The Lower Cretaceous Manville Group of Upper Mc Murray Formation is one of the main bitumen reservoirs in Athabasca.In this study,the relationship between reservoirs heterogeneity and bitumen geochemical characteristi...The Lower Cretaceous Manville Group of Upper Mc Murray Formation is one of the main bitumen reservoirs in Athabasca.In this study,the relationship between reservoirs heterogeneity and bitumen geochemical characteristics were analyzed through core and microscopic observation,lab analysis,petrophysics and logging data.Based on the sedimentology framework,the formation environment of high-quality oil sand reservoirs and their significance for development were discussed.The results indicate that four types lithofacies were recognized in the Upper Mc Murray Formation based on their depositional characteristics.Each lithofacies reservoirs has unique physical properties,and is subject to varying degrees of degradation,resulting in diversity of bitumen content and geochemical composition.The tidal bar(TB)or tidal channel(TC)facies reservoir have excellent physical properties,which are evaluated as gas or water intervals due to strong degradation.The reservoir of sand bar(SB)facies was evaluated as oil intervals,due to its poor physical properties and weak degradation.The reservoir of mixed flat(MF)facies is composed of sand intercalated with laminated shale,which is evaluated as poor oil intervals due to its poor connectivity.The shale content in oil sand reservoir is very important for the reservoir physical properties and bitumen degradation degree.In the context of regional biodegradation,oil sand reservoirs with good physical properties will suffer from strong degradation,while oil sand reservoirs with relatively poor physical properties are more conducive to the bitumen preservation.展开更多
The Nigerian oil sands represent the largest oil sand deposit in Africa, yet there is little published information on the distribution and potential health and ecological risks of trace elements in the oil resource. I...The Nigerian oil sands represent the largest oil sand deposit in Africa, yet there is little published information on the distribution and potential health and ecological risks of trace elements in the oil resource. In the present study, we investigated the distribution pattern of 18trace elements(including biophile and chalcophile elements) as well as the estimated risks associated with exposure to these elements. The results of the study indicated that Fe was the most abundant element, with a mean concentration of 22,131 mg/kg while Br had the lowest mean concentration of 48 mg/kg. The high occurrence of Fe and Ti suggested a possible occurrence of ilmenite(Fe TiO_(3)) in the oil sands. Source apportionment using positive matrix factorization showed that the possible sources of detected elements in the oil sands were geogenic, metal production, and crustal. The contamination factor, geo-accumulation index, modified degree of contamination, pollution load index, and Nemerow pollution index indicated that the oil sands are heavily polluted by the elements. Health risk assessment showed that children were relatively more susceptible to the potentially toxic elements in the oil sands principally via ingestion exposure route(HQ > 1E-04). Cancer risks from inhalation are unlikely due to CR < 1E-06 but ingestion and dermal contact pose severe risks(CR > 1E-04). The high concentrations of the elements pose serious threats due to the potential for atmospheric transport, bioaccessibility, and bioavailability.展开更多
Global recoverable resources of heavy oil and oil sands have been assessed by CNPC using a geology-based assessment method combined with the traditional volumetric method, spatial interpolation method, parametric-prob...Global recoverable resources of heavy oil and oil sands have been assessed by CNPC using a geology-based assessment method combined with the traditional volumetric method, spatial interpolation method, parametric-probability method etc. The most favourable areas for exploration have been selected in accordance with a comprehensive scoring system. The results show:(1) For geological resources, CNPC estimate 991.18 billion tonnes of heavy oil and 501.26 billion tonnes of oil sands globally, of which technically recoverable resources of heavy oil and oil sands comprise 126.74 billion tonnes and 64.13 billion tonnes respectively. More than 80% of the resources occur within Tertiary and Cretaceous reservoirs distributed across 69 heavy oil basins and 32 oil sands basins. 99% of recoverable resources of heavy oil and oil sands occur within foreland basins, passive continental-margin basins and cratonic basins.(2) Since residual hydrocarbon resources remain following large-scale hydrocarbon migration and destruction, heavy oil and oil sands are characterized most commonly by late hydrocarbon accumulation, the same basin types and source-reservoir conditions as for conventional hydrocarbon resources, shallow burial depth and stratabound reservoirs.(3) Three accumulation models are recognised, depending on basin type: degradation along slope; destruction by uplift; and migration along faults.(4) In addition to mature exploration regions such as Canada and Venezuela, the Volga-Ural Basin and the Pre-Caspian Basin are less well-explored and have good potential for oil-sand discoveries, and it is predicted that the Middle East will be an important region for heavy oil development.展开更多
In this paper, pyrolysis of Indonesian oil sands (lOS) was investigated by two different heating methods to develop a better understanding of the microwave-assisted pyrolysis. Thermogravimetric analysis was conducte...In this paper, pyrolysis of Indonesian oil sands (lOS) was investigated by two different heating methods to develop a better understanding of the microwave-assisted pyrolysis. Thermogravimetric analysis was conducted to study the thermal decomposition behaviors of lOS, showing that 550 ℃ might be the pyrolysis final temperature. A explanation of the heat-mass transfer process was presented to demonstrate the influence of mi- crowave-assisted pyrolysis on the liquid product distribution. The heat-mass transfer model was also useful to explain the increase of liquid product yield and heavy component content at the same heating rate by two differ- ent heating methods. Experiments were carried out using a fixed bed reactor with and without the microwave irradiation. The results showed that liquid product yield was increased during microwave induced pyrolysis, while the formation of gas and solid residue was reduced in comparison with the conventional pyrolysis. Moreover, the liquid product characterization by elemental analysis and GC-MS indicated the significant effect on the liquid chemical composition by microwave irradiation. High polarity substances (ε 〉 10 at 25 ℃), such as oxy- organics were increased, while relatively low polarity substances (ε 〈 2 at 25℃), such as aliphatic hydrocarbons were decreased, suggesting that microwave enhanced the relative volatility of high polarity substances. The yield improvement and compositional variations in the liquid product promoted by the microwave-assisted pyrolysis deserve the further exploitation in the future,展开更多
