The technique of non stationary oil film force database for hydrodynamic bearing is introduced and its potential applications in nonlinear rotor dynamics are demonstrated. Through simulations of the locus of the sha...The technique of non stationary oil film force database for hydrodynamic bearing is introduced and its potential applications in nonlinear rotor dynamics are demonstrated. Through simulations of the locus of the shaft center aided by the database technique, nonlinear stability analysis can be performed and the natural frequency can be obtained as well. The easiness of 'assembling' the individual bush forces from the database to form the bearing force, makes it very convenient to evaluate the stability of various types of journal bearings. Examples are demonstrated to show how the database technique makes it possible to get technically abundant simulation results at the expense of very short calculation time.展开更多
Tribological characteristic of different thick diamond-like carbon (DLC) films was studied. A geometrical method was applied to calibrate the cantilever spring constant and to calculate the normal and lateral forces, ...Tribological characteristic of different thick diamond-like carbon (DLC) films was studied. A geometrical method was applied to calibrate the cantilever spring constant and to calculate the normal and lateral forces, respectively. Experimental results show that the lateral force under different applied loads is proportional to the normal force for the DLC films with the thickness of 153.4nm and 64.9nm. However, for the thickness of 4.48nm and 2.78nm DLC films, lateral force is nonlinear to normal force, which is opposed to the Amonton's law.The single asperity regime and the DMT model were put forward to predict the possible nanotribological mechanism between the probe and DLC film.展开更多
Oil film forces are usually obtained for dynamic analysis of a journal bearing system by using the approximate analytical formula or solving the Reynolds equation. None of them is suitable for rotor system bifurcation...Oil film forces are usually obtained for dynamic analysis of a journal bearing system by using the approximate analytical formula or solving the Reynolds equation. None of them is suitable for rotor system bifurcation analysis because they are either of poor accuracy or time consuming. Oil film forces database is proposed is to transform the journal speed variation range in radial and circumferential directions from (-∞,+∞) to (-1, +1). The numerical results show the suggested method is much more effective. And sub harmonic, quasi periodic and chaotic vibrations are predicted for a range of speed and unbalance parameters.展开更多
In this paper the elastic properties of SiOx film are investigated quantitatively for local fixed point and qualitatively for overall area by atomic force acoustic microscopy (AFAM) in which the sample is vibrated a...In this paper the elastic properties of SiOx film are investigated quantitatively for local fixed point and qualitatively for overall area by atomic force acoustic microscopy (AFAM) in which the sample is vibrated at the ultrasonic frequency while the sample surface is touched and scanned with the tip contacting the sample respectively for fixed point and continuous measurements. The SiOx films on the silicon wafers are prepared by the plasma enhanced chemical vapour deposition (PECVD), The local contact stiffness of the tip-SiOx film is calculated from the contact resonance spectrum measured with the atomic force acoustic microscopy. Using the reference approach, indentation modulus of SiOx film for fixed point is obtained. The images of cantilever amplitude are also visualized and analysed when the SiOx surface is excited at a fixed frequency. The results show that the acoustic amplitude images can reflect the elastic properties of the sample.展开更多
The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces...The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces were measured directly by atomic force microscopy (AFM) based on the bending mode of the nominal constant compliance regime in AFM force curve in the present study. Surface and solid-liquid interfacial energies were calculated to explain the forming mechanism of the hydration film and atomic force microscopy data. The results show that there are significant differences in the structure and thickness of hydration films on coal and mica surfaces. Hydration film formed on mica surface with the thickness of 22.5 nm. In contrast, the bend was not detected in the nominal constant compliance regime. The van der Waals and polar interactions between both mica and coal and water molecules are characterized by an attractive effect, while the polar attractive free energy between water and mica (-87.36 mN/m) is significantly larger than that between water and coal (-32.89 mN/m), which leads to a thicker and firmer hydration layer on the mica surface. The interfacial interaction free energy of the coal/water/bubble is greater than that of mica. The polar attractive force is large enough to overcome the repulsive van der Waals force and the low energy barrier of film rupture, achieving coal particle bubble adhesion with a total interfacial free energy of-56.30 mN/m.展开更多
