期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Characterization of water-in-crude oil emulsions in oil spill response
1
作者 MATHER R.R. FOTHERINGHAM A.F. YANG R.D. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2003年第4期506-509,共4页
The formation of water in crude oil emulsions occurs when crude oils are spilled into sea. The water in crude oil emulsions significantly change the properties of the spilled crude oils and in turn influence the c... The formation of water in crude oil emulsions occurs when crude oils are spilled into sea. The water in crude oil emulsions significantly change the properties of the spilled crude oils and in turn influence the choices made relating to oil spill countermeasures. The water in crude oil emulsions were characterized using various techniques in this study. The environmental scanning electron microscopy observation of water droplets in the emulsions is also presented. It is a powerful tool in emulsion observations. 展开更多
关键词 oil spill water in oil emulsions oil spill response DSC ESEM
下载PDF
Zwitterionic monolayer grafted ceramic membrane with an antifouling performance for the efficient oil-water separation 被引量:1
2
作者 Tianyu Zhang Qian Wang +7 位作者 Wei Luan Xue Li Xianfu Chen Dong Ding Zhichao Shen Minghui Qiu Zhaoliang Cui Yiqun Fan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期227-235,共9页
Enormous demands on the separation of oil/water(O/W)emulsions in various industries,such as petrochemical,food and pharmaceutical industries,are looking for high performance and energy-efficient separation methods.Cer... Enormous demands on the separation of oil/water(O/W)emulsions in various industries,such as petrochemical,food and pharmaceutical industries,are looking for high performance and energy-efficient separation methods.Ceramic membranes have been used to deal with O/W emulsions,for its outstanding characteristics of easy-operation,high-flux,and long-term stability.However,membrane fouling is still a challenge in the industrial application of ceramic membranes.Herein,antifouling ceramic membranes were fabricated by grafting zwitterions on the membrane surface via an environment-friendly two-step grafting method,which improves the antifouling property and permeability.Successful grafting of such zwitterion on the ceramic surface was assessed by the combination of FTIR and XPS characterization.More importantly,the hydration can be formed by electrostatic interactions layer on the modified membrane,which was confirmed by TGA characterization.The antifouling performance of prepared zwitterionic ceramic membranes in the separation of O/W emulsions was systematically tested.The results suggested that zwitterion can significantly improve the flux of ceramic ultrafiltration membrane,and can also improve antifouling property dramatically by reducing the irreversible fouling in the separation of O/W emulsions.Therefore,zwitterionic ceramic membranes hold promising potentials as an antifouling,highly efficient and green method in the practical purification of the O/W emulsions. 展开更多
关键词 Ceramic membrane ZWITTERIONIC ANTI-FOULING Hydration layer oil/water emulsion
下载PDF
Flexible,durable,and anti-fouling nanocellulose-based membrane functionalized by block copolymer with ultra-high flux and efficiency for oil-in-water emulsions separation 被引量:1
3
作者 Jianfei Wu Yuxuan Su +7 位作者 Ziwei Cui Yang Yu Jiafu Qu Jundie Hu Yahui Cai Jianzhang Li Dan Tian Qichun Zhang 《Nano Research》 SCIE EI CSCD 2023年第4期5665-5675,共11页
The clearwater obtained from stabilized oily wastewater has become a worldwide challenge.Nowdays,the area of oil/water emulsion separation materials have accomplished great progress,but still faces the enormous proble... The clearwater obtained from stabilized oily wastewater has become a worldwide challenge.Nowdays,the area of oil/water emulsion separation materials have accomplished great progress,but still faces the enormous problems of low flux,poor stability,and pollution resistance.Nanocelluloses(cellulose nanocrystals(CNC))with the advantages of hydrophilicity,ecofriendliness,and regeneration are ideal materials for the construction of separation membranes.In this paper,a flexible,antifouling,and durable nanocellulose-based membrane functionalized by block copolymer(poly(N-isopropylacrylamide)-b-poly(N,Ndimethylaminoethyl methacrylate))is prepared via chemical modification and self-assembly,showing high separation efficiency(above 99.6%)for stabilized oil-in-water emulsions,excellent anti-fouling and cycling stability,high-temperature resistance,and acid and alkali resistance.More importantly,the composite membrane has ultra-high flux in separating oil-in-water emulsions(29,003 L·m^(−2)·h^(−1)·bar^(−1))and oil/water mixture(51,444 L·m^(−2)·h^(−1)·bar^(−1)),which ensures high separation efficiency.With its durability,easy scale-up,and green regeneration,we envision this biomass-derived membrane will be an alternative to the existing commercial filter membrane in environmental remediation. 展开更多