The oil sands deposits in the Western Canada Sedimentary Basin (WCSB) comprise of at least 85% of the total immobile bitumen in place in the world and are so concentrated as to be virtually the only such deposits th...The oil sands deposits in the Western Canada Sedimentary Basin (WCSB) comprise of at least 85% of the total immobile bitumen in place in the world and are so concentrated as to be virtually the only such deposits that are economically recoverable for conversion to oil. The major deposits are in three geographic and geologic regions of Alberta: Athabasca, Cold Lake and Peace River. The bitumen reserves have oil gravities ranging from 8 to 12° API, and are hosted in the reservoirs of varying age, ranging from Devonian (Grosmont Formation) to Early Cretaceous (Mannville Group). They were derived from light oils in the southern Alberta and migrated to the north and east for over 100 km during the Laramide Orogeny, which was responsible for the uplift of the Rocky Mountains. Biodegradation is the only process that transforms light oil into bitumen in such a dramatic way that overshadowed other alterations with minor contributions. The levels of biodegradation in the basin increasing from west (non-biodegraded) to east (extremely biodegraded) can be attributed to decreasing reservoir temperature, which played the primary role in controlling the biodegradation regime. Once the reservoir was heated to approximately 80℃, it was pasteurized and no biodegradation would further occur. However, reservoir temperature could not alone predict the variations of the oil composition and physical properties. Compositional gradients and a wide range ofbiodegradation degree at single reservoir column indicate that the water-leg size or the volume ratio of oil to water is one of the critical local controls for the vertical variations ofbiodegradation degree and oil physical properties. Late charging and mixing of the fresh and degraded oils ultimately dictate the final distribution of compositions and physical properties found in the heavy oil and oil sand fields. Oil geochemistry can reveal precisely the processes and levels that control these variations in a given field, which opens the possibility of model-driven prediction of oil properties and sweet spots in reservoirs.展开更多
Oil sands are the most important of the oil and gas resources in Canada. So the distribution and evaluation of oil sands form a critical basis for risk investment in Canada. Distribution of oil sands resources is seve...Oil sands are the most important of the oil and gas resources in Canada. So the distribution and evaluation of oil sands form a critical basis for risk investment in Canada. Distribution of oil sands resources is severely controlled by the reservoir heterogeneity. Deterministic modeling is commonly used to solve the heterogeneity problems in the reservoir, but rarely used to evaluate hydrocarbon resources. In this paper, a lithofacies based deterministic method is employed to assess the oil sands resources for a part of a mining project in northern Alberta. The statistical analysis of Dean Stark water and oil saturation data and study of the core description data, regional geology and geophysical logs reveal that the lithofacies in the study area can be classified into reservoir facies, possible reservoir facies and non-reservoir facies. The indicator krigging method is used to build a 3D lithofacies model based on the classification of sedimentary facies and the ordinary krigging method is applied to petrophysical property modeling. The results show that the krigging estimation is one of the good choices in oil sand resources modeling in Alberta. Lithofacies-grade based modeling may have advantages over the grade-only based modeling.展开更多
An ionic liquid(IL),1-ethyl-3-methyl imidazolium tetrafluoroborate([Emim][BF_(4)]),was used to enhance bitumen recovery from oil sands by dichloromethane solvent extraction.A multiphase system could be formed by simpl...An ionic liquid(IL),1-ethyl-3-methyl imidazolium tetrafluoroborate([Emim][BF_(4)]),was used to enhance bitumen recovery from oil sands by dichloromethane solvent extraction.A multiphase system could be formed by simply mixing the components at ambient temperature,consisting of sands and clays,mixtures of ionic liquid and dichloromethane,and concentrated bitumen layer.The results demonstrated that[Emim][BF_(4)]increased the bitumen recovery up to 92%.Much less clay fines were found in the recovered bitumen than those formed by using dichloromethane solvent extraction alone,and the dichloromethane residue was not detected in the spent sands.We proposed that[Emim][BF_(4)]had an ability to reduce the adhesion of bitumen to sand,resulting in an improved separation efficiency.Furthermore,[Emim][BF_(4)]could facilitate the transfer of the extracted bitumen to the surface interface,and then the bitumen was auto-partitioned to a separate immiscible phase for ease of harvesting.This technology circumvented the issue of high consumption of distillation energy due to separation of bitumen phase and low boiling point of dichloromethane.[Emim][BF_(4)]and dichloromethane could be readily recycled through the system and used repeatedly.After ten cycles,the bitumen recovery remained above 88%.Initial scale-up work suggested that this approach would form the basis for a viable large-scale process.展开更多
Oil sands contain a so-called organic rich solids component (ORS), i.e., solids whose surfaces are strongly associated with toluene insoluble organic matter (TIOM). Typically, humic material is the major componen...Oil sands contain a so-called organic rich solids component (ORS), i.e., solids whose surfaces are strongly associated with toluene insoluble organic matter (TIOM). Typically, humic material is the major component of TIOM. It provides sites for adsorption and chemical fixation of bitumen. This bound bitumen is “unliberated”, and considerable mechanical or chemical energy may be required to release it. In order to establish a correlation between bitumen recovery and ORS content, a few selected oil sands were processed in a Batch Extraction Unit (BEU). Analysis of the middlings and coarse tailings streams from these tests indicated a relatively constant bitumen to ORS ratio of 2.8±0.7. This value allows the liberated-unliberated bitumen balance (LUBB) to be calculated for any given oil sands. The amounts of bitumen recovered as primary froth during the BEU experiments are close to the estimated liberated bitumen contents in each case tested. This observation indicates that the liberated-unliberated bitumen calculation is an important quantitative parameter for prediction of bitumen recovery under specific recovery conditions. Preliminary results indicate that the ORS content of an oil sands may be estimated from the carbon content of bitumen free oil sands solids.展开更多
This study set out to gain a deeper understanding of a fluid catalytic cracking(FCC)coprocessing approach using canola oil mixed with bitumen-derived heavy gas oil(HGO),for the production of partially-renewable gasoli...This study set out to gain a deeper understanding of a fluid catalytic cracking(FCC)coprocessing approach using canola oil mixed with bitumen-derived heavy gas oil(HGO),for the production of partially-renewable gasoline,with respect to its composition and quality.The FCC coprocessing approach may provide an alternative solution to reducing the carbon footprint and to meet government regulatory demands for renewable transportation fuels.In this study,a mixture of 15 v%canola oil in HGO was catalytically cracked with a commercial equilibrium catalyst under typical FCC conditions.Cracking experiments were performed using a bench-scale Advanced Cracking Evaluation(ACE)unit at a fixed weight hourly space velocity of 8 h^(à1),490–530C,and catalyst/oil ratios of 4–12 g/g.The total liquid product samples were injected via an automatic sampler and a prefractionator(to removet254C)into a gas chromatographic system containing a series of columns,traps,and valves designed to separate each of the hydrocarbon types.The analyzer gives detailed hydrocarbon types of à200C gasoline,classified into paraffins,iso-paraffins,olefins,naphthenes,and aromatics by carbon number up to C_(11)(C_(10)for aromatics).For a feed cracked at a given temperature,the gasoline aromatics show the highest selectivity in terms of weight percent conversion,followed by saturated iso-paraffins,saturated naphthenes,unsaturated iso-paraffins,unsaturated naphthenes,unsaturated normal paraffins,and saturated normal paraffins.As conversion increases,both aromatics and saturated iso-paraffins increase monotonically at the expense of other components.Hydrocarbon type analysis and octane numbers with variation in feed type,process severity(temperature and catalyst/oil ratio),and conversion are also presented and discussed.展开更多