The aim of the investigation was to develop the use of topographic and nano-adhesion atomic force microscopy(AFM) studies as a means of monitoring the coalescence of latex particles within films produced from a pharma...The aim of the investigation was to develop the use of topographic and nano-adhesion atomic force microscopy(AFM) studies as a means of monitoring the coalescence of latex particles within films produced from a pharmaceutically relevant aqueous dispersion(Eudragit~?NE30 D). Films were prepared via spin coating and analysed using AFM, initially via tapping mode for topographic assessment followed by force-distance measurements which allowed assessment of site-specific adhesion. The results showed that colloidal particles were clearly observed topographically in freshly prepared samples, with coalescence detected on curing via the disappearance of discernible surface features and a decrease in roughness indices. The effects of temperature and humidity on film curing were also studied, with the former having the most pronounced effect. AFM force measurements showed that the variation in adhesive force reduced with increasing curing time, suggesting a novel method of quantifying the rate of film formation upon curing. It was concluded that the AFM methods outlined in this study may be used as a means of qualitatively and quantitatively monitoring the curing of pharmaceutical films as a function of time and other variables, thereby facilitating rational design of curing protocols.展开更多
The switching process of ferroelectric thin films in electronic devices is one of the most important requirements for their application. Especially for the different external fields acting on the film surface, the mec...The switching process of ferroelectric thin films in electronic devices is one of the most important requirements for their application. Especially for the different external fields acting on the film surface, the mechanism of domain switching is more complicated. Here we observe the nanoscale domain switchings of Bi3.15Eu0.85Ti3O12 thin film under different mechanical forces at a fast scan rate. As the force increases from initial state to 247.5 n N, the original bright or grey contrasts within the selected grains are all changed into dark contrasts corresponding to the polarization vectors reversed from the up state to the down state, except for the clusters. As the mechanical force increases to 495 n N, the color contrasts in all of the selected grains further turn into grey contrasts and some are even changed into grey contrasts completely showing the typical 90° domain switching. When another stronger loading force 742.5 n N is applied, the phase image becomes unclear and it indicates that the piezoelectric signal can be suppressed under a sufficiently high force, which is coincident with previous experimental results. Furthermore, we adopt the domain switching criterion from the perspective of equilibrium state free energy of ferroelectric nanodomain to explain the mechanisms of force-generated domain switchings.展开更多
A standard calibration grating was used for image scanning to investigate the effect of hydration films on imaging resolution by Atomic Force Microscope (AFM). The results showed that the hydration films greatly aff...A standard calibration grating was used for image scanning to investigate the effect of hydration films on imaging resolution by Atomic Force Microscope (AFM). The results showed that the hydration films greatly affect the imaging resolution for the tapping mode, but no evident effect on the contact mode, The possible reasons for the effect of hydration films on scanning images of AFM are also brought forward here.展开更多
wo different surface morphology characteristics of magnetron sputtered aluminumsilicon(Al-Si)alloy films deposited at 0 and 200℃ were observed by atomic force microscopy(AFM).One is irregularly shaped grains put togt...wo different surface morphology characteristics of magnetron sputtered aluminumsilicon(Al-Si)alloy films deposited at 0 and 200℃ were observed by atomic force microscopy(AFM).One is irregularly shaped grains put togther on a plane.The other is irregularly shaped grains Piled up in space. Nanometer-sized particles with heights from 1.6 to 2.9 nm were first observed. On the basis of these observations the growth mechanism of magnetron sputtered films is discussed.展开更多
To understand the influences of nanoparticles on dewetting in ultra-thin films, both linear stability the- ory and numerical simulations are performed in the present study, with the consideration of oscillatory struct...To understand the influences of nanoparticles on dewetting in ultra-thin films, both linear stability the- ory and numerical simulations are performed in the present study, with the consideration of oscillatory structural (OS) forces. Long scale approximation is utilized to simplify the hydrodynamic and diffusion equations to a nonlinear system for film thickness and nanoparticle concentration. Results show that the presence of nanoparticles generally suppresses the dewetting process. Two physical mechanisms responsi- ble for this phenomenon are addressed in the present study. When the oscillatory structural forces are relatively smaller, the essential feature of film evolution is similar to the case of particle-free flow. The reduction of the linear growth rate and the postponement of film rupturing can be attributed to the increment of the viscosity due to the presence of nanoparti- cles. On the other hand, when the intensity of the OS forces becomes stronger, the stepwise thinning of film can be ob- served which prevents the film from rupture. Numerical sim- ulations indicate that this phenomenon is caused by the ex- istence of a stable zone due to the oscillatory nature of the structural forces. Another interesting finding is that the non- uniformity of the distribution of nanoparticle concentration might destabilize a spinodally stable film, and trigger the oc- currence of film dewetting.展开更多
