期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures
1
作者 Hammad Saulat Jianhua Yang +3 位作者 Tao Yan Waseem Raza Wensen Song Gaohong He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期242-252,共11页
Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of ... Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of gravity.W-MEL membranes were grown on stainless steel (SS) meshes through in-situ hydrothermal growth method facilitated with (3-aminopropyl)triethoxysilane (APTES) modification of stainless steel meshes,which promote the heterogeneous nucleation and crystal growth of W-MEL zeolites onto the mesh surface.W-MEL membranes were grown on different mesh size supports to investigate the effect of mesh size on the separation performance of the membrane.The assynthesized W-MEL membrane supported on 500 mesh (25μm)(W-MEL-500) exhibit the hydrophilic nature with a water contact angle of 11.8°and delivers the best hexane/water mixture separation with a water flux and separation efficiency of 46247 L·m^(-2)·h^(-1)and 99.5%,respectively.The wettability of W-MEL membranes was manipulated from hydrophilic to hydrophobic nature by chemically modifying with the fluorine-free compounds (hexadecyltrimethoxysilane (HDTMS) and dodecyltrimethoxysilane(DDTMS)) to achieve efficient oil-permselective separation of heavy oils from water.Among the hydrophobically modified W-MEL membranes,W-MEL-500-HDTMS having a water contact angle of146.4°delivers the best separation performance for dichloromethane/water mixtures with a constant oil flux and separation efficiency of 61490 L·m^(-2)·h^(-1)and 99.2%,respectively along with the stability tested up to 20 cycles.Both W-MEL-500-HDTMS and W-MEL-500-DDTMS membranes also exhibit similar separation performances for the separation of heavy oil from sea water along with a 20-fold lower corrosion rate in comparison with the bare stainless-steel mesh,indicating their excellent stability in seawater.Compared to the reported zeolite membranes for oil/water separation,the as-synthesized and hydrophobically modified W-MEL membranes shows competitive separation performances in terms of flux and separation efficiency,demonstrating the good potentiality for oil/water separation. 展开更多
关键词 Corrosion Dodecyltrimethoxysilane Hexadecyltrimethoxysilane Membranes oil/water separation ZEOLITE
下载PDF
Quantitatively probing interactions between membrane with adaptable wettability and oil phase in oil/water separation
2
作者 Zhong-Zheng Xu Ming-Wei Zhao +6 位作者 Yi-Ning Wu Jia-Wei Liu Ning Sun Zi-Zhao Wang Yi-Ming Zhang Lin Li Cai-Li Dai 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2564-2574,共11页
The membrane method based on adaptive wettability shows great advantages in oil-water separation.At present,researches focus on the excellent application performance of the membrane material,while the quantitative ana... The membrane method based on adaptive wettability shows great advantages in oil-water separation.At present,researches focus on the excellent application performance of the membrane material,while the quantitative analysis of interactions in oil-water separation is rarely recognized.Herein,we constructed an adaptable wettability membrane with multiple polymer networks by polydopamine(PDA)and mussel-inspired amphiphilic polymer.Based on the Owens three-probe liquid method,the surface energy of the modified membrane was verified to meet the adaptive wettability conditions,with surface energies(γ-8)of 147.6 mJ m^(−2)(superhydrophilic/underwater superoleophobic)and 49.87 mJ m^(−2)(superhydrophobic/superoleophobic),respectively.The adhesion or repulsion of the membrane to the oil phase under different conditions during the separation process was quantified by the chemical probe AFM technique.In addition,the oil-water selective separation mechanism was further analyzed in a simplified membrane microchannel model.The results show that the different wetting produces capillary additional pressure in opposite directions,resulting in different energies to be overcome when the oil or water passes through the microchannels,thus achieving selective separation. 展开更多
关键词 Adaptable wettability Selective oil/water separation Interface interaction Probe AFM technique
下载PDF
The superhydrophobic sponge decorated with Ni-Co double layered oxides with thiol modification for continuous oil/water separation
3
作者 Xiaodong Yang Na Yang +4 位作者 Ziqiang Gong Feifei Peng Bin Jiang Yongli Sun Luhong Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期296-305,共10页