In the oil sands industry, high temperature with the addition of a caustic dispersing agent has formed the basis of the Clark hot water extraction process used successfully on a commercial scale to recover bitumen fro...In the oil sands industry, high temperature with the addition of a caustic dispersing agent has formed the basis of the Clark hot water extraction process used successfully on a commercial scale to recover bitumen from surface mined oil sands ore since 1967. Processes different from the established Clark process (high temperature and caustic) have been developed to work at a range of temperatures with or without the use of sodium hydroxide. Large scale bitumen extraction pilot tests were performed with two different extraction processes and large strain consolidation tests were performed on the resulting different railings. These consolidation tests determined the compressibility and hydraulic conductivity relationships with void ratio which are engineering properties that influence the long-term disposal of the fine tailings. They were used in large strain consolidation numerical analyses of storage ponds to predict water release rates and changes to surface elevations that impact storage volumes and elevation of reclamation surfaces.展开更多
There are rich oil and gas resources in Alberta oil sand mining area in Canada.Since the 1960s,the Canadian government decided to increase the mining intensity.However,the exploitation will bring many adverse effects....There are rich oil and gas resources in Alberta oil sand mining area in Canada.Since the 1960s,the Canadian government decided to increase the mining intensity.However,the exploitation will bring many adverse effects.In recent years,more people pay attention to the environmental protection and ecological restoration of mining area,such as issues related with changes of vegetated lands.Thus,the authors used the Landsat-5 TM and Landsat-8 OLI remote sensing images as the basic data sources,and obtained the land cover classification maps from 1995 to 2020 by ENVI.Based on the NDVI,NDMI and RVI,three images in each period are processed and output to explore the long-term impact of exploitation.The results show that from 1995 to 2020,the proportion of vegetation around mining areas decreased sharply,the scale of construction land in the mining area increased,and the vegetated land was changed to land types such as tailings pond,oil sand mine and other land types.In addition,three vegetation indexes decreased from 1995 to 2020.Although the exploitation of oil sand mining area brings great economic benefits,the environmental protection(especially vegetation)in oil sand mining areas should be paid more attention.展开更多
Indonesian oil sands were systematically separated to investigate their basic composition.The extraction effects of the solvents with different Hilderbrand solubility parameters(HSPs)on the bitumen of Indonesian oil s...Indonesian oil sands were systematically separated to investigate their basic composition.The extraction effects of the solvents with different Hilderbrand solubility parameters(HSPs)on the bitumen of Indonesian oil sands were compared.Furthermore,the Hansen solubility combination parameter(HSCP)and Teas triangle were used to explore rules in the separation of oil sands bitumen via solvent extraction.Finally,the saturates,aromatics,resins,and asphaltenes(SARA)fractions of the bitumen from Indonesian oil sands were analyzed.The results showed that the Indonesian oil sands were oil-wet with a bitumen content of 24.93%.The solvent extraction for bitumen could be accurately and conveniently selected based on the solubility parameter.When the HSPs of the extraction solvent were around 18–19 and the HSCPs were closer to a certain range(δ_(d)=17.5–18.0,δ_(p)=1–3.5,and δ_(h)=2–6),the extraction effect of bitumen from Indonesian oil sands improved,and the primary component affecting the extraction rate of bitumen were asphaltenes.展开更多
In this study,we provide evidence that oil sands process-affected waters(OSPW)contain factors that activate the antimicrobial and proinflammatory responses of immune cells.Specifically,using the murine macrophage RAW ...In this study,we provide evidence that oil sands process-affected waters(OSPW)contain factors that activate the antimicrobial and proinflammatory responses of immune cells.Specifically,using the murine macrophage RAW 264.7 cell line,we establish the bioactivity of two different OSPW samples and their isolated fractions.Here,we directly compared the bioactivity of two pilot scale demonstration pit lake(DPL)water samples,which included expressed water from treated tailings(termed the before water capping sample;BWC)as well as an after water capping(AWC)sample consisting of a mixture of expressed water,precipitation,upland runoff,coagulated OSPW and added freshwater.Significant inflammatory(i.e.macrophage activating)bioactivity was associated with the AWC sample and its organic fraction(OF),whereas the BWC sample had reduced bioactivity that was primarily associated with its inorganic fraction(IF).Overall,these results indicate that at non-toxic exposure doses,the RAW 264.7 cell line serves as an acute,sensitive and reliable biosensor for the screening of inflammatory constituents within and among discrete OSPW samples.展开更多
Naphthenic acids are a complex class of thousands of naturally occurring aliphatic and alicyclic carboxylic acids found in oil sands bitumen and in the wastewater generated from bitumen processing. Dozens of analytica...Naphthenic acids are a complex class of thousands of naturally occurring aliphatic and alicyclic carboxylic acids found in oil sands bitumen and in the wastewater generated from bitumen processing. Dozens of analytical methods have been developed for the semiquantification of total naphthenic acids in water samples. However, different methods can give different results, prompting investigation into the comparability of the many methods. A review of important methodological features for analyzing total naphthenic acids is presented and informs the design of future standard methods for the semi- quantification of total naphthenic acids using mass spectrometry. The design considerations presented are a synthesis of discussions from an Environment and Climate Change Canada (ECCC) led taskforce of 10 laboratory experts from government, industry and academia during April 2016 and subsequent discussions between University of British Columbia and ECCC representatives. Matters considered are: extraction method, solvent, pH, and temperature; analysis instrumentation and resolution; choice of calibration standards; use of surrogate and internal standards; and use of online or offline separation prior to analysis. The design considerations are amenable to both time-of-flight and Orbitrap mass spectrometers.展开更多
Capillary electrophoresis coupled to mass spectrometry(CE–MS) was used for the analysis of naphthenic acid fraction compounds(NAFCs) of oil sands process-affected water(OSPW). A standard mixture of amine-deriva...Capillary electrophoresis coupled to mass spectrometry(CE–MS) was used for the analysis of naphthenic acid fraction compounds(NAFCs) of oil sands process-affected water(OSPW). A standard mixture of amine-derivatized naphthenic acids is injected directly onto the CE column and analyzed by CE–MS in less than 15 min. Time of flight MS analysis(TOFMS), optimized for high molecular weight ions, showed NAFCs between 250 and 800 m/z. With a quadrupole mass analyzer, only low-molecular weight NAFCs(between 100 and 450 m/z) are visible under our experimental conditions. Derivatization of NAFCs consisted of two-step amidation reactions mediated by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide(EDC), or mediated by a mixture of EDC and N-hydroxysuccinimide, in dimethyl sulfoxide, dichloromethane or ethyl acetate. The optimum background electrolyte composition was determined to be 30%(V/V) methanol in water and 2%(V/V) formic acid. NAFCs extracted from OSPW in the Athabasca oil sands region were used to demonstrate the feasibility of CE–MS for the analysis of NAFCs in environmental samples, showing that the labeled naphthenic acids are in the mass range of 350 to 1500 m/z.展开更多