Considering the effect of non-symmetry film force, nonlinear stiffness and nonlinear friction force, a dynamical model of rub-impact rotor system is established, then the nonlinear dynamical behavior is studied by num...Considering the effect of non-symmetry film force, nonlinear stiffness and nonlinear friction force, a dynamical model of rub-impact rotor system is established, then the nonlinear dynamical behavior is studied by numerical analysis method. The effect of rotation speed, nonlinear stiffitess ratio and speed effect factor on brifurcation and chaotic behavior for rub-impact rotor system is comprehensively analyzed. The analysis results show that the effect of non-symmetry film force, nonlinear stiffness and nonlinear friction force on the dynamical behavior of the rotor system has close relation with rotation speed. The chaotic behavior exists in a wider parameter region, and the chaotic evolution rule is more complicated. The research provides a reliable theory basis and reference for diagnosing some faults of the rotor system.展开更多
The numerical study of thin film type condensation in forced convection of a saturated pure vapor in an inclined wall covered with a porous material is presented. The generalized Darcy-Brinkman-Forchheimer (DBF) model...The numerical study of thin film type condensation in forced convection of a saturated pure vapor in an inclined wall covered with a porous material is presented. The generalized Darcy-Brinkman-Forchheimer (DBF) model is used to describe the flow in the porous medium while the classical boundary layer equations have been exploited in the case of a pure liquid. The dimensionless equations are solved by an implicit finite difference method and the iterative Gauss-Seidel method. The objective of this study is to examine the influence of the Prandtl number on the hydrodynamic and thermal fields but also on the local Nusselt number and on the boundary layer thickness. For Pr ≤ 0.7 (low) the velocity and the longitudinal temperature increase with the Prandtl number. On the other hand, when Pr ≥ 2 (high) the Prandtl number no longer influences the velocity and the longitudinal temperature. The local Nusselt number increases as the Prandtl number increases and the thickness of the hydrodynamic boundary layer increases as the Prandtl number decreases.展开更多
The instrumented applied rod casting apparatus (ARCA) was developed to investigate the effects of tensile forces in the hot tearing formation of cast AI-Si alloys. The obtained data of tensile forces/temperature was...The instrumented applied rod casting apparatus (ARCA) was developed to investigate the effects of tensile forces in the hot tearing formation of cast AI-Si alloys. The obtained data of tensile forces/temperature was used to identify hot tearing initiation and propagation and the fracture surface of samples was also investigated. The result shows that the applied tensile forces have a complex effect on load onset for the hot tearing initiation and propagation. During the casting solidification, the tensile forces are gradually increased with the increase of solid fraction. Under the action of tensile forces, there will appear hot tearing and crack propagation on the surface of the sample. When the tensile forces exceed the inherent strength of alloys, there will be fractures on the sample. As for the A356 alloy, the critical fracture stress is about 0.1 MPa. The hot tearing surface morphology shows that the remaining intergranular bridge and liquid films are thick enough to allow the formation of dendrite-tip bumps on the fracture surface.展开更多
A compound varifocal lens based on electromagnetic drive technology is designed and fabricated, where the polydimethylsiloxane(PDMS) film acts as a driving component, while the PDMS biconvex lens and the plane-concave...A compound varifocal lens based on electromagnetic drive technology is designed and fabricated, where the polydimethylsiloxane(PDMS) film acts as a driving component, while the PDMS biconvex lens and the plane-concave lens form a coaxial compound lens system. The plane-concave lens equipped with driving coils is installed directly above the PDMS lens surrounded by the annular magnet. When different currents are applied, the annular magnet moves up and down, driving the PDMS film to undergo elastic deformation, and then resulting in longitudinal movement of the PDMS lens. The position change of the PDMS lens changes the focal length of the compound lens system. To verify the feasibility and practicability of this design, a prototype of our compound lens system is fabricated in experiment. Our proposed compound lens shows that its zoom ability reaches 9.28 mm when the current ranges from -0.20 A to 0.21 A.展开更多