In this paper, the superhydrophobic polyurethane sponge(SS-PU) was facilely fabricated by etching with Jones reagent to bind the nanoparticles of Ni-Co double layered oxides(LDOs) on the surface, and following modific... In this paper, the superhydrophobic polyurethane sponge(SS-PU) was facilely fabricated by etching with Jones reagent to bind the nanoparticles of Ni-Co double layered oxides(LDOs) on the surface, and following modification with n-dodecyl mercaptan(DDT). This method provides a new strategy to fabricate superhydrophobic PU sponge with a water contact angle of 157° for absorbing oil with low cost and in large scale. It exhibits the strong absorption capacity and highly selective characteristic for various kinds of oils which can be recycled by simple squeezing. Besides, the as-prepared sponge can deal with the floating and underwater oils, indicating its application value in handling oil spills and domestic oily wastewater. The good self-cleaning ability shows the potential to clear the pollutants due to the ultralow adhesion to water. Especially, the most important point is that the superhydrophobic sponge can continuously and effectively separate the oil/water mixture against the condition of turbulent disturbance by using our designed device system, which exhibit its good superhydrophobicity, strong stability.Furthermore, the SS-PU still maintained stable absorption performance after 150 cycle tests without losing capacity obviously, showing excellent durability in long-term operation and significant potential as an efficient absorbent in large-scale dispose of oily water. 展开更多
关键词 Superhydrophobic sponge Ni-Co double layered oxides Thiol modification oil absorption oil/water separation
下载PDF
Efficient oil-water separation by novel biodegradable all cellulose composite filter paper
4
作者 Chizhou Wang Shaodi Wu +4 位作者 Ning Zhang Zhaoli Jiang Xianglin Hou Long Huang Tiansheng Deng 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1673-1682,共10页
Industrial production and domestic discharge produce a large amount of oily wastewater, which seriously affects the stability of the ecological environment. Membrane separation technology provides another path to trea... Industrial production and domestic discharge produce a large amount of oily wastewater, which seriously affects the stability of the ecological environment. Membrane separation technology provides another path to treating oily wastewater. And appropriate surface modification of the membrane helps to achieve high efficiency of treating oily wastewater. With green, economy and stability been more concerned.The focal research reports a completely biodegradable all cellulose composite filter paper(ACCFP) composed of Ⅰ-cellulose macrofibers and Ⅱ-cellulose matrix. It is a simple one-step impregnation method to adjust the surface microstructure of the pristine filter paper(PFP), and it does not involve with chemical reaction. The pre-wetted ACCFP consist of Ⅱ-cellulose hydrogel and Ⅰ-cellulose reinforcement in the process of oil-water separation. This layer of hydrogel is the fundamental to underwater superoleophobicity, which determines their eligibility for applications of efficient oil-water mixture or oil-in-water(oil/water) emulsion separation. The separation efficiency of oil-water mixture and oil/water emulsion exceed 95% and 99.9%, respectively. In addition, excellent mechanical properties of ACCFP in dry and wet conditions ensure its stability in service and prolong service life in applications. The focal study provides a new method for high-performance oil-water separation and it is more in line with sustainable chemistry. 展开更多
关键词 All cellulose composite filter paper Pristine filter paper oil in water separation Underwater superoleophobic property
下载PDF
Coalescence separation of oil water emulsion on amphiphobic fluorocarbon polymer and silica nanoparticles coated fiber-bed coalescer 被引量:3
5
作者 Qian Zhang Lei Li +2 位作者 Lixia Cao Yanxiang Li Wangliang Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第8期29-37,共9页
Discharging untreated oily wastewater into the environment disrupts the ecological balance,which is a global problem that requires urgent solutions.Superhydrophilic and superoleophilic fibrous medium(FM)effectively se... Discharging untreated oily wastewater into the environment disrupts the ecological balance,which is a global problem that requires urgent solutions.Superhydrophilic and superoleophilic fibrous medium(FM)effectively separated oil–water emulsion as it was hydrophobic underwater.But its separation efficiencies(SEs)first increased to 98.9%,then dropped to 97.6%in 10 min because of oil-fouling.To tackle this problem,FM deposited with 0%–10%silica nanoparticle(NPsFMs),then coated by fluorocarbon polymer(X-[CH_(2)CH_(2)O]nCH_(2)CH_(2)O-Y-NH-COOCH_(2)C4F9)(FCNPs FMs),was used to enhance its roughness and regulate its initial wettability to improve the anti-fouling property.FCFM and FCNPs FMs were hydrophobic and oleophobic in air and oleophobic underwater.Their water contact angles,oil contact angles and oil contact angles were 115.3°–121.1°,128.8°–136.5°,and 