This paper presents an evaluation of the energy intensity and related greenhouse gas/CO2 emissions of integrated oil sands crude upgrading processes. Two major oil sands crude upgrading schemes currently used in Canad...This paper presents an evaluation of the energy intensity and related greenhouse gas/CO2 emissions of integrated oil sands crude upgrading processes. Two major oil sands crude upgrading schemes currently used in Canadian oil sands operations were investigated: cokingbased and hydroconversion-based. The analysis, which was based on a robust process model of the entire process, was constructed in Aspen HYSYS and calibrated with representative data. Simulations were conducted for the two upgrading schemes in order to generate a detailed inventory of the required energy and utility inputs: process fuel, steam, hydrogen and power. It was concluded that while hydroconversion-based scheme yields considerably higher amount of synthetic crude oil (SCO) than the cokerbased scheme (94 wt-% vs. 76 wt-%), it consumes more energy and is therefore more CO2-intensive (413.2kg CO2/m3sco vs. 216.4kg CO2/m^3sco). This substantial difference results from the large amount of hydrogen consumed in the ebullated-bed hydroconverter in the hydroconversion-based scheme, as hydrogen production through conventional methane steam reforming is highly energy-intensive and therefore the major source of CO2 emission. Further simulations indicated that optimization of hydroconverter operating variables had only a minor effect on the overall CO2 emission due to the complex trade-off effect between energy inputs.展开更多
This paper presents a numerical investigation of hydraulic fracturing in oil sands during cold water injection by considering the aspects of both geomechanics and reservoir fluid flow.According to previous studies,the...This paper presents a numerical investigation of hydraulic fracturing in oil sands during cold water injection by considering the aspects of both geomechanics and reservoir fluid flow.According to previous studies,the low shear strengths of unconsolidated or weakly consolidated sandstone reservoirs significantly influence the hydraulic fracturing process.Therefore,classical hydraulic fracture models cannot simulate the fracturing process in weak sandstone reservoirs.In the current numerical models,the direction of a tensile fracture is predetermined based on in situ stress conditions.Additionally,the potential transformation of a shear fracture into a tensile fracture and the potential reorientation of a tensile fracture owing to shear banding at the fracture tip have not yet been addressed in the literature.In this study,a smeared fracture technique is employed to simulate tensile and shear fractures in oil sands.The model used combines many important fracture features,which include the matrix flow,poroelasticity and plasticity modeling,saturation-dependent permeability,gradual degradation of the oil sands as a result of dilative shear deformation,and the tensile fracturing and shear failure that occur with the simultaneous enhancement of permeability.Furthermore,sensitivity analyses are also performed with respect to the reservoir and geomechanical parameters,including the apparent tensile strength and cohesion of the oil sands,magnitude of the minimum and maximum principal stress,absolute permeability and elastic modulus of the oil sands and ramp-up time.All these analyses are performed to clarify the influences of these parameters on the fracturing response of the oil sands.展开更多
The objectives of this experiment were to evaluate the performance of different plant species growing in different kinds of oil sands fine tailings,and to estimate the uptake of organic contaminants by plants from the...The objectives of this experiment were to evaluate the performance of different plant species growing in different kinds of oil sands fine tailings,and to estimate the uptake of organic contaminants by plants from the oil sands fine tailings.In general,total hydrocarbon in the plant could be ranked(beginning with the highest)as:unweathered plant 4 tailings (UWT),Freeze Thawtailings(FT),weathered plant 4 tailings(WT),and consolidated tailings(CT) for the willow,poplar and cattails.For grass,CT amended with tailings sand and muskeg had the highest hydrocarbon level in the field treatment,however,other three kinds of tailings(FT,WT and UWT) had lower but similar to each other hydrocarbon levels.展开更多
Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe...Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines.展开更多
Based on the abundant core data of oil sands in the Mackay river in Canada,the termination frequency of muddy interlayers was counted to predict the extension range of interlayers using a queuing theory model,and then...Based on the abundant core data of oil sands in the Mackay river in Canada,the termination frequency of muddy interlayers was counted to predict the extension range of interlayers using a queuing theory model,and then the quantitative relationship between the thickness and extension length of muddy interlayer was established.An equivalent upscaling method of geologic model based on tortuous paths under the effects of muddy interlayer has been proposed.Single muddy interlayers in each coarse grid are tracked and identified,and the average length,width and proportion of muddy interlayer in each coarse grid are determined by using the geological connectivity tracing algorithm.The average fluid flow length of tortuous path under the influence of muddy interlayer is calculated.Based on the Darcy formula,the formula calculating average permeability in the coarsened grid is deduced to work out the permeability of equivalent coarsened grid.The comparison of coarsening results of the oil sand reservoir of Mackay River with actual development indexes shows that the equivalent upscaling method of muddy interlayer by tortuous path calculation can reflect the blocking effect of muddy interlayer very well,and better reflect the effects of geological condition on production.展开更多
基金sponsored by Major Science and Technology Special Project of CNPC(Grant No.2023ZZ07)。
文摘The Lower Cretaceous Manville Group of Upper Mc Murray Formation is one of the main bitumen reservoirs in Athabasca.In this study,the relationship between reservoirs heterogeneity and bitumen geochemical characteristics were analyzed through core and microscopic observation,lab analysis,petrophysics and logging data.Based on the sedimentology framework,the formation environment of high-quality oil sand reservoirs and their significance for development were discussed.The results indicate that four types lithofacies were recognized in the Upper Mc Murray Formation based on their depositional characteristics.Each lithofacies reservoirs has unique physical properties,and is subject to varying degrees of degradation,resulting in diversity of bitumen content and geochemical composition.The tidal bar(TB)or tidal channel(TC)facies reservoir have excellent physical properties,which are evaluated as gas or water intervals due to strong degradation.The reservoir of sand bar(SB)facies was evaluated as oil intervals,due to its poor physical properties and weak degradation.The reservoir of mixed flat(MF)facies is composed of sand intercalated with laminated shale,which is evaluated as poor oil intervals due to its poor connectivity.The shale content in oil sand reservoir is very important for the reservoir physical properties and bitumen degradation degree.In the context of regional biodegradation,oil sand reservoirs with good physical properties will suffer from strong degradation,while oil sand reservoirs with relatively poor physical properties are more conducive to the bitumen preservation.