Diamond like carbon (DLC) films was grown successfully on silicon, titanium and high speed steel (HSS) substrate at low temperature in a filtered vacuum arc deposition system. Arc discharges were established on a gra...Diamond like carbon (DLC) films was grown successfully on silicon, titanium and high speed steel (HSS) substrate at low temperature in a filtered vacuum arc deposition system. Arc discharges were established on a graphite cathode in this home built system with a toridal macroparticles filter. Ion current convected by the plasma beam was measured with a negatively biased probe. It was shown that the magnetic field of the coils located on the plasma duct has a strong influence on ion current. Scanning electron microscope (SEM), atomic force microscope (AFM) and Raman spectrum are used to study the DLC films. Tribological behaviors of the deposited film are also studied.展开更多
The conventional Hall effect is linearly proportional to the field component or magnetization component perpendicular to a film. Despite the increasing theoretical proposals on the Hall effect to the in-plane field or...The conventional Hall effect is linearly proportional to the field component or magnetization component perpendicular to a film. Despite the increasing theoretical proposals on the Hall effect to the in-plane field or magnetization in various special systems induced by the Berry curvature, such an unconventional Hall effect has only been experimentally reported in Weyl semimetals and in a heterodimensional superlattice. Here, we report an unambiguous experimental observation of the antisymmetric planar Hall effect(APHE) with respect to the in-plane magnetic field in centrosymmetric rutile RuO_(2) and IrO_(2) single-crystal films. The measured Hall resistivity is found to be linearly proportional to the component of the applied in-plane magnetic field along a particular crystal axis and to be independent of the current direction or temperature. Both the experimental observations and theoretical calculations confirm that the APHE in rutile oxide films is induced by the Lorentz force. Our findings can be generalized to ferromagnetic materials for the discovery of anomalous Hall effects and quantum anomalous Hall effects induced by in-plane magnetization. In addition to significantly expanding knowledge of the Hall effect, this work opens the door to explore new members in the Hall effect family.展开更多
When the thicknesses of thin films reduce to microns or even nanometers, surface energy and surface interaction often play a significant role in their deformation behavior and surface morphology. The spinodal surface ...When the thicknesses of thin films reduce to microns or even nanometers, surface energy and surface interaction often play a significant role in their deformation behavior and surface morphology. The spinodal surface instability induced by the van der Waals force in a soft elastic thin film perfectly bonded to a rigid substrate is investigated theoretically using the bifurcation theory of elastic structures. The analytical solution is derived for the critical condition of spinodal surface morphology instability by accounting for the competition of the van der Waals interaction energy, elastic strain energy and surface energy. Detailed examinations on the effect of surface energy, thickness and elastic properties of the film show that the characteristic wavelength of the deformation bifurcation mode depends on the film thickness via an exponential relation, with the power index in the range from 0.749 to 1.0. The theoretical solution has a good agreement with relevant experiment results.展开更多
The microstructure properties of the sol-gel derived TiO2 films were studied by the atomic force microscopy (AFM). The films were prepared by dip coating process. The optical properties of the films were explained on ...The microstructure properties of the sol-gel derived TiO2 films were studied by the atomic force microscopy (AFM). The films were prepared by dip coating process. The optical properties of the films were explained on the basis of the microstructure of the films.展开更多
A squeeze film damper (SFD) with metal rubber (MR) ring installed on the end and the radial direction of rotor are implemented in this paper. Based on the hypothesis of π film, the description of the new SFD/MR flux ...A squeeze film damper (SFD) with metal rubber (MR) ring installed on the end and the radial direction of rotor are implemented in this paper. Based on the hypothesis of π film, the description of the new SFD/MR flux and nonlinear oil film damping force is derived according to the Reynolds Eq. and Darcy’s law. It proves that the SFD/MR has better damping characteristics than the traditional SFD after comparatively analyzing characteristics of oil film between the traditional short SFD and the SFD/MR.展开更多
文摘The technique of non stationary oil film force database for hydrodynamic bearing is introduced and its potential applications in nonlinear rotor dynamics are demonstrated. Through simulations of the locus of the shaft center aided by the database technique, nonlinear stability analysis can be performed and the natural frequency can be obtained as well. The easiness of 'assembling' the individual bush forces from the database to form the bearing force, makes it very convenient to evaluate the stability of various types of journal bearings. Examples are demonstrated to show how the database technique makes it possible to get technically abundant simulation results at the expense of very short calculation time.