131.6°–136.7°,respectively,meeting the requirement of 90°–140°for coalescence separation.FCNPs FM-5 had the best separation performance with a constant value of 99.8%in 10 min,while that of FCNPs FM-10 slightly decreased to 99.5%.Theoretical released droplet(TRD)diameter,calculated by the square root of the product of pore radius and fiber diameter,was used for the evaluation of coalescence performance.Analyzed by two ideal models,TRD diameter and fiber diameter showed a parabola type relationship,proving that the separation efficiency was a collaborative work of wettability,pore size and fiber diameter.Also,it explained the SEs reduction from FCNPs FM-5 to FCNPs FM-10 was revelent to the three parameters.Moreover,FCNPsFMs effectively separated emulsions stabilized by cationic surfactant CTAB(SEs:97.3%–98.4%)and anionic surfactant SDBS(SEs:91.3%–93.4%).But they had an adverse effect on nonionic surfactant Tween-80 emulsion separation(SEs:94.0%–71.76%).Emulsions made by diverse oils can be effectively separated:octane(SEs:99.4%–100%),rapeseed oil(SEs:97.3%–98.8%),and diesel(SEs:95.2%–97.0%).These findings provide new insights for designing novel materials for oil–water separation by coalescence mechanism. 展开更多
关键词 oil–water separation Fluorocarbon polymer Amphiphobic COALESCENCE
下载PDF
Cyclonic separation process intensification oil removal based on microbubble flotation 被引量:8
6
作者 Liu Jiongtian Xu Hongxiang Li Xiaobing 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期415-422,共8页
The cyclonic-static microbubble flotation column has dual effects including the cyclonic separation and floatation separation with the characteristics of the small lower limit of the effective separation size, short s... The cyclonic-static microbubble flotation column has dual effects including the cyclonic separation and floatation separation with the characteristics of the small lower limit of the effective separation size, short separation time, large handling capacity, and low operation cost. It shows significant advantages in the oily wastewater treatment field, especially the polymer flooding oily wastewater treatment aspect. In this paper, the cyclonic separation function mechanism of the cyclonic-static microbubble flotation column was studied, the impact of the parameters including the feeding rate, aeration rate, circulating pressure, and underflow split ratio on the cyclonic separation efficiency was investigated, and the cyclonic separation efficiency model was established as well. In addition, by applying the Doppler Laser Velocimeter (LDV) and Fluent simulation software, the test and simulation to the single-phase flow velocity field of the cyclonic separation section of the cyclonic-static microbubble flotation column were carried out, and the velocity distribution rule of the cyclonic separation section was analyzed under the singlephase flow conditions. 展开更多
关键词 Cyclonic-static microbubble flotation column Microbubble flotation Cyclonic separation oil–water separation
下载PDF
Highly Durable Ag-CuO Heterostructure-Decorated Mesh for Efficient Oil/Water Separation and In Situ Photocatalytic Dye Degradation
7
作者 Jiakai Li Changpeng Lv +2 位作者 Xuehua Liu Zhengbo Jiao Na Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2021年第4期611-619,共9页
It is of great necessity yet still a challenge to develop superwetting functional interfacial materials for simultaneously separating insoluble oil and degrading soluble dye pollutants in practical wastewater.In this ... It is of great necessity yet still a challenge to develop superwetting functional interfacial materials for simultaneously separating insoluble oil and degrading soluble dye pollutants in practical wastewater.In this work,a Ag-CuO heterostructure-decorated mesh was fabricated via facile alkali etchingcalcination and photoreduction approaches.The as-synthesized mesh with superhydrophilicity and underwater superoleophobicity displayed high separation efficiency(>99.998%)for diverse oil/water mixtures.Besides,it demonstrated more superior photocatalytic performance in dye degradation than those of bare CuO nanostructure-coated materials,which is primarily attributed to the intensive visible light harvesting and efficient electron-holes separation occurred on noble metal-semiconductor heterostructures.Furthermore,on account of the tenacity of Cu substrate as well as enhanced structural stability,this binary composite-decorated mesh exhibited highly reliable durability and robustness after 10 cycles of photocatalytic degradation tests,and even being ultrasonic worn for 30 min.More importantly,our developed mesh was capable of in situ catalytic degrading water-soluble organic dyes during oil/water separation under visible light irradiation.Therefore,such a dexterous and feasible strategy may afford a new route to construct bifunctional and predurable materials for actual sewage purification. 展开更多