文摘The Nigerian oil sands represent the largest oil sand deposit in Africa, yet there is little published information on the distribution and potential health and ecological risks of trace elements in the oil resource. In the present study, we investigated the distribution pattern of 18trace elements(including biophile and chalcophile elements) as well as the estimated risks associated with exposure to these elements. The results of the study indicated that Fe was the most abundant element, with a mean concentration of 22,131 mg/kg while Br had the lowest mean concentration of 48 mg/kg. The high occurrence of Fe and Ti suggested a possible occurrence of ilmenite(Fe TiO_(3)) in the oil sands. Source apportionment using positive matrix factorization showed that the possible sources of detected elements in the oil sands were geogenic, metal production, and crustal. The contamination factor, geo-accumulation index, modified degree of contamination, pollution load index, and Nemerow pollution index indicated that the oil sands are heavily polluted by the elements. Health risk assessment showed that children were relatively more susceptible to the potentially toxic elements in the oil sands principally via ingestion exposure route(HQ > 1E-04). Cancer risks from inhalation are unlikely due to CR < 1E-06 but ingestion and dermal contact pose severe risks(CR > 1E-04). The high concentrations of the elements pose serious threats due to the potential for atmospheric transport, bioaccessibility, and bioavailability.
基金Major Special Program of National Science and Technology in 13th Five year plan(Grant No.ZX201605029)
文摘Global recoverable resources of heavy oil and oil sands have been assessed by CNPC using a geology-based assessment method combined with the traditional volumetric method, spatial interpolation method, parametric-probability method etc. The most favourable areas for exploration have been selected in accordance with a comprehensive scoring system. The results show:(1) For geological resources, CNPC estimate 991.18 billion tonnes of heavy oil and 501.26 billion tonnes of oil sands globally, of which technically recoverable resources of heavy oil and oil sands comprise 126.74 billion tonnes and 64.13 billion tonnes respectively. More than 80% of the resources occur within Tertiary and Cretaceous reservoirs distributed across 69 heavy oil basins and 32 oil sands basins. 99% of recoverable resources of heavy oil and oil sands occur within foreland basins, passive continental-margin basins and cratonic basins.(2) Since residual hydrocarbon resources remain following large-scale hydrocarbon migration and destruction, heavy oil and oil sands are characterized most commonly by late hydrocarbon accumulation, the same basin types and source-reservoir conditions as for conventional hydrocarbon resources, shallow burial depth and stratabound reservoirs.(3) Three accumulation models are recognised, depending on basin type: degradation along slope; destruction by uplift; and migration along faults.(4) In addition to mature exploration regions such as Canada and Venezuela, the Volga-Ural Basin and the Pre-Caspian Basin are less well-explored and have good potential for oil-sand discoveries, and it is predicted that the Middle East will be an important region for heavy oil development.
基金Supported by the National Key Research and Development Program of China(2016YFB0301800)the partial support by The Royal Society International Exchange Award(IE161344)the State Scholarship Fund of China Scholarship Council(CSC)(201706255020)
文摘In this paper, pyrolysis of Indonesian oil sands (lOS) was investigated by two different heating methods to develop a better understanding of the microwave-assisted pyrolysis. Thermogravimetric analysis was conducted to study the thermal decomposition behaviors of lOS, showing that 550 ℃ might be the pyrolysis final temperature. A explanation of the heat-mass transfer process was presented to demonstrate the influence of mi- crowave-assisted pyrolysis on the liquid product distribution. The heat-mass transfer model was also useful to explain the increase of liquid product yield and heavy component content at the same heating rate by two differ- ent heating methods. Experiments were carried out using a fixed bed reactor with and without the microwave irradiation. The results showed that liquid product yield was increased during microwave induced pyrolysis, while the formation of gas and solid residue was reduced in comparison with the conventional pyrolysis. Moreover, the liquid product characterization by elemental analysis and GC-MS indicated the significant effect on the liquid chemical composition by microwave irradiation. High polarity substances (ε 〉 10 at 25 ℃), such as oxy- organics were increased, while relatively low polarity substances (ε 〈 2 at 25℃), such as aliphatic hydrocarbons were decreased, suggesting that microwave enhanced the relative volatility of high polarity substances. The yield improvement and compositional variations in the liquid product promoted by the microwave-assisted pyrolysis deserve the further exploitation in the future,
文摘The oil sands deposits in the Western Canada Sedimentary Basin (WCSB) comprise of at least 85% of the total immobile bitumen in place in the world and are so concentrated as to be virtually the only such deposits that are economically recoverable for conversion to oil. The major deposits are in three geographic and geologic regions of Alberta: Athabasca, Cold Lake and Peace River. The bitumen reserves have oil gravities ranging from 8 to 12° API, and are hosted in the reservoirs of varying age, ranging from Devonian (Grosmont Formation) to Early Cretaceous (Mannville Group). They were derived from light oils in the southern Alberta and migrated to the north and east for over 100 km during the Laramide Orogeny, which was responsible for the uplift of the Rocky Mountains. Biodegradation is the only process that transforms light oil into bitumen in such a dramatic way that overshadowed other alterations with minor contributions. The levels of biodegradation in the basin increasing from west (non-biodegraded) to east (extremely biodegraded) can be attributed to decreasing reservoir temperature, which played the primary role in controlling the biodegradation regime. Once the reservoir was heated to approximately 80℃, it was pasteurized and no biodegradation would further occur. However, reservoir temperature could not alone predict the variations of the oil composition and physical properties. Compositional gradients and a wide range ofbiodegradation degree at single reservoir column indicate that the water-leg size or the volume ratio of oil to water is one of the critical local controls for the vertical variations ofbiodegradation degree and oil physical properties. Late charging and mixing of the fresh and degraded oils ultimately dictate the final distribution of compositions and physical properties found in the heavy oil and oil sand fields. Oil geochemistry can reveal precisely the processes and levels that control these variations in a given field, which opens the possibility of model-driven prediction of oil properties and sweet spots in reservoirs.