文摘Tribological characteristic of different thick diamond-like carbon (DLC) films was studied. A geometrical method was applied to calibrate the cantilever spring constant and to calculate the normal and lateral forces, respectively. Experimental results show that the lateral force under different applied loads is proportional to the normal force for the DLC films with the thickness of 153.4nm and 64.9nm. However, for the thickness of 4.48nm and 2.78nm DLC films, lateral force is nonlinear to normal force, which is opposed to the Amonton's law.The single asperity regime and the DMT model were put forward to predict the possible nanotribological mechanism between the probe and DLC film.
基金SponsoredbytheNationalNaturalScienceofFoundationofChina (No .19990 5 10 )andNaturalScienceFoundationofHeilongjiangprovince
文摘Oil film forces are usually obtained for dynamic analysis of a journal bearing system by using the approximate analytical formula or solving the Reynolds equation. None of them is suitable for rotor system bifurcation analysis because they are either of poor accuracy or time consuming. Oil film forces database is proposed is to transform the journal speed variation range in radial and circumferential directions from (-∞,+∞) to (-1, +1). The numerical results show the suggested method is much more effective. And sub harmonic, quasi periodic and chaotic vibrations are predicted for a range of speed and unbalance parameters.
基金Project supported by the National Natural Science Foundation of China(Grant No.50775005)
文摘In this paper the elastic properties of SiOx film are investigated quantitatively for local fixed point and qualitatively for overall area by atomic force acoustic microscopy (AFAM) in which the sample is vibrated at the ultrasonic frequency while the sample surface is touched and scanned with the tip contacting the sample respectively for fixed point and continuous measurements. The SiOx films on the silicon wafers are prepared by the plasma enhanced chemical vapour deposition (PECVD), The local contact stiffness of the tip-SiOx film is calculated from the contact resonance spectrum measured with the atomic force acoustic microscopy. Using the reference approach, indentation modulus of SiOx film for fixed point is obtained. The images of cantilever amplitude are also visualized and analysed when the SiOx surface is excited at a fixed frequency. The results show that the acoustic amplitude images can reflect the elastic properties of the sample.
基金Project(2014BAB01B03) supported by the National Key Technology R&D Program During the 12th Five-Yean Plan of China Project(51774286) supported by the National Natural Science Foundation of China Project(BK20150192) supported by the Natural Science Foundation of Jiaaagsu Province, China
文摘The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces were measured directly by atomic force microscopy (AFM) based on the bending mode of the nominal constant compliance regime in AFM force curve in the present study. Surface and solid-liquid interfacial energies were calculated to explain the forming mechanism of the hydration film and atomic force microscopy data. The results show that there are significant differences in the structure and thickness of hydration films on coal and mica surfaces. Hydration film formed on mica surface with the thickness of 22.5 nm. In contrast, the bend was not detected in the nominal constant compliance regime. The van der Waals and polar interactions between both mica and coal and water molecules are characterized by an attractive effect, while the polar attractive free energy between water and mica (-87.36 mN/m) is significantly larger than that between water and coal (-32.89 mN/m), which leads to a thicker and firmer hydration layer on the mica surface. The interfacial interaction free energy of the coal/water/bubble is greater than that of mica. The polar attractive force is large enough to overcome the repulsive van der Waals force and the low energy barrier of film rupture, achieving coal particle bubble adhesion with a total interfacial free energy of-56.30 mN/m.