关键词 Ag-CuO heterostructures highly durable in situ bifunctional oil/water separation photocatalytic dye degradation
下载PDF
Development and prospect of separated zone oil production technology
8
作者 LIU He ZHENG Lichen +4 位作者 YANG Qinghai YU Jiaqing YUE Qingfeng JIA Deli WANG Quanbin 《Petroleum Exploration and Development》 2020年第5期1103-1116,共14页
This article outlines the development of separated zone oil production in foreign countries,and details its development in China.According to the development process,production needs,technical characteristics and adap... This article outlines the development of separated zone oil production in foreign countries,and details its development in China.According to the development process,production needs,technical characteristics and adaptability of oilfields in China,the development of separate zone oil production technology is divided into four stages:flowing well zonal oil production,mechanical recovery and water blocking,hydraulically adjustable zonal oil production,and intelligent zonal production.The principles,construction processes,adaptability,advantages and disadvantages of the technology are introduced in detail.Based on the actual production situation of the oilfields in China at present,three development directions of the technology are proposed.First,the real-time monitoring and adjustment level of separated zone oil production needs to be improved by developing downhole sensor technology and two-way communication technology between ground and downhole and enhancing full life cycle service capability and adaptability to horizontal wells.Second,an integrated platform of zonal oil production and management should be built using a digital artificial lifting system.Third,integration of injection and production should be implemented through large-scale application of zonal oil production and zonal water injection to improve matching and adjustment level between the injection and production parameters,thus making the development adjustment from"lag control"to"real-time optimization"and improving the development effect. 展开更多
关键词 separated zone oil production flowing well zonal oil production mechanical recovery and water plugging hydraulically adjustable zonal oil production intelligent zonal oil production PROSPECT
下载PDF
Cocracking and Separate Cracking of Straight-Run Gasoline and Light Gas Oil
9
作者 Zhao Xinqiang Lou Qiaugkun, and Zou Renjun(Department of Chemical Engineering, Hebei University of Technology,PO. Box 315, Tianjin, P. R. China) 《河北工业大学学报》 CAS 1997年第A01期110-116,共7页
This paper presents experimental results of cocracking of straight-run gasoline (SRG) and light gaS oil (LGO) in an improved pulsed-micro-pyrolyzer. It is shown that there are negative opergistic effect on the yields ... This paper presents experimental results of cocracking of straight-run gasoline (SRG) and light gaS oil (LGO) in an improved pulsed-micro-pyrolyzer. It is shown that there are negative opergistic effect on the yields and selectivities of ethylene and propylene in cocracking. The difference in coking tendencies betWeen the cocracking and the separate cracking is compared as well. 展开更多
关键词 Cocracking and Separate Cracking of Straight-Run Gasoline and Light Gas oil CI
下载PDF
Electrospinning organic solvent resistant preoxidized poly(acrylonitrile)nanofiber membrane and its properties 被引量:1
10
作者 Zhiwei Du Jinxue Cheng +2 位作者 Qinglin Huang Mingxing Chen Changfa Xiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期289-299,共11页
A high performance preoxidized poly(acrylonitrile)(O-PAN)nanofiber membrane with excellent solvent resistance,thermal stability and flexibility was fabricated by the preoxidation of electrospun PAN nanofiber membrane.... A high performance preoxidized poly(acrylonitrile)(O-PAN)nanofiber membrane with excellent solvent resistance,thermal stability and flexibility was fabricated by the preoxidation of electrospun PAN nanofiber membrane.The performance of resultant O-PAN nanofiber membrane was optimized by altering the PAN concentration and preoxidation temperature.The results showed that the O-PAN nanofiber membrane which made from PAN concentration of 14%(mass)and preoxidation temperature of 250.0℃ have a more optimal comprehensive performance.In the long-term separation test of SiO2 particle(1 μm)in DMAc suspension,the permeate flux of O-PAN nanofiber membrane stabilized at 227.91 L·m^(-2)·h^(-1)(25℃,0.05 MPa)while the SiO2 rejection above 99.6%,which showed excellent solvent resistance and separation performance.In order to further explore the application of the O-PAN nanofiber membrane,the OPAN nanofiber membrane was treated with fluoride and used in oil/water separation process.The O-PAN nanofiber membrane after hydrophobic treatment showed excellent hydrophobicity and good oil/water separation performance with the permeate flux about 969.59 L·m^(-2)·h^(-1)while the separation efficiency above 96.1%.The O-PAN nanofiber membrane exhibited a potential application prospect in harsh environment separation. 展开更多