文摘Oil sands are the most important of the oil and gas resources in Canada. So the distribution and evaluation of oil sands form a critical basis for risk investment in Canada. Distribution of oil sands resources is severely controlled by the reservoir heterogeneity. Deterministic modeling is commonly used to solve the heterogeneity problems in the reservoir, but rarely used to evaluate hydrocarbon resources. In this paper, a lithofacies based deterministic method is employed to assess the oil sands resources for a part of a mining project in northern Alberta. The statistical analysis of Dean Stark water and oil saturation data and study of the core description data, regional geology and geophysical logs reveal that the lithofacies in the study area can be classified into reservoir facies, possible reservoir facies and non-reservoir facies. The indicator krigging method is used to build a 3D lithofacies model based on the classification of sedimentary facies and the ordinary krigging method is applied to petrophysical property modeling. The results show that the krigging estimation is one of the good choices in oil sand resources modeling in Alberta. Lithofacies-grade based modeling may have advantages over the grade-only based modeling.
基金The authors gratefully acknowledge the support from the National Natural Science Foundation of China(Grant No.21406101)the Key Research and Development Plan of Liaoning Province(Grant No.2020JH2/10300061).
文摘An ionic liquid(IL),1-ethyl-3-methyl imidazolium tetrafluoroborate([Emim][BF_(4)]),was used to enhance bitumen recovery from oil sands by dichloromethane solvent extraction.A multiphase system could be formed by simply mixing the components at ambient temperature,consisting of sands and clays,mixtures of ionic liquid and dichloromethane,and concentrated bitumen layer.The results demonstrated that[Emim][BF_(4)]increased the bitumen recovery up to 92%.Much less clay fines were found in the recovered bitumen than those formed by using dichloromethane solvent extraction alone,and the dichloromethane residue was not detected in the spent sands.We proposed that[Emim][BF_(4)]had an ability to reduce the adhesion of bitumen to sand,resulting in an improved separation efficiency.Furthermore,[Emim][BF_(4)]could facilitate the transfer of the extracted bitumen to the surface interface,and then the bitumen was auto-partitioned to a separate immiscible phase for ease of harvesting.This technology circumvented the issue of high consumption of distillation energy due to separation of bitumen phase and low boiling point of dichloromethane.[Emim][BF_(4)]and dichloromethane could be readily recycled through the system and used repeatedly.After ten cycles,the bitumen recovery remained above 88%.Initial scale-up work suggested that this approach would form the basis for a viable large-scale process.
文摘Oil sands contain a so-called organic rich solids component (ORS), i.e., solids whose surfaces are strongly associated with toluene insoluble organic matter (TIOM). Typically, humic material is the major component of TIOM. It provides sites for adsorption and chemical fixation of bitumen. This bound bitumen is “unliberated”, and considerable mechanical or chemical energy may be required to release it. In order to establish a correlation between bitumen recovery and ORS content, a few selected oil sands were processed in a Batch Extraction Unit (BEU). Analysis of the middlings and coarse tailings streams from these tests indicated a relatively constant bitumen to ORS ratio of 2.8±0.7. This value allows the liberated-unliberated bitumen balance (LUBB) to be calculated for any given oil sands. The amounts of bitumen recovered as primary froth during the BEU experiments are close to the estimated liberated bitumen contents in each case tested. This observation indicates that the liberated-unliberated bitumen calculation is an important quantitative parameter for prediction of bitumen recovery under specific recovery conditions. Preliminary results indicate that the ORS content of an oil sands may be estimated from the carbon content of bitumen free oil sands solids.
基金Natural Resources Canada and government of Canada's interdepartmental Program of Energy Research and Development (PERD)
文摘This study set out to gain a deeper understanding of a fluid catalytic cracking(FCC)coprocessing approach using canola oil mixed with bitumen-derived heavy gas oil(HGO),for the production of partially-renewable gasoline,with respect to its composition and quality.The FCC coprocessing approach may provide an alternative solution to reducing the carbon footprint and to meet government regulatory demands for renewable transportation fuels.In this study,a mixture of 15 v%canola oil in HGO was catalytically cracked with a commercial equilibrium catalyst under typical FCC conditions.Cracking experiments were performed using a bench-scale Advanced Cracking Evaluation(ACE)unit at a fixed weight hourly space velocity of 8 h^(à1),490–530C,and catalyst/oil ratios of 4–12 g/g.The total liquid product samples were injected via an automatic sampler and a prefractionator(to removet254C)into a gas chromatographic system containing a series of columns,traps,and valves designed to separate each of the hydrocarbon types.The analyzer gives detailed hydrocarbon types of à200C gasoline,classified into paraffins,iso-paraffins,olefins,naphthenes,and aromatics by carbon number up to C_(11)(C_(10)for aromatics).For a feed cracked at a given temperature,the gasoline aromatics show the highest selectivity in terms of weight percent conversion,followed by saturated iso-paraffins,saturated naphthenes,unsaturated iso-paraffins,unsaturated naphthenes,unsaturated normal paraffins,and saturated normal paraffins.As conversion increases,both aromatics and saturated iso-paraffins increase monotonically at the expense of other components.Hydrocarbon type analysis and octane numbers with variation in feed type,process severity(temperature and catalyst/oil ratio),and conversion are also presented and discussed.
