In the lower parts of oil reservoirs Chang 9 and Chang 10 of the Yanchang Formation are oil-bearing layers newly found in oil exploration in the Ordos Basin.Based on GC,GC-MS analyses of saturated hydrocarbons from cr...In the lower parts of oil reservoirs Chang 9 and Chang 10 of the Yanchang Formation are oil-bearing layers newly found in oil exploration in the Ordos Basin.Based on GC,GC-MS analyses of saturated hydrocarbons from crude oils and source rocks,reservoir fluid inclusions and BasinMod,the origin of crude oils,accumulation period and accumulation models are discussed in combination with other petroleum geology data in this paper.The result shows that(1) there are two different types of crude oils in oil reservoir Chang 9 in the Longdong and Jiyuan regions:crude oils of typeⅠ(Well D86,Well A44,Well A75,Well B227,Well X62 and Well Z150) are mainly de-rived from the Chang 7 source rocks(including mudstones and shales) and distributed in the Jiyuan and Longdong regions;those of typeⅡ(Well Z14 and Well Y427),are distributed in the Longdong region,which are derived from the Chang 9 source rocks.Crude oils from oil reservoir Chang 10 in the Shanbei region are mainly derived from the Chang-9 source rocks;(2) there are two phases of hydrocarbon filling in oil reservoir Chang 9 in the Jiyuan and Longdong regions and oil reservoir Chang 10 in the Shanbei region:The first phase started at the early stage of J2z.The process of hydrocarbon filling was discontinuous in the Late Jurassic,because of the tectonic-thermal event in the Ordos Basin.The second phase was the main accumulation period,and hydrocarbons began to accumulate from the late stage of J2a to the middle-late of K1,mainly at the middle-late stage of K1;(3) there exist two types of accu-mulation models in oil reservoirs Chang 9 and Chang 10 of the Yanchang Formation:source rocks of the reservoirs in oil reservoir Chang 9 in the Jiyuan region and oil reservoir Chang 10 in the Shanbei region,the mixed type of reservoirs on the lateral side of source rocks and source rocks of the reservoirs in oil reservoir Chang 9 in the Long-dong region.展开更多
Compared with conventional well, herringbone-like laterals wells can increase the area of oil release, and can reduce the number of wellhead slots of platforms,?and?also can greatly improve the development efficiency....Compared with conventional well, herringbone-like laterals wells can increase the area of oil release, and can reduce the number of wellhead slots of platforms,?and?also can greatly improve the development efficiency. Based on threshold pressure gradient in heavy oil reservoir,?and?the applied principle of mirror reflection and superposition, the pressure distribution equation of herringbone-like laterals wells is obtained in heavy oil reservoir. Productivity model of herringbone-like laterals wells is proposed by reservoir-wellbore steady seepage. The example shows that the productivity model is great accuracy?to?predict the productivity of herringbone-like laterals wells. The model is used to analyze the branching length, branching angle, branching symmetry, branching position and spacing and their effects on productivity of herringbone-like laterals wells. The principle of optimizing the well shape of herringbone-like laterals wells is proposed.展开更多
In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was pr...In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was proposed, breaking the tradition that different sedimentary microfacies used the same modeling method in the past. Because different sedimentary microfacies have different distribution characteristics and geometric shapes, it is more accurate to select different simulation methods for prediction. In this paper, the coupling modeling method was to establish the distribution of sedimentary microfacies with simple geometry through the point indicating process simulation, and then predict the microfacies with complex spatial distribution through the sequential indicator simulation method. Taking the DC block of Bohai basin as an example, a high-precision reservoir sedimentary microfacies model was established by the above coupling modeling method, and the model verification results showed that the sedimentary microfacies model had a high consistency with the underground. The coupling microfacies modeling method had higher accuracy and reliability than the traditional modeling method, which provided a new idea for the prediction of sedimentary microfacies.展开更多
Grey Poly-category is a branch of Grey System(J belonging to System Theory.According to the System Theory,a fully determinable figure is called White Figure,a fully undeterminable figure is called Black Figure,and the...Grey Poly-category is a branch of Grey System(J belonging to System Theory.According to the System Theory,a fully determinable figure is called White Figure,a fully undeterminable figure is called Black Figure,and the figure between them is called Grey Figure.On the same principle,a fully determinable system,a fully undeterminable,and a partial determinable and partial undeterminable sys-tem are called White,Black and Grey System re-spectively.For the oil,oil-water and water reser-voirs,each type of reservoirs has its different log response values.These values are grey figures,not a fixed figure,and then,the system made of the fig-ures is a Grey System.展开更多