关键词 Poly(acrylonitrile)(PAN) PREOXIDATION Nanofiber membrane Solvent resistance oil/water separation
下载PDF
膜接触破乳——用于油包水乳液分离的超疏水ZIF-8@rGO膜
11
作者 顾佳慧 瞿周 +4 位作者 张祥宁 范红玮 李春喜 Jürgen Caro 孟洪 《Engineering》 SCIE EI CAS CSCD 2023年第4期73-81,M0004,共10页
水-油界面不平衡是实现油水乳液破乳的关键。传统膜通常是依赖较高的跨膜压力破坏界面平衡而实现破乳。本文提出了可自然、快速地破坏水-油界面平衡的“接触破乳”的概念,开发了一种对有机组分具有高通量的新型破乳分离膜。具体制备过... 水-油界面不平衡是实现油水乳液破乳的关键。传统膜通常是依赖较高的跨膜压力破坏界面平衡而实现破乳。本文提出了可自然、快速地破坏水-油界面平衡的“接触破乳”的概念,开发了一种对有机组分具有高通量的新型破乳分离膜。具体制备过程分为两步,首先通过真空辅助抽滤法在聚四氟乙烯(PTFE)基底上组装ZIF-8@rGO微球(ZGS)层,再采用聚二甲基硅氧烷(PDMS)交联溶液中进行固定化处理。由于ZGS表面为微纳米阶层结构,所制备的ZIF-8@rGO@PDMS/PTFE(ZGPP)膜表面展现出超疏水性特性,当表面活性剂稳定的油包水乳液接触到膜表面时,微纳结构的超疏水膜表面会引起水-油界面不平衡。ZGPP膜对油包水乳液具有良好的分离破乳性能,在0.15 bar(15 kPa)的低跨膜压力下,分离效率可以达到99.57%,通量可达到2254 L·m^(-2)·h^(-1),且对于表面活性剂稳定的纳米级甲苯-水乳剂(平均液滴尺寸为57 nm)的体系也可以实现破乳分离。“接触破乳”概念的提出有望为开发新一代油包水乳液分离的破乳膜提供新的思路。 展开更多
关键词 Water-in-oil emulsion DEMULSIFICATION oil/water separation Superhydrophobic membrane
下载PDF
A scalable versatile methodology to construct micro/nano open-cell polypropylene foam with high oil adsorption capacity and speed
12
作者 Chenguang Yang Dechang Tao +4 位作者 Kun Yan Zhiyao Li Qingshi Guo Wenwen Wang Dong Wang 《Nano Research》 SCIE EI CSCD 2024年第4期2814-2823,共10页
Oil pollution is a serious environmental and natural resource problem.Traditional adsorption materials for oil–water separation have limitations in terms of their preparation cost,reusability,and mechanical propertie... Oil pollution is a serious environmental and natural resource problem.Traditional adsorption materials for oil–water separation have limitations in terms of their preparation cost,reusability,and mechanical properties.Among the conventional adsorption materials,super-hydrophobic/super-lipophilic materials are easily contaminated by oil.In this study,polypropylene(PP)is used as a foam substrate to prepare an open-cell PP foam via hot pressing,supercritical CO_(2) foaming,and electron beam(EB)irradiation.The impact of EB irradiation dose on the open-cell content of PP foam can lead to cell wall rupture,resulting in an open-cell structure that enhances oil-water separation performance.At an absorbed radiation dose of 200 kGy,the PP foams exhibit optimal oil–water separation performance,cyclic compression stability,heat insulation,and preparation cost.The open-cell content of PP foam is increased to 86.5%,the adsorption capacity for diesel oil is 42.8 g/g,and the adsorption efficiency remains at 99.6%after 100 cycles of oil desorption in a complex pH environment.Meanwhile,cracks and nano-voids simultaneously promote the capillary action of oil,and the oil transport rate is 0.0713 g/(g·s).This study provides a new concept for the preparation of open-cell polymer foams that can meet the demand for high oil-absorption capacity under complex acid-base pH conditions. 展开更多
关键词 open-cell polypropylene(PP)foam electron beam irradiation oil/water separation cyclic compression complex acid-base pH conditions
原文传递
FLUID FLOW SEPARATION CHARACTER ON NOVEL HYBRID JOURNAL BEARING 被引量:4
13
作者 CHEN Shujiang LU Changhou LI Lei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期540-543,共4页
The influence of the structure and running parameters of a novel spiral oil wedge hybrid journal bearing on the fluid flow trace is investigated. The governing equation of the flow trace of lubricant is set up, and th... The influence of the structure and running parameters of a novel spiral oil wedge hybrid journal bearing on the fluid flow trace is investigated. The governing equation of the flow trace of lubricant is set up, and the simulation is carried out by using finite difference method. The results show that the lubricant flow status and end leakage quantity are greatly influenced by spiral angle,and that the rotating speed has little influence on the flow status. With advisable geometry design, the separation of lubricant between different oil wedges can be obtained, which can decrease the temperature rise effectively. 展开更多
关键词 Fluid flow separation character Spiral oil wedge Flow statusHybrid journal bearing
下载PDF
Fast processing nylon mesh by surface diffuse atmospheric plasma for large-area oil/water separation 被引量:2
14
作者 Linfeng Yang Yaping Feng +4 位作者 Zengyi He Xinyan Jiang Xianfeng Luo Haoyu Dai Lei Jiang 《Nano Research》 SCIE EI CSCD 2023年第7期9625-9632,共8页