文摘In the oil sands industry, high temperature with the addition of a caustic dispersing agent has formed the basis of the Clark hot water extraction process used successfully on a commercial scale to recover bitumen from surface mined oil sands ore since 1967. Processes different from the established Clark process (high temperature and caustic) have been developed to work at a range of temperatures with or without the use of sodium hydroxide. Large scale bitumen extraction pilot tests were performed with two different extraction processes and large strain consolidation tests were performed on the resulting different railings. These consolidation tests determined the compressibility and hydraulic conductivity relationships with void ratio which are engineering properties that influence the long-term disposal of the fine tailings. They were used in large strain consolidation numerical analyses of storage ponds to predict water release rates and changes to surface elevations that impact storage volumes and elevation of reclamation surfaces.
基金supported by the National Key Research and Development Program of China(No.2020YFA0714103)China Scholarship Council(No.CSC201906175002)the Young Teachers and Students’Cutting-edge Funding of Jilin University,China(No.2020-JCXK-04).
文摘There are rich oil and gas resources in Alberta oil sand mining area in Canada.Since the 1960s,the Canadian government decided to increase the mining intensity.However,the exploitation will bring many adverse effects.In recent years,more people pay attention to the environmental protection and ecological restoration of mining area,such as issues related with changes of vegetated lands.Thus,the authors used the Landsat-5 TM and Landsat-8 OLI remote sensing images as the basic data sources,and obtained the land cover classification maps from 1995 to 2020 by ENVI.Based on the NDVI,NDMI and RVI,three images in each period are processed and output to explore the long-term impact of exploitation.The results show that from 1995 to 2020,the proportion of vegetation around mining areas decreased sharply,the scale of construction land in the mining area increased,and the vegetated land was changed to land types such as tailings pond,oil sand mine and other land types.In addition,three vegetation indexes decreased from 1995 to 2020.Although the exploitation of oil sand mining area brings great economic benefits,the environmental protection(especially vegetation)in oil sand mining areas should be paid more attention.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant number:BK20140260)Joint Project of Industry-University-Research of Jiangsu Province(Grant number:BY2018158,BY2021590)State Key Laboratory of Heavy Oil Processing.
文摘Indonesian oil sands were systematically separated to investigate their basic composition.The extraction effects of the solvents with different Hilderbrand solubility parameters(HSPs)on the bitumen of Indonesian oil sands were compared.Furthermore,the Hansen solubility combination parameter(HSCP)and Teas triangle were used to explore rules in the separation of oil sands bitumen via solvent extraction.Finally,the saturates,aromatics,resins,and asphaltenes(SARA)fractions of the bitumen from Indonesian oil sands were analyzed.The results showed that the Indonesian oil sands were oil-wet with a bitumen content of 24.93%.The solvent extraction for bitumen could be accurately and conveniently selected based on the solubility parameter.When the HSPs of the extraction solvent were around 18–19 and the HSCPs were closer to a certain range(δ_(d)=17.5–18.0,δ_(p)=1–3.5,and δ_(h)=2–6),the extraction effect of bitumen from Indonesian oil sands improved,and the primary component affecting the extraction rate of bitumen were asphaltenes.
基金This work was supported by a research grant from Alberta Innovates,a Natural Sciences and Engineering Research Council of Canada(NSERC)Senior Industrial Research Chair(IRC)in Oil Sands Tailings Water Treatment through the support of Canada’s Oil Sands Innovation Alliance(COSIA),Syncrude Canada Ltd.,Suncor Energy Inc.,Canadian Natural Resources Ltd.,Imperial Oil Resources,Teck Resources Limited,EPCOR Water Services,Alberta Innovates,and Alberta Environment and Parks.We also acknowledge an NSERC Collaborative Research and Development(CRD)grant for financial support and the Helmholtz-Alberta Initiative(HAI)through the Alberta Environment and Parks’ecoTrust Programfor analytical supportDML was supported in part by an NSERC research grant RGPIN 06395 and a University of Alberta Faculty of Science research transition fund.The authorswould like to acknowledge graduate student scholarships from the Faculty of Graduate Studies and Research at the University of Alberta(to NASH and YYC).Lastly,the authors would also like to thank the University of Alberta Flow Cytometry Facility(Faculty of Medicine and Dentistry)and the University of Alberta Molecular Biology Service Unit(Faculty of Science)for their use of equipment.
文摘In this study,we provide evidence that oil sands process-affected waters(OSPW)contain factors that activate the antimicrobial and proinflammatory responses of immune cells.Specifically,using the murine macrophage RAW 264.7 cell line,we establish the bioactivity of two different OSPW samples and their isolated fractions.Here,we directly compared the bioactivity of two pilot scale demonstration pit lake(DPL)water samples,which included expressed water from treated tailings(termed the before water capping sample;BWC)as well as an after water capping(AWC)sample consisting of a mixture of expressed water,precipitation,upland runoff,coagulated OSPW and added freshwater.Significant inflammatory(i.e.macrophage activating)bioactivity was associated with the AWC sample and its organic fraction(OF),whereas the BWC sample had reduced bioactivity that was primarily associated with its inorganic fraction(IF).Overall,these results indicate that at non-toxic exposure doses,the RAW 264.7 cell line serves as an acute,sensitive and reliable biosensor for the screening of inflammatory constituents within and among discrete OSPW samples.
文摘Naphthenic acids are a complex class of thousands of naturally occurring aliphatic and alicyclic carboxylic acids found in oil sands bitumen and in the wastewater generated from bitumen processing. Dozens of analytical methods have been developed for the semiquantification of total naphthenic acids in water samples. However, different methods can give different results, prompting investigation into the comparability of the many methods. A review of important methodological features for analyzing total naphthenic acids is presented and informs the design of future standard methods for the semi- quantification of total naphthenic acids using mass spectrometry. The design considerations presented are a synthesis of discussions from an Environment and Climate Change Canada (ECCC) led taskforce of 10 laboratory experts from government, industry and academia during April 2016 and subsequent discussions between University of British Columbia and ECCC representatives. Matters considered are: extraction method, solvent, pH, and temperature; analysis instrumentation and resolution; choice of calibration standards; use of surrogate and internal standards; and use of online or offline separation prior to analysis. The design considerations are amenable to both time-of-flight and Orbitrap mass spectrometers.