This work is devoted to the analysis of the formation conditions and geologic model of Paleozoic basement rocks of a number of oil-and-gas fields, located in Tomsk region(South of West-Siberian Oil-and-Gas Province,Ru...This work is devoted to the analysis of the formation conditions and geologic model of Paleozoic basement rocks of a number of oil-and-gas fields, located in Tomsk region(South of West-Siberian Oil-and-Gas Province,Russia).The research is based on integrated data interpretation of seismic exploration, well logging and deep drilling.The study is at the interfaces between exploration geophysics展开更多
This study investigates the hydro-mechanical aspects of carbon dioxide(CO2) injection into a depleted oil reservoir through the use of coupled multiphase fluid flow and geomechanical modeling.Both singlephase and mult...This study investigates the hydro-mechanical aspects of carbon dioxide(CO2) injection into a depleted oil reservoir through the use of coupled multiphase fluid flow and geomechanical modeling.Both singlephase and multiphase fluid flow analyses coupled with geomechanics were carried out at the West Pearl Queen depleted oil reservoir site,and modeling results were compared with available measured data.The site geology and the material properties determined on the basis of available geophysical data were used in the analyses.Modeling results from the coupled multiphase fluid flow and geomechanical analyses show that computed fluid pressures match well with available measured data.The hydromechanical properties of the reservoir have a significant influence on computed fluid pressures and surface deformations.Hence,an accurate geologic characterization of the sequestration site and determination of engineering properties are important issues for the reliability of model predictions.The computed fluid pressure response is also significantly influenced by the relative permeability curves used in multiphase fluid flow models.While the multiphase fluid flow models provide more accurate fluid pressure response,single-phase fluid flow models can be used to obtain approximate solutions.The ground surface deformations obtained from single-phase fluid flow models coupled with geomechanics are slightly lower than those predicted by multiphase fluid flow models coupled with geomechanics.However,the advantage of a single-phase model is the simplicity.Limited field monitoring of subsurface fluid pressure and ground surface deformations during fluid injection can be used in calibrating coupled fluid flow and geomechanical models.The calibrated models can be used for investigating the performance of large-scale CO2storage in depleted oil reservoirs.展开更多
Considering the influence of quadratic gradient term and medium deformation on the seepage equation, a well testing interpretation model for low permeability and deformation dual medium reservoirs was derived and esta...Considering the influence of quadratic gradient term and medium deformation on the seepage equation, a well testing interpretation model for low permeability and deformation dual medium reservoirs was derived and established. The difference method was used to solve the problem, and pressure and pressure derivative double logarithmic curves were drawn to analyze the seepage law. The research results indicate that the influence of starting pressure gradient and medium deformation on the pressure characteristic curve is mainly manifested in the middle and late stages. The larger the value, the more obvious the upward warping of the pressure and pressure derivative curve;the parameter characterizing the dual medium is the crossflow coefficient. The channeling coefficient determines the time and location of the appearance of the “concave”. The smaller the value, the later the appearance of the “concave”, and the more to the right of the “concave”.展开更多
文摘In the lower parts of oil reservoirs Chang 9 and Chang 10 of the Yanchang Formation are oil-bearing layers newly found in oil exploration in the Ordos Basin.Based on GC,GC-MS analyses of saturated hydrocarbons from crude oils and source rocks,reservoir fluid inclusions and BasinMod,the origin of crude oils,accumulation period and accumulation models are discussed in combination with other petroleum geology data in this paper.The result shows that(1) there are two different types of crude oils in oil reservoir Chang 9 in the Longdong and Jiyuan regions:crude oils of typeⅠ(Well D86,Well A44,Well A75,Well B227,Well X62 and Well Z150) are mainly de-rived from the Chang 7 source rocks(including mudstones and shales) and distributed in the Jiyuan and Longdong regions;those of typeⅡ(Well Z14 and Well Y427),are distributed in the Longdong region,which are derived from the Chang 9 source rocks.Crude oils from oil reservoir Chang 10 in the Shanbei region are mainly derived from the Chang-9 source rocks;(2) there are two phases of hydrocarbon filling in oil reservoir Chang 9 in the Jiyuan and Longdong regions and oil reservoir Chang 10 in the Shanbei region:The first phase started at the early stage of J2z.The process of hydrocarbon filling was discontinuous in the Late Jurassic,because of the tectonic-thermal event in the Ordos Basin.The second phase was the main accumulation period,and hydrocarbons began to accumulate from the late stage of J2a to the middle-late of K1,mainly at the middle-late stage of K1;(3) there exist two types of accu-mulation models in oil reservoirs Chang 9 and Chang 10 of the Yanchang Formation:source rocks of the reservoirs in oil reservoir Chang 9 in the Jiyuan region and oil reservoir Chang 10 in the Shanbei region,the mixed type of reservoirs on the lateral side of source rocks and source rocks of the reservoirs in oil reservoir Chang 9 in the Long-dong region.
