期刊文献+
共找到3,896篇文章
< 1 2 195 >
每页显示 20 50 100
Microscopic characteristics of tight sandstone reservoirs and their effects on the imbibition efficiency of fracturing fluids:A case study of the Linxing area,Ordos Basin 被引量:1
1
作者 Qihui Li Dazhong Ren +6 位作者 Hu Wang Haipeng Sun Tian Li Hanpeng Zhang Zhen Yan Rongjun Zhang Le Qu 《Energy Geoscience》 EI 2024年第3期328-338,共11页
The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved ... The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones. 展开更多
关键词 Tight sandstone Ordos Basin fracturing fluid Microscopic reservoir characteristics Imbibition efficiency Influencing factor
下载PDF
Experimental study of reservoir damage of water-based fracturing fluids prepared by different polymers
2
作者 Guo-Dong Wu Li-Kun Wang +8 位作者 Chun-Yan Zhao Ze-Jun Zhang Jian-Yu Yin Maryamgul Anwaier Hong-Da Ren Dan Yang Shu-Li Yin Zhuo-Lin Cai Dao-Yi Zhu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3298-3306,共9页
Fracturing operations can effectively improve the production of low-permeable reservoirs. The performance of fracturing fluids directly affects the fracturing efficiency and back flow capacity. As polymerbased fractur... Fracturing operations can effectively improve the production of low-permeable reservoirs. The performance of fracturing fluids directly affects the fracturing efficiency and back flow capacity. As polymerbased fracturing fluids(such as guar gum(GG), polyacrylamide(HPAM), etc.) are high-viscosity fluids formed by viscosifiers and crosslinking agents, the degree of gel breakage after the fracturing operation directly influences the damage degree to the reservoir matrix and the mobility of oil angd gas produced from the reservoir into the wellbore. This study compared the viscosity, molecular weight, and particle size of the fracturing fluid after gel breakage prepared by GG and HPAM as viscosifiers, as well as evaluate their damage to the core. Results show that the viscosities of the gel-breaking fluid increased with the concentration of the viscosifier for both the HPAM-based and GG-based fracturing fluids. For the breaking fluid with the same viscosity, the molecular weight in the HPAM-based gel-breaking fluid was much larger than that in the GG-based system. Moreover, for the gel-breaking fluid with the same viscosity, the molecular particle size of the residual polymers in the HPAM-based system was smaller than that in the GG-based system. The damage to the core with the permeability of 1 × 10^(-3)μm^(2) caused by both the HPAM-based and GG-based gel-breaking fluids decreased with the increase in the solution viscosity. For the gel-breaking fluid systems with the same viscosity(i.e., 2-4 mPa s), the damage of HPAM-based fracturing fluid to low-permeability cores was greater than the GG-based fracturing fluid(45.6%-80.2%) since it had a smaller molecular particle size, ranging from 66.2% to 77.0%. This paper proposed that the damage caused by hydraulic fracturing in rock cores was related to the partilce size of residual polymers in gel-breaking solution, rather than its molecular weight. It was helpful for screening and optimizing viscosifiers used in hydraulic fracturing process. 展开更多
关键词 fracturing fluid Guar gum HPAM Gel-breaking fluid Formation damage
下载PDF
Influences of clean fracturing fluid viscosity and horizontal in-situ stress difference on hydraulic fracture propagation and morphology in coal seam
3
作者 Gang Wang Shuxin Wang +5 位作者 Yixin Liu Qiming Huang Shengpeng Li Shuliang Xie Jinye Zheng Jiuyuan Fan 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期159-175,共17页
The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal ... The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters. 展开更多
关键词 Clean fracturing fluid Hydraulic fracturing VISCOSITY Horizontal in-situ stress difference Hydraulic fracture morphology Acoustic emission
下载PDF
Optimization method of fracturing fluid volume intensity for SRV fracturing technique in shale oil reservoir based on forced imbibition:A case study of well X-1 in Biyang Sag of Nanxiang Basin,China
4
作者 JIANG Tingxue SHEN Ziqi +6 位作者 WANG Liangjun QI Zili XIAO Bo QIN Qiuping FAN Xiqun WANG Yong QU Hai 《Petroleum Exploration and Development》 SCIE 2024年第3期674-683,共10页
An optimization method of fracturing fluid volume strength was introduced taking well X-1 in Biyang Sag of Nanxiang Basin as an example.The characteristic curves of capillary pressure and relative permeability were ob... An optimization method of fracturing fluid volume strength was introduced taking well X-1 in Biyang Sag of Nanxiang Basin as an example.The characteristic curves of capillary pressure and relative permeability were obtained from history matching between forced imbibition experimental data and core-scale reservoir simulation results and taken into a large scale reservoir model to mimic the forced imbibition behavior during the well shut-in period after fracturing.The optimization of the stimulated reservoir volume(SRV)fracturing fluid volume strength should meet the requirements of estimated ultimate recovery(EUR),increased oil recovery by forced imbibition and enhancement of formation pressure