文摘The aim of the investigation was to develop the use of topographic and nano-adhesion atomic force microscopy(AFM) studies as a means of monitoring the coalescence of latex particles within films produced from a pharmaceutically relevant aqueous dispersion(Eudragit~?NE30 D). Films were prepared via spin coating and analysed using AFM, initially via tapping mode for topographic assessment followed by force-distance measurements which allowed assessment of site-specific adhesion. The results showed that colloidal particles were clearly observed topographically in freshly prepared samples, with coalescence detected on curing via the disappearance of discernible surface features and a decrease in roughness indices. The effects of temperature and humidity on film curing were also studied, with the former having the most pronounced effect. AFM force measurements showed that the variation in adhesive force reduced with increasing curing time, suggesting a novel method of quantifying the rate of film formation upon curing. It was concluded that the AFM methods outlined in this study may be used as a means of qualitatively and quantitatively monitoring the curing of pharmaceutical films as a function of time and other variables, thereby facilitating rational design of curing protocols.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51272158 and 11302185)the Scientific Research Fund of Hunan Provincial Education Department,China(Grant No.13C901)the Hunan Provincial Natural Science Foundation,China(Grant Nos.14JJ3081 and 13JJ1019)
文摘The switching process of ferroelectric thin films in electronic devices is one of the most important requirements for their application. Especially for the different external fields acting on the film surface, the mechanism of domain switching is more complicated. Here we observe the nanoscale domain switchings of Bi3.15Eu0.85Ti3O12 thin film under different mechanical forces at a fast scan rate. As the force increases from initial state to 247.5 n N, the original bright or grey contrasts within the selected grains are all changed into dark contrasts corresponding to the polarization vectors reversed from the up state to the down state, except for the clusters. As the mechanical force increases to 495 n N, the color contrasts in all of the selected grains further turn into grey contrasts and some are even changed into grey contrasts completely showing the typical 90° domain switching. When another stronger loading force 742.5 n N is applied, the phase image becomes unclear and it indicates that the piezoelectric signal can be suppressed under a sufficiently high force, which is coincident with previous experimental results. Furthermore, we adopt the domain switching criterion from the perspective of equilibrium state free energy of ferroelectric nanodomain to explain the mechanisms of force-generated domain switchings.
基金financially supported by the Consejo Nacional de Ciencia y Tecnologia (CONACyT) of Mexico (No. 485100-5-38214U)
文摘A standard calibration grating was used for image scanning to investigate the effect of hydration films on imaging resolution by Atomic Force Microscope (AFM). The results showed that the hydration films greatly affect the imaging resolution for the tapping mode, but no evident effect on the contact mode, The possible reasons for the effect of hydration films on scanning images of AFM are also brought forward here.
文摘wo different surface morphology characteristics of magnetron sputtered aluminumsilicon(Al-Si)alloy films deposited at 0 and 200℃ were observed by atomic force microscopy(AFM).One is irregularly shaped grains put togther on a plane.The other is irregularly shaped grains Piled up in space. Nanometer-sized particles with heights from 1.6 to 2.9 nm were first observed. On the basis of these observations the growth mechanism of magnetron sputtered films is discussed.