基金supported by the Environment Canada and the NSERC
文摘Capillary electrophoresis coupled to mass spectrometry(CE–MS) was used for the analysis of naphthenic acid fraction compounds(NAFCs) of oil sands process-affected water(OSPW). A standard mixture of amine-derivatized naphthenic acids is injected directly onto the CE column and analyzed by CE–MS in less than 15 min. Time of flight MS analysis(TOFMS), optimized for high molecular weight ions, showed NAFCs between 250 and 800 m/z. With a quadrupole mass analyzer, only low-molecular weight NAFCs(between 100 and 450 m/z) are visible under our experimental conditions. Derivatization of NAFCs consisted of two-step amidation reactions mediated by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide(EDC), or mediated by a mixture of EDC and N-hydroxysuccinimide, in dimethyl sulfoxide, dichloromethane or ethyl acetate. The optimum background electrolyte composition was determined to be 30%(V/V) methanol in water and 2%(V/V) formic acid. NAFCs extracted from OSPW in the Athabasca oil sands region were used to demonstrate the feasibility of CE–MS for the analysis of NAFCs in environmental samples, showing that the labeled naphthenic acids are in the mass range of 350 to 1500 m/z.
文摘This paper presents an evaluation of the energy intensity and related greenhouse gas/CO2 emissions of integrated oil sands crude upgrading processes. Two major oil sands crude upgrading schemes currently used in Canadian oil sands operations were investigated: cokingbased and hydroconversion-based. The analysis, which was based on a robust process model of the entire process, was constructed in Aspen HYSYS and calibrated with representative data. Simulations were conducted for the two upgrading schemes in order to generate a detailed inventory of the required energy and utility inputs: process fuel, steam, hydrogen and power. It was concluded that while hydroconversion-based scheme yields considerably higher amount of synthetic crude oil (SCO) than the cokerbased scheme (94 wt-% vs. 76 wt-%), it consumes more energy and is therefore more CO2-intensive (413.2kg CO2/m3sco vs. 216.4kg CO2/m^3sco). This substantial difference results from the large amount of hydrogen consumed in the ebullated-bed hydroconverter in the hydroconversion-based scheme, as hydrogen production through conventional methane steam reforming is highly energy-intensive and therefore the major source of CO2 emission. Further simulations indicated that optimization of hydroconverter operating variables had only a minor effect on the overall CO2 emission due to the complex trade-off effect between energy inputs.
基金The Natural Sciences and Engineering Research Council of Canada(Grant No.CRDPJ 387606-09).
文摘This paper presents a numerical investigation of hydraulic fracturing in oil sands during cold water injection by considering the aspects of both geomechanics and reservoir fluid flow.According to previous studies,the low shear strengths of unconsolidated or weakly consolidated sandstone reservoirs significantly influence the hydraulic fracturing process.Therefore,classical hydraulic fracture models cannot simulate the fracturing process in weak sandstone reservoirs.In the current numerical models,the direction of a tensile fracture is predetermined based on in situ stress conditions.Additionally,the potential transformation of a shear fracture into a tensile fracture and the potential reorientation of a tensile fracture owing to shear banding at the fracture tip have not yet been addressed in the literature.In this study,a smeared fracture technique is employed to simulate tensile and shear fractures in oil sands.The model used combines many important fracture features,which include the matrix flow,poroelasticity and plasticity modeling,saturation-dependent permeability,gradual degradation of the oil sands as a result of dilative shear deformation,and the tensile fracturing and shear failure that occur with the simultaneous enhancement of permeability.Furthermore,sensitivity analyses are also performed with respect to the reservoir and geomechanical parameters,including the apparent tensile strength and cohesion of the oil sands,magnitude of the minimum and maximum principal stress,absolute permeability and elastic modulus of the oil sands and ramp-up time.All these analyses are performed to clarify the influences of these parameters on the fracturing response of the oil sands.
文摘The objectives of this experiment were to evaluate the performance of different plant species growing in different kinds of oil sands fine tailings,and to estimate the uptake of organic contaminants by plants from the oil sands fine tailings.In general,total hydrocarbon in the plant could be ranked(beginning with the highest)as:unweathered plant 4 tailings (UWT),Freeze Thawtailings(FT),weathered plant 4 tailings(WT),and consolidated tailings(CT) for the willow,poplar and cattails.For grass,CT amended with tailings sand and muskeg had the highest hydrocarbon level in the field treatment,however,other three kinds of tailings(FT,WT and UWT) had lower but similar to each other hydrocarbon levels.
基金This work was supported by the Pilot Seed Grant(Grant No.RES0049944)the Collaborative Research Project(Grant No.RES0043251)from the University of Alberta.
文摘Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines.
基金Supported by the China National Science and Technology Major Project(2016ZX05031002-001)National Natural Science Foundation of China(41572081)Innovation Group of Hubei Province(2016CFA024)
文摘Based on the abundant core data of oil sands in the Mackay river in Canada,the termination frequency of muddy interlayers was counted to predict the extension range of interlayers using a queuing theory model,and then the quantitative relationship between the thickness and extension length of muddy interlayer was established.An equivalent upscaling method of geologic model based on tortuous paths under the effects of muddy interlayer has been proposed.Single muddy interlayers in each coarse grid are tracked and identified,and the average length,width and proportion of muddy interlayer in each coarse grid are determined by using the geological connectivity tracing algorithm.The average fluid flow length of tortuous path under the influence of muddy interlayer is calculated.Based on the Darcy formula,the formula calculating average permeability in the coarsened grid is deduced to work out the permeability of equivalent coarsened grid.The comparison of coarsening results of the oil sand reservoir of Mackay River with actual development indexes shows that the equivalent upscaling method of muddy interlayer by tortuous path calculation can reflect the blocking effect of muddy interlayer very well,and better reflect the effects of geological condition on production.