and the fluid volume strength of fracturing fluid should be controlled around a critical value to avoid either insufficiency of imbibition displacement caused by insufficient fluid amount or increase of costs and potential formation damage caused by excessive fluid amount.Reservoir simulation results showed that SRV fracturing fluid volume strength positively correlated with single-well EUR and an optimal fluid volume strength existed,above which the single-well EUR increase rate kept decreasing.An optimized increase of SRV fracturing fluid volume and shut-in time would effectively increase the formation pressure and enhance well production.Field test results of well X-1 proved the practicality of established optimization method of SRV fracturing fluid volume strength on significant enhancement of shale oil well production. 展开更多
关键词 shale oil horizontal well volume fracturing forced imbibition fracturing fluid intensity parameter optimization
下载PDF
Formation damage mechanism and control strategy of the compound function of drilling fluid and fracturing fluid in shale reservoirs
5
作者 SUN Jinsheng XU Chengyuan +6 位作者 KANG Yili JING Haoran ZHANG Jie YANG Bin YOU Lijun ZHANG Hanshi LONG Yifu 《Petroleum Exploration and Development》 SCIE 2024年第2期430-439,共10页
For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture ... For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid.With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface,fracture closure and rock powder blocking,the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid.The formation damage mechanism during drilling and completion process in shale reservoir is revealed,and the protection measures are raised.The drilling fluid can deeply invade into the shale formation through natural and induced fractures,erode shale minerals and weaken the mechanical properties of shale during the drilling process.In the process of hydraulic fracturing,the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale,results in fracture closure and rock powder shedding,and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures.The damage can yield significant conductivity decrease of fractures,and restrict the high and stable production of shale oil and gas wells.The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section,forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface,strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid,optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection. 展开更多
关键词 shale oil and gas drilling fluid fracturing fluid stress-sensitive solid blocking formation damage reservoir protection
下载PDF
Supramolecular polymer-based gel fracturing fluid with a double network applied in ultra-deep hydraulic fracturing
6
作者 Yong-Ping Huang Yong Hu +5 位作者 Chang-Long Liu Yi-Ning Wu Chen-Wei Zou Li-Yuan Zhang Ming-Wei Zhao Cai-Li Dai 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1875-1888,共14页
A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores... A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores.High viscosity/viscoelasticity of the fracturing fluid was required to maintain excellent proppant suspension properties before gelling.Taking into account both the cost and the potential damage to reservoirs,polymers with lower concentrations and molecular weights are generally preferred.In this work,the supramolecular action was integrated into the polymer,resulting in significant increases in the viscosity and viscoelasticity of the synthesized supramolecular polymer system.The double network gel,which is formed by the combination of the supramolecular polymer system and a small quantity of Zr-crosslinker,effectively resists temperature while minimizing permeability damage to the reservoir.The results indicate that the supramolecular polymer system with a molecular weight of(268—380)×10^(4)g/mol can achieve the same viscosity and viscoelasticity at 0.4 wt%due to the supramolecular interaction between polymers,compared to the 0.6 wt%traditional polymer(hydrolyzed polyacrylamide,molecular weight of 1078×10^(4)g/mol).The supramolecular polymer system possessed excellent proppant suspension properties with a 0.55 cm/min sedimentation rate at 0.4 wt%,whereas the0.6 wt%traditional polymer had a rate of 0.57 cm/min.In comparison to the traditional gel with a Zrcrosslinker concentration of 0.6 wt%and an elastic modulus of 7.77 Pa,the double network gel with a higher elastic modulus(9.00 Pa)could be formed only at 0.1 wt%Zr-crosslinker,which greatly reduced the amount of residue of the fluid after gel-breaking.The viscosity of the double network gel was66 m Pa s after 2 h shearing,whereas the traditional gel only reached 27 m Pa s. 展开更多
关键词 Ultra-deep reservoir Gel fracturing fluid Double network Supramolecular polymer system Proppant suspension property
下载PDF
A Novel Fracturing Fluid with High-Temperature Resistance for Ultra-Deep Reservoirs
7
作者 Lian Liu Liang Li +2 位作者 Kebo Jiao Junwei Fang Yun Luo 《Fluid Dynamics & Materials Processing》 EI 2024年第5期975-987,共13页
Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do ... Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do not produce satisfactory results when conventional fracturing fluids with a low pumping rate are used.In response to the above problem,a fracturing fluid with a density of 1.2~1.4 g/cm^(3)was developed by using Potassium formatted,hydroxypropyl guanidine gum and zirconium crosslinking agents.The fracturing fluid was tested and its ability to maintain a viscosity of 100 mPa.s over more than 60 min was verified under a shear rate of 1701/s and at a temperature of 175℃.This fluid has good sand-carrying performances,a low viscosity after breaking the rubber,and the residue content is less than 200 mg/L.Compared with ordinary reconstruction fluid,it can increase the density by 30%~40%and reduce the wellhead pressure of 8000 m level reconstruction wells.Moreover,the new fracturing fluid can significantly mitigate safety risks. 展开更多
关键词 Ultra-deep reservoir high-temperature resistance weighted fracturing fluid guanidine gum potassium formatted
下载PDF
Research on the Performance of New Weighted Slippery Water Fracturing Fluid System
8
作者 Yuanfan Shi Weichu Yu +5 位作者 Dongkui Zhou Fei Ding Wengming Shu Ying Zhang Yiwen Ju Zhengdong Lei 《Open Journal of Applied Sciences》 2024年第8期2101-2111,共11页
Deep and ultra-deep reservoirs have dense matrix and high fracture pressure, which leads to high pressure and difficulty in fracturing construction. Conventional aggravated fracturing fluids have the problems of low a... Deep and ultra-deep reservoirs have dense matrix and high fracture pressure, which leads to high pressure and difficulty in fracturing construction. Conventional aggravated fracturing fluids have the problems of low aggravation efficiency, high friction resistance, etc., and the reduction of construction pressure cannot reach the theoretical effect. In view of the above problems, this paper adopts the weighting agent HD160 and the drag reducing agent JHFR-2 to form a new type of weighted slippery water fracturing fluid system. And the weighting performance, drag reduction performance, corrosion performance, anti-expansion performance and reservoir damage of this system were studied. The results show that the density of the system is adjustable within 1.1 - 1.6 g·cm−3, and the drag reduction rate can be up to 68% at 1.5 g·cm−3, with low corrosion rate, surface tension less than 28 mN·m−1, anti-expansion rate as high as 94.5%, and the damage rate of the reservoir permeability is less than 10%, which is of good application prospect. 展开更多
关键词 Aggravated fracturing fluid Aggravator Slickwater Corrosive Properties Anti-Swelling Rate
下载PDF
A review of reservoir damage during hydraulic fracturing of deep and ultra-deep reservoirs 被引量:2
9
作者 Kun Zhang Xiong-Fei Liu +6 位作者 Dao-Bing Wang Bo Zheng Tun-Hao Chen Qing Wang Hao Bai Er-Dong Yao Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期384-409,共26页
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u... Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage. 展开更多
关键词 Artificial fracture Deep and ultra-deep reservoir fracture conductivity fracturing fluid Hydraulic fracturing Reservoir damage
下载PDF
Effect of fracture fluid flowback on shale microfractures using CT scanning 被引量:2
10
作者 Jiale He Zhihong Zhao +6 位作者 Yiran Geng Yuping Chen Jianchun Guo Cong Lu Shouyi Wang Xueliang Han Jun Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期426-436,共11页
The field data of shale fracturing demonstrate that the flowback performance of fracturing fluid is different from that of conventional reservoirs,where the flowback rate of shale fracturing fluid is lower than that o... The field data of shale fracturing demonstrate that the flowback performance of fracturing fluid is different from that of conventional reservoirs,where the flowback rate of shale fracturing fluid is lower than that of conventional reservoirs.At the early stage of flowback,there is no single-phase flow of the liquid phase in shale,but rather a gas-water two-phase flow,such that the single-phase flow model for tight oil and gas reservoirs is not applicable.In this study,pores and microfractures are extracted based on the experimental results of computed tomography(CT)scanning,and a spatial model of microfractures is established.Then,the influence of rough microfracture surfaces on the flow is corrected using the modified cubic law,which was modified by introducing the average deviation of the microfracture height as a roughness factor to consider the influence of microfracture surface roughness.The flow in the fracture network is simulated using the modified cubic law and the lattice Boltzmann method(LBM).The results obtained demonstrate that most of the fracturing fluid is retained in the shale microfractures,which explains the low fracturing fluid flowback rate in shale hydraulic fracturing. 展开更多
关键词 SHALE Flowback of fracturing fluid MICROfracturE Lattice Boltzmann method(LBM)
下载PDF
Experimental investigation of shale imbibition capacity and the factors influencing loss of hydraulic fracturing fluids 被引量:17
11
作者 Hong-Kui Ge Liu Yang +4 位作者 Ying-Hao Shen Kai Ren Fan-Bao Meng Wen-Ming Ji Shan Wu 《Petroleum Science》 SCIE CAS CSCD 2015年第4期636-650,共15页