基金supported by the National Natural Science Foundation of China (10872122)Doctoral Fund of Ministry of Education of China (20103108110004)+1 种基金Program for Changjiang Scholars and Innovative Research Team in University (IRT0844)Shanghai Program for Innovative Research Team in Universities
文摘To understand the influences of nanoparticles on dewetting in ultra-thin films, both linear stability the- ory and numerical simulations are performed in the present study, with the consideration of oscillatory structural (OS) forces. Long scale approximation is utilized to simplify the hydrodynamic and diffusion equations to a nonlinear system for film thickness and nanoparticle concentration. Results show that the presence of nanoparticles generally suppresses the dewetting process. Two physical mechanisms responsi- ble for this phenomenon are addressed in the present study. When the oscillatory structural forces are relatively smaller, the essential feature of film evolution is similar to the case of particle-free flow. The reduction of the linear growth rate and the postponement of film rupturing can be attributed to the increment of the viscosity due to the presence of nanoparti- cles. On the other hand, when the intensity of the OS forces becomes stronger, the stepwise thinning of film can be ob- served which prevents the film from rupture. Numerical sim- ulations indicate that this phenomenon is caused by the ex- istence of a stable zone due to the oscillatory nature of the structural forces. Another interesting finding is that the non- uniformity of the distribution of nanoparticle concentration might destabilize a spinodally stable film, and trigger the oc- currence of film dewetting.
文摘Considering the effect of non-symmetry film force, nonlinear stiffness and nonlinear friction force, a dynamical model of rub-impact rotor system is established, then the nonlinear dynamical behavior is studied by numerical analysis method. The effect of rotation speed, nonlinear stiffitess ratio and speed effect factor on brifurcation and chaotic behavior for rub-impact rotor system is comprehensively analyzed. The analysis results show that the effect of non-symmetry film force, nonlinear stiffness and nonlinear friction force on the dynamical behavior of the rotor system has close relation with rotation speed. The chaotic behavior exists in a wider parameter region, and the chaotic evolution rule is more complicated. The research provides a reliable theory basis and reference for diagnosing some faults of the rotor system.
文摘The numerical study of thin film type condensation in forced convection of a saturated pure vapor in an inclined wall covered with a porous material is presented. The generalized Darcy-Brinkman-Forchheimer (DBF) model is used to describe the flow in the porous medium while the classical boundary layer equations have been exploited in the case of a pure liquid. The dimensionless equations are solved by an implicit finite difference method and the iterative Gauss-Seidel method. The objective of this study is to examine the influence of the Prandtl number on the hydrodynamic and thermal fields but also on the local Nusselt number and on the boundary layer thickness. For Pr ≤ 0.7 (low) the velocity and the longitudinal temperature increase with the Prandtl number. On the other hand, when Pr ≥ 2 (high) the Prandtl number no longer influences the velocity and the longitudinal temperature. The local Nusselt number increases as the Prandtl number increases and the thickness of the hydrodynamic boundary layer increases as the Prandtl number decreases.
基金Project(2011ZX04001-031)supported by National Science and Technology Major Project of"High-end CNC Machine Tools and Basic Manufacturing Equipment",ChinaProject(51371109)supported by the National Natural Science Foundation of China
文摘The instrumented applied rod casting apparatus (ARCA) was developed to investigate the effects of tensile forces in the hot tearing formation of cast AI-Si alloys. The obtained data of tensile forces/temperature was used to identify hot tearing initiation and propagation and the fracture surface of samples was also investigated. The result shows that the applied tensile forces have a complex effect on load onset for the hot tearing initiation and propagation. During the casting solidification, the tensile forces are gradually increased with the increase of solid fraction. Under the action of tensile forces, there will appear hot tearing and crack propagation on the surface of the sample. When the tensile forces exceed the inherent strength of alloys, there will be fractures on the sample. As for the A356 alloy, the critical fracture stress is about 0.1 MPa. The hot tearing surface morphology shows that the remaining intergranular bridge and liquid films are thick enough to allow the formation of dendrite-tip bumps on the fracture surface.
文摘A compound varifocal lens based on electromagnetic drive technology is designed and fabricated, where the polydimethylsiloxane(PDMS) film acts as a driving component, while the PDMS biconvex lens and the plane-concave lens form a coaxial compound lens system. The plane-concave lens equipped with driving coils is installed directly above the PDMS lens surrounded by the annular magnet. When different currents are applied, the annular magnet moves up and down, driving the PDMS film to undergo elastic deformation, and then resulting in longitudinal movement of the PDMS lens. The position change of the PDMS lens changes the focal length of the compound lens system. To verify the feasibility and practicability of this design, a prototype of our compound lens system is fabricated in experiment. Our proposed compound lens shows that its zoom ability reaches 9.28 mm when the current ranges from -0.20 A to 0.21 A.