In recent years,numerous studies have been reported for oil/water separation,such as superoleophilic materials for oil absorption and underwater superoleophobic membranes for continuous separation.However,for the reco... In recent years,numerous studies have been reported for oil/water separation,such as superoleophilic materials for oil absorption and underwater superoleophobic membranes for continuous separation.However,for the recovery of oil slick pollution on near-shore ocean surface caused by various reasons,large area and fast availability of used materials are needed to be considered.Herein,we report an efficient and environmentally friendly method to fast process nylon mesh by surface diffuse atmospheric plasma(SDAP)for large-area oil/water separation.Nylon mesh is funcionalized by atmospheric plasma to generate micro/nano composite structures on the surface,resulting in superhydrophilicity and underwater superoleophobicity within only seconds.The pre-wetted modified nylon mesh can achieve high efficiency(>99.9%)and circulating water flux(~30,000 L·m^(-2)·h^(-1)),with high intrusion pressure(~3 kPa)and universality in oil/water separation.Regular plasma unconditionally generated in the atmosphere with the merit of efficiently functionalizing surface has the potential of large-area materials treatment.This study might take one step further for large-area industrial oily wastewater recovery and even oil slicks collection in near-shore water bodies. 展开更多
关键词 superwettability oil/water separation surface modification atmospheric plasma
原文传递
Fabrication of a superhydrophilic/underwater superoleophobic stainless steel mesh for oil/water separation with ultrahigh flux 被引量:1
15
作者 Jiawei Wang Jie Hu +2 位作者 Junjie Cheng Zefei Huang Baoqian Ye 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第1期46-55,共10页
Because of the increasing amount of oily wastewater produced each day,it is important to develop superhydrophilic/underwater superoleophobic oil/water separation membranes with ultrahigh flux and high separation effic... Because of the increasing amount of oily wastewater produced each day,it is important to develop superhydrophilic/underwater superoleophobic oil/water separation membranes with ultrahigh flux and high separation efficiency.In this paper,a superhydrophilic/underwater superoleophobic N-isopropylacrylamide-coated stainless steel mesh was prepared through a simple and convenient graft polymerization approach.The obtained mesh was able to separate oil/water mixtures only by gravity.In addition,the mesh showed high-efficiency separation ability(99.2%)and ultrahigh flux(235239 L·m^(−2)·h^(−1)).Importantly,due to the complex cross-linked bilayer structure,the prepared mesh exhibited good recycling performance and chemical stability in highly saline,alkaline and acidic environments. 展开更多
关键词 oil/water separation N-ISOPROPYLACRYLAMIDE stainless steel mesh ultrahigh flux
原文传递
Flexible,durable,and anti-fouling nanocellulose-based membrane functionalized by block copolymer with ultra-high flux and efficiency for oil-in-water emulsions separation 被引量:1
16
作者 Jianfei Wu Yuxuan Su +7 位作者 Ziwei Cui Yang Yu Jiafu Qu Jundie Hu Yahui Cai Jianzhang Li Dan Tian Qichun Zhang 《Nano Research》 SCIE EI CSCD 2023年第4期5665-5675,共11页
The clearwater obtained from stabilized oily wastewater has become a worldwide challenge.Nowdays,the area of oil/water emulsion separation materials have accomplished great progress,but still faces the enormous proble... The clearwater obtained from stabilized oily wastewater has become a worldwide challenge.Nowdays,the area of oil/water emulsion separation materials have accomplished great progress,but still faces the enormous problems of low flux,poor stability,and pollution resistance.Nanocelluloses(cellulose nanocrystals(CNC))with the advantages of hydrophilicity,ecofriendliness,and regeneration are ideal materials for the construction of separation membranes.In this paper,a flexible,antifouling,and durable nanocellulose-based membrane functionalized by block copolymer(poly(N-isopropylacrylamide)-b-poly(N,Ndimethylaminoethyl methacrylate))is prepared via chemical modification and self-assembly,showing high separation efficiency(above 99.6%)for stabilized oil-in-water emulsions,excellent anti-fouling and cycling stability,high-temperature resistance,and acid and alkali resistance.More importantly,the composite membrane has ultra-high flux in separating oil-in-water emulsions(29,003 L·m^(−2)·h^(−1)·bar^(−1))and oil/water mixture(51,444 L·m^(−2)·h^(−1)·bar^(−1)),which ensures high separation efficiency.With its durability,easy scale-up,and green regeneration,we envision this biomass-derived membrane will be an alternative to the existing commercial filter membrane in environmental remediation. 展开更多
关键词 nanocellulose-based membrane oil/water emulsions separation ultra-high flux good durability anti-fouling property
原文传递
Detachable and hierarchical assemblies for recyclable and highly efficient oil-fouling removal
17