Spontaneous imbibition of water-based frac- turing fluids into the shale matrix is considered to be the main mechanism responsible for the high volume of water loss during the flowback period. Understanding the matrix... Spontaneous imbibition of water-based frac- turing fluids into the shale matrix is considered to be the main mechanism responsible for the high volume of water loss during the flowback period. Understanding the matrix imbibition capacity and rate helps to determine the frac- turing fluid volume, optimize the flowback design, and to analyze the influences on the production of shale gas. Imbibition experiments were conducted on shale samples from the Sichuan Basin, and some tight sandstone samples from the Ordos Basin. Tight volcanic samples from the Songliao Basin were also investigated for comparison. The effects of porosity, clay minerals, surfactants, and KC1 solutions on the matrix imbibition capacity and rate were systematically investigated. The results show that the imbibition characteristic of tight rocks can be characterized by the imbibition curve shape, the imbibition capacity, the imbibition rate, and the diffusion rate. The driving forces of water imbibition are the capillary pressure and the clay absorption force. For the tight rocks with low clay contents, the imbibition capacity and rate are positively correlated with the porosity. For tight rocks with high clay content, the type and content of clay minerals are the most impor- tant factors affecting the imbibition capacity. The imbibed water volume normalized by the porosity increases with an increasing total clay content. Smectite and illite/smectite tend to greatly enhance the water imbibition capacity. Furthermore, clay-rich tight rocks can imbibe a volume of water greater than their measured pore volume. The aver- age ratio of the imbibed water volume to the pore volume is approximately 1.1 in the Niutitang shale, 1.9 in the Lujiaping shale, 2.8 in the Longmaxi shale, and 4.0 in the Yingcheng volcanic rock, and this ratio can be regarded as a parameter that indicates the influence of clay. In addition, surfactants can change the imbibition capacity due to alteration of the capillary pressure and wettability. A 10 wt% KC1 solution can inhibit clay absorption to reduce the imbibition capacity. 展开更多
关键词 Imbibition . Shale fracturing fluid Capillary pressure CLAY
下载PDF
Gas-hydrate formation,agglomeration and inhibition in oil-based drilling fluids for deep-water drilling 被引量:9
12
作者 Fulong Ning Ling Zhang +2 位作者 YunzhongTu Guosheng Jiang Maoyong Shi 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第3期234-240,共7页
One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were teste... One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were tested to investigate the characteristics of gas-hydrate formation,agglomeration and inhibition by an experimental system under the temperature of 4 ?C and pressure of 20 MPa,which would be similar to the case of 2000 m water depth.The results validate the hydrate shell formation model and show that the water cut can greatly influence hydrate formation and agglomeration behaviors in the OBDF.The oleophobic effect enhanced by hydrate shell formation which weakens or destroys the interfacial films effect and the hydrophilic effect are the dominant agglomeration mechanism of hydrate particles.The formation of gas hydrates in OBDF is easier and quicker than in water-based drilling fluids in deep-water conditions of low temperature and high pressure because the former is a W/O dispersive emulsion which means much more gas-water interfaces and nucleation sites than the later.Higher ethylene glycol concentrations can inhibit the formation of gas hydrates and to some extent also act as an anti-agglomerant to inhibit hydrates agglomeration in the OBDF. 展开更多
关键词 oil-based drilling fluids gas hydrates water cut formation and agglomeration INHIBITOR
下载PDF
Rheological properties of oil-based drilling fluids at high temperature and high pressure 被引量:3
13
作者 赵胜英 鄢捷年 +1 位作者 舒勇 张洪霞 《Journal of Central South University》 SCIE EI CAS 2008年第S1期457-461,共5页
The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental ... The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental results show that the apparent viscosity,plastic viscosity and yield point decrease with the increase of temperature,and increase with the increase of pressure.The effect of pressure on the apparent viscosity,plastic viscosity and yield point is considerable at ambient temperature.However,this effect gradually reduces with the increase of temperature.The major factor influencing the rheological properties of oil-based drilling fluids is temperature instead of pressure in the deep sections of oil wells.On the basis of numerous experiments,the model for predict the apparent viscosity,plastic viscosity and yield point of oil-based drilling fluids at high temperature and pressure was established using the method of regressive analysis.It is confirmed that the calculated data are in good agreement with the measured data,and the correlation coefficients are more than 0.98.The model is convenient for use and suitable for the application in drilