoy deployment, structure design, and the determination of pulling parameters (the pulling force of the cable and its length, etc.), providing an effective analysis method for floating pipeline-laying. A calculation example is given to show the related calculation process and the main results are analyzed and discussed.