关键词 nanocellulose-based membrane oil/water emulsions separation ultra-high flux good durability anti-fouling property
原文传递
Red/NIR/SWIR multi-band persistent luminescent nanoparticles as ultrasensitive multi-channel tracers in water and crude oil/water emulsions
4
作者 Yafei Chen Zhengwei Pan 《Nano Research》 SCIE EI CSCD 2023年第11期12706-12712,共7页
We report the use of CaTiO_(3):Pr^(3+)multiband persistent luminescent nanoparticles,which can simultaneously emit red(610 nm),near-infrared(893 nm),and short-wave infrared(1040 nm)photoluminescence and persistent lum... We report the use of CaTiO_(3):Pr^(3+)multiband persistent luminescent nanoparticles,which can simultaneously emit red(610 nm),near-infrared(893 nm),and short-wave infrared(1040 nm)photoluminescence and persistent luminescence,as the tracer nanoagents for water tracer sensing.By using a spectrofluorometer,an Si charge-coupled device(CCD)camera and an InGaAs array camera as the detection tools,we evaluated the sensing capabilities of the three emission bands of CaTiO_(3):Pr^(3+)nanoparticles in brine water solutions and crude oil/brine water emulsions in both photoluminescence mode and persistent luminescence mode.Among these different detection combinations,the persistent luminescence-based Si CCD camera imaging exhibits the best sensing performance with the detection limits being at a single-digit ppb level for the 610 and 893 nm bands and about 100–200 ppb for the 1040 nm band in both water solutions and crude oil/water emulsions,while the photoluminescencebased Si CCD camera imaging has a much higher detection limit of~10 ppm in water solutions and of~200 ppm in oil/water emulsions.The persistent luminescence-based InGaAs array camera imaging to the 1040 nm band has the worst performance with the detection limits higher than 200 ppm for both solutions.The sensing performances of the spectrofluorometer to photoluminescence signals and persistent luminescence signals in the two solutions are about the same,with the detection limits being around 100–200 ppm. 展开更多
关键词 water tracer CaTiO_(3):Pr^(3+)nanoparticles photoluminescence persistent luminescence crude oil/water emulsion detection limit
原文传递
Tribological behavior of nanocarbon materials with different dimensions in aqueous systems 被引量:3
5
作者 Hongmei YANG Jiusheng LI Xiangqiong ZENG 《Friction》 SCIE CSCD 2020年第1期29-46,共18页
Due to the widespread use of nanocarbon materials(NCMs),more researchers are studying their tribological performances.In this work,the tribological behaviors of the following five types of NCMs with different geometri... Due to the widespread use of nanocarbon materials(NCMs),more researchers are studying their tribological performances.In this work,the tribological behaviors of the following five types of NCMs with different geometric shapes were evaluated in a novel oil‐in‐water system:spherical fullerenes(C60,0D),tubular multi‐walled carbon nanotubes(MWCNT,1D),sheet graphene oxide(GO,2D),sheet graphene oxide derivative(Oct‐O‐GO,2D),and lamellar graphite(G,3D).Among these,GO with two types of oxidation degrees,i.e.,GO(1),GO(2),and Oct‐O‐GO(1)were synthesized and characterized using Fourier‐transform infrared spectroscopy,Raman spectroscopy,x‐ray diffraction,thermogravimetric analysis,scanning electron microscopy,and contact angle measurements.The load‐carrying capacity of the NCM emulsions were evaluated using a four‐ball test machine,and the lubrication performances were investigated using a high‐frequency reciprocating friction and wear tester with a sliding distance of 1,800 mm under different loads(50 N and 100 N)at 0.5 Hz.The results revealed that the Oct‐O‐GO(1)emulsion exhibited the best load‐carrying capacity,and the best friction‐reducing and anti‐wear properties compared to other emulsions.Moreover,the anti‐wear advantage was more prominent under high load conditions,whereas the other emulsions exhibited a certain degree of abrasive or adhesive wear.The lubrication mechanism was determined through the analysis of worn surfaces using scanning electron microscopy/energy‐dispersive x‐ray spectroscopy,micro‐Raman spectroscopy,and x‐ray photoelectron spectroscopy.The results revealed that during frictional sliding,the ingredients in the emulsion can absorb and react with the freshly exposed metal surface to form surface‐active films to protect the surfaces from abrasion.Moreover,it was found that the higher the amount of ingredients that contain alkyl and O‐H/C=O,the better was the lubrication performance in addition to an increase in the carbon residue in the tribofilm generated on the meal surface. 展开更多
关键词 nano‐carbon materials tribological behavior modified graphene oxide oil‐in‐water emulsion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部