文摘Compared with conventional well, herringbone-like laterals wells can increase the area of oil release, and can reduce the number of wellhead slots of platforms,?and?also can greatly improve the development efficiency. Based on threshold pressure gradient in heavy oil reservoir,?and?the applied principle of mirror reflection and superposition, the pressure distribution equation of herringbone-like laterals wells is obtained in heavy oil reservoir. Productivity model of herringbone-like laterals wells is proposed by reservoir-wellbore steady seepage. The example shows that the productivity model is great accuracy?to?predict the productivity of herringbone-like laterals wells. The model is used to analyze the branching length, branching angle, branching symmetry, branching position and spacing and their effects on productivity of herringbone-like laterals wells. The principle of optimizing the well shape of herringbone-like laterals wells is proposed.
文摘In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was proposed, breaking the tradition that different sedimentary microfacies used the same modeling method in the past. Because different sedimentary microfacies have different distribution characteristics and geometric shapes, it is more accurate to select different simulation methods for prediction. In this paper, the coupling modeling method was to establish the distribution of sedimentary microfacies with simple geometry through the point indicating process simulation, and then predict the microfacies with complex spatial distribution through the sequential indicator simulation method. Taking the DC block of Bohai basin as an example, a high-precision reservoir sedimentary microfacies model was established by the above coupling modeling method, and the model verification results showed that the sedimentary microfacies model had a high consistency with the underground. The coupling microfacies modeling method had higher accuracy and reliability than the traditional modeling method, which provided a new idea for the prediction of sedimentary microfacies.
文摘Grey Poly-category is a branch of Grey System(J belonging to System Theory.According to the System Theory,a fully determinable figure is called White Figure,a fully undeterminable figure is called Black Figure,and the figure between them is called Grey Figure.On the same principle,a fully determinable system,a fully undeterminable,and a partial determinable and partial undeterminable sys-tem are called White,Black and Grey System re-spectively.For the oil,oil-water and water reser-voirs,each type of reservoirs has its different log response values.These values are grey figures,not a fixed figure,and then,the system made of the fig-ures is a Grey System.
文摘This work is devoted to the analysis of the formation conditions and geologic model of Paleozoic basement rocks of a number of oil-and-gas fields, located in Tomsk region(South of West-Siberian Oil-and-Gas Province,Russia).The research is based on integrated data interpretation of seismic exploration, well logging and deep drilling.The study is at the interfaces between exploration geophysics
文摘This study investigates the hydro-mechanical aspects of carbon dioxide(CO2) injection into a depleted oil reservoir through the use of coupled multiphase fluid flow and geomechanical modeling.Both singlephase and multiphase fluid flow analyses coupled with geomechanics were carried out at the West Pearl Queen depleted oil reservoir site,and modeling results were compared with available measured data.The site geology and the material properties determined on the basis of available geophysical data were used in the analyses.Modeling results from the coupled multiphase fluid flow and geomechanical analyses show that computed fluid pressures match well with available measured data.The hydromechanical properties of the reservoir have a significant influence on computed fluid pressures and surface deformations.Hence,an accurate geologic characterization of the sequestration site and determination of engineering properties are important issues for the reliability of model predictions.The computed fluid pressure response is also significantly influenced by the relative permeability curves used in multiphase fluid flow models.While the multiphase fluid flow models provide more accurate fluid pressure response,single-phase fluid flow models can be used to obtain approximate solutions.The ground surface deformations obtained from single-phase fluid flow models coupled with geomechanics are slightly lower than those predicted by multiphase fluid flow models coupled with geomechanics.However,the advantage of a single-phase model is the simplicity.Limited field monitoring of subsurface fluid pressure and ground surface deformations during fluid injection can be used in calibrating coupled fluid flow and geomechanical models.The calibrated models can be used for investigating the performance of large-scale CO2storage in depleted oil reservoirs.
文摘Considering the influence of quadratic gradient term and medium deformation on the seepage equation, a well testing interpretation model for low permeability and deformation dual medium reservoirs was derived and established. The difference method was used to solve the problem, and pressure and pressure derivative double logarithmic curves were drawn to analyze the seepage law. The research results indicate that the influence of starting pressure gradient and medium deformation on the pressure characteristic curve is mainly manifested in the middle and late stages. The larger the value, the more obvious the upward warping of the pressure and pressure derivative curve;the parameter characterizing the dual medium is the crossflow coefficient. The channeling coefficient determines the time and location of the appearance of the “concave”. The smaller the value, the later the appearance of the “concave”, and the more to the right of the “concave”.