作者 Tengda Wang Shaoying Dai +5 位作者 Jie Wang Bin Liu Meiwen Cao Bo Guan Yuchun Han Yilin Wang 《Nano Research》 SCIE EI CSCD 2023年第2期2551-2562,共12页
Large-scale use of detergents to remove oil-fouling in industry continuously generates tremendous amounts of wastewater and thus leads to both economic and environmental problems.To develop recyclable oil-fouling remo... Large-scale use of detergents to remove oil-fouling in industry continuously generates tremendous amounts of wastewater and thus leads to both economic and environmental problems.To develop recyclable oil-fouling removal strategy is an appealing solution but a challenging task.Herein,a kind of dynamic imine-based surfactant has been constructed by 2-formylbenzenesulfonic acid sodium salt(FBSS)and linear amines(CnNH_(2),n=6,7,8,10,and 12).Owing to high interfacial activity and strong assembly ability,dynamic FBSS/C8NH_(2)system can remove oil-fouling on multiple substrates for at least 10 cycles,largely reducing the toxicity to ecosystem.At basic pH,the hierarchical assemblies(from vesicle to network and hollow sphere)are formed and boost surfactant molecule enrichment around oil-fouling,leading to highly efficient emulsification.When pH is changed to acidic condition,the surfactant molecules dissociate due to the breaking of imine bonds,and accordingly the emulsion is destroyed and the released oil droplets float to the top layer.After removing the oil-fouling and adjusting the solution back to basic pH,the surfactant assemblies are reconstructed and used for the next oil-fouling cleaning cycle.This study provides a recyclable,efficient and eco-friendly oil-fouling removal approach,satisfying the need of sustainable development. 展开更多
关键词 dynamic covalent bond hierarchical assembly oil-fouling removal EMULSION oil/water separation
原文传递
Green Fabrication of Underwater Superoleophobic Biopolymeric Nanofibrous Membranes for Effective Oil-Water Separation
18
作者 Subin Oh Junsik Bang +1 位作者 Hyoung‑Joon Jin Hyo Won Kwak 《Advanced Fiber Materials》 SCIE EI 2023年第2期603-616,共14页
Currently,most of the materials for oil-water separation membranes are limited to fluorine-based polymers with low surface energy.However,it is not biodegradable and requires large amounts of organic and toxic solvent... Currently,most of the materials for oil-water separation membranes are limited to fluorine-based polymers with low surface energy.However,it is not biodegradable and requires large amounts of organic and toxic solvents in the membrane manufacturing process.Therefore,interest in the development of a new eco-friendly oil-water separation membrane that does not cause secondary pollution and exhibits selective wettability characteristics in water or oil is increasing.The biopolymeric nanofibrous membranes inspired by fish skin can provide specific underwater oleophobicity,which is effective for excellent oil-water separation efficiency and prevention of secondary contamination.Fish gelatin,which is highly soluble in water and has a low gelation temperature,can be electrospun in an aqueous solution and has the same polar functional groups as the hydrophilic mucilage of fish skin.In addition,the micro/nanostructure of fish skin,which induces superoleophobicity in water,introduces a bead-on-string structure using the Rayleigh instability of electrospinning.The solubility of fish gelatin in water was removed using an eco-friendly crosslinking method using reducing sugars.Fish skin-mimicking materials successfully separated suspended oil and emulsified oil,with a maximum flux of 2086 Lm^(−2) h^(−1) and a separation efficiency of more than 99%.The proposed biopolymeric nanofibrous membranes use fish gelatin,which can be extracted from fish waste and has excellent biodegradability with excellent oil-water separation performance.In addition,polymer material processing,including membrane manufacturing and crosslinking,can be realized through eco-friendly processes.Therefore,fish skin-inspired biopolymeric membrane is expected to be a promising candidate for a sustainable and effective oil-water separation membrane in the future. 展开更多
关键词 Fish gelatin Nanofibrous membrane Superoleophobicity SUPERHYDROPHILICITY oil/water separation
原文传递
Study on polyurethane-based porous materials and their adsorption properties
19
作者 Jiajia LI Jiahui ZHU +7 位作者 Jialin GU Zhenhao ZHOU Qi SUN Guangcan GUO Yibin ZHOU Shujun CHEN Xinggang SHAN Gangqiang WANG 《Research and Application of Materials Science》 2022年第1期15-19,共5页
The flexible superhydrophobic thermoplastic polyurethane(TPU)porous material was prepared by heat-induced phase separation method with two cooling steps.The influence of the preparation process on the microstructure o... The flexible superhydrophobic thermoplastic polyurethane(TPU)porous material was prepared by heat-induced phase separation method with two cooling steps.The influence of the preparation process on the microstructure of the material was discussed in depth.The microstructure,hydrophobicity and specific surface area of porous TPU materials were analyzed in detail.The surface wettability,separation selectivity,saturated adsorption capacity and adsorption rate,mechanical properties,environmental adaptability and cyclic properties of porous TPU materials were studied.The results show that the TPU-8%porous monolithic material prepared by heat-induced phase separation method shows good performance when the polymer concentration is 8%,the phase separation temperature is 0℃,the phase separation time is 30min,and the mixing solvent ratio is 9:1. 展开更多
关键词 Polymer-based porous materials Separation of oil and water oil recovery
下载PDF
Facile Preparation of Fluoroalkyl End-Capped Vinyltrimethoxysilane Oligomer/Sand Composites Possessing Superoleophilic/Superhydrophobic Characteristic: Application to Oil/Water Separation and Selective Removal of Fluorinated Aromatic Compounds from Aqueous Methanol Solution
20
作者 Hideo Sawada Kako Tono Katsumi Yamashita 《Open Journal of Composite Materials》 2022年第1期56-71,共16页
Fluoroalkyl end-capped vinyltrimethoxysilane oligomer</span> </div> <span style="font-family:""> <div style="text-align:justify;"> <span style="font-family:&quo... Fluoroalkyl end-capped vinyltrimethoxysilane oligomer</span> </div> <span style="font-family:""> <div style="text-align:justify;"> <span style="font-family:""><span style="font-family:Verdana;">[R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(CH</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">-CHSi(OMe)</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">: </span><i><span style="font-family:Verdana;">n</span></i><span style="font-family:Verdana;"> = 2, 3, R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;"> = CF(CF</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">)OC</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">F</span><sub><span style="font-family:Verdana;">7</span></sub><span style="font-family:Verdana;">: R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">]</span></span><span style="font-family:Verdana;">,</span><span style="font-family:""><span style="font-family:Verdana;"> was applied to the facile preparation of the corresponding oligomer/sand (Ottawa </span><span style="font-family:Verdana;">sand: OS) composites [R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">/OS] through the sol-gel reaction </span><span style="font-family:Verdana;">of the oligomer in the presence of micro-sized OS particles (590 </span></span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;"> 840 μm) under alkaline conditions at room temperature. FE-SEM (Field Emission Scanning Electron Micrograph) images showed that the obtained composites consist of the R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;"> oligomeric nanoparticles and the micro-sized </span><span style="font-family:Verdana;">OS particles. Interestingly, the R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">/OS composites thus ob</span><span style="font-family:Verdana;">tained </span><span style="font-family:Verdana;">can provide the superoleophilic/superhydrophobic characteristic on the</span><span style="font-family:Verdana;"> composite surface, applying to the separation of not only the mixture of oil/water but also the W/O emulsion to isolate the transparent colorless oil. The fluorinated oligomeric OS composites were also found to be applicable to the selective removal of fluorinated aromatic compounds from </span></span><span style="font-family:Verdana;">an </span><span style="font-family:Verdana;">aqueous methanol solution. Especially, it was demonstrated that the fluorinated OS composites can supply a higher efficient and smooth separation ability for the separation of </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">mixture of oil and water than that of the corresponding fluorinated micro-sized controlled silica gel (μ-SiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">) composites (average particle size: 9.5 μm), which were prepared under similar conditions. In addition to the separation of oil/water, the fluorinated OS composites provided higher and </span></span><span style="font-family:Verdana;">more </span><span style="font-family:""><span style="font-family:Verdana;">selective removal ability for the fluorinated aromatic compounds from aqueous solutions than that of the μ-SiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> composites. 展开更多
关键词 Fluorinated Oligomeric Composite Micro-Sized Ottawa Sand Particle Superoleophilic/Superhydrophobic Property Smooth Separation of oil and Water Selective Removal of Fluorinated Aromatic Compound
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部