文摘Diamond like carbon (DLC) films was grown successfully on silicon, titanium and high speed steel (HSS) substrate at low temperature in a filtered vacuum arc deposition system. Arc discharges were established on a graphite cathode in this home built system with a toridal macroparticles filter. Ion current convected by the plasma beam was measured with a negatively biased probe. It was shown that the magnetic field of the coils located on the plasma duct has a strong influence on ion current. Scanning electron microscope (SEM), atomic force microscope (AFM) and Raman spectrum are used to study the DLC films. Tribological behaviors of the deposited film are also studied.
基金supported by the National Key Research and Development Program of China (2022YFA1403300)the National Natural Science Foundation of China (11974079, 12274083, 12221004, 12174028, 52231007, 51725101, and 11727807)+2 种基金the Shanghai Municipal Science and Technology Major Project (2019SHZDZX01)the Shanghai Municipal Science and Technology Basic Research Project (22JC1400200 and 23dz2260100)the National Key Research and Development Program of China (2021YFA1200600 and 2018YFA0209100)。
文摘The conventional Hall effect is linearly proportional to the field component or magnetization component perpendicular to a film. Despite the increasing theoretical proposals on the Hall effect to the in-plane field or magnetization in various special systems induced by the Berry curvature, such an unconventional Hall effect has only been experimentally reported in Weyl semimetals and in a heterodimensional superlattice. Here, we report an unambiguous experimental observation of the antisymmetric planar Hall effect(APHE) with respect to the in-plane magnetic field in centrosymmetric rutile RuO_(2) and IrO_(2) single-crystal films. The measured Hall resistivity is found to be linearly proportional to the component of the applied in-plane magnetic field along a particular crystal axis and to be independent of the current direction or temperature. Both the experimental observations and theoretical calculations confirm that the APHE in rutile oxide films is induced by the Lorentz force. Our findings can be generalized to ferromagnetic materials for the discovery of anomalous Hall effects and quantum anomalous Hall effects induced by in-plane magnetization. In addition to significantly expanding knowledge of the Hall effect, this work opens the door to explore new members in the Hall effect family.
基金the National Natural Science Foundation of China(10525210 and 10732050)973 Project(2004CB619303)
文摘When the thicknesses of thin films reduce to microns or even nanometers, surface energy and surface interaction often play a significant role in their deformation behavior and surface morphology. The spinodal surface instability induced by the van der Waals force in a soft elastic thin film perfectly bonded to a rigid substrate is investigated theoretically using the bifurcation theory of elastic structures. The analytical solution is derived for the critical condition of spinodal surface morphology instability by accounting for the competition of the van der Waals interaction energy, elastic strain energy and surface energy. Detailed examinations on the effect of surface energy, thickness and elastic properties of the film show that the characteristic wavelength of the deformation bifurcation mode depends on the film thickness via an exponential relation, with the power index in the range from 0.749 to 1.0. The theoretical solution has a good agreement with relevant experiment results.
基金We are very grateful to the National Natural Science of Foundation of China(No.69978017,59802007)Shanghai Education Committee(No JW99-TJ-03)for their help and financial supports
文摘The microstructure properties of the sol-gel derived TiO2 films were studied by the atomic force microscopy (AFM). The films were prepared by dip coating process. The optical properties of the films were explained on the basis of the microstructure of the films.
文摘A squeeze film damper (SFD) with metal rubber (MR) ring installed on the end and the radial direction of rotor are implemented in this paper. Based on the hypothesis of π film, the description of the new SFD/MR flux and nonlinear oil film damping force is derived according to the Reynolds Eq. and Darcy’s law. It proves that the SFD/MR has better damping characteristics than the traditional SFD after comparatively analyzing characteristics of oil film between the traditional short SFD and the SFD/MR.