Experimental and theoretical studies of the mechanisms of vibration stimulation of oil recovery in watered fields lead to the conclusion that resonance oscillations develop in fractured-block formations. These oscilla...Experimental and theoretical studies of the mechanisms of vibration stimulation of oil recovery in watered fields lead to the conclusion that resonance oscillations develop in fractured-block formations. These oscillations, caused by weak but long-lasting and frequency-stable influences, create the conditions for ultrasonic wave’s generation in the layers, which are capable of destroying thickened oil membranes in reservoir cracks. For fractured-porous reservoirs in the process of exploitation by the method of water high-pressure oil displacement, the possibility of intensifying ultrasonic vibrations can have an important technological significance. Even a very weak ultrasound can destroy, over a long period of time, the viscous oil membranes formed in the cracks between the blocks, which can be the reason for lowering the permeability of the layers and increasing the oil recovery. To describe these effects, it is necessary to consider the wave process in a hierarchically blocky environment and theoretically simulate the mechanism of the appearance of self-oscillations under the action of relaxation shear stresses. For the analysis of seism acoustic response in time on fixed intervals along the borehole an algorithm of phase diagrams of the state of many-phase medium is suggested.展开更多
This work is devoted to the analysis of the formation conditions and geologic model of Paleozoic basement rocks of a number of oil-and-gas fields, located in Tomsk region(South of West-Siberian Oil-and-Gas Province,Ru...This work is devoted to the analysis of the formation conditions and geologic model of Paleozoic basement rocks of a number of oil-and-gas fields, located in Tomsk region(South of West-Siberian Oil-and-Gas Province,Russia).The research is based on integrated data interpretation of seismic exploration, well logging and deep drilling.The study is at the interfaces between exploration geophysics展开更多
文摘Experimental and theoretical studies of the mechanisms of vibration stimulation of oil recovery in watered fields lead to the conclusion that resonance oscillations develop in fractured-block formations. These oscillations, caused by weak but long-lasting and frequency-stable influences, create the conditions for ultrasonic wave’s generation in the layers, which are capable of destroying thickened oil membranes in reservoir cracks. For fractured-porous reservoirs in the process of exploitation by the method of water high-pressure oil displacement, the possibility of intensifying ultrasonic vibrations can have an important technological significance. Even a very weak ultrasound can destroy, over a long period of time, the viscous oil membranes formed in the cracks between the blocks, which can be the reason for lowering the permeability of the layers and increasing the oil recovery. To describe these effects, it is necessary to consider the wave process in a hierarchically blocky environment and theoretically simulate the mechanism of the appearance of self-oscillations under the action of relaxation shear stresses. For the analysis of seism acoustic response in time on fixed intervals along the borehole an algorithm of phase diagrams of the state of many-phase medium is suggested.
文摘This work is devoted to the analysis of the formation conditions and geologic model of Paleozoic basement rocks of a number of oil-and-gas fields, located in Tomsk region(South of West-Siberian Oil-and-Gas Province,Russia).The research is based on integrated data interpretation of seismic exploration, well logging and deep drilling.The study is at the interfaces between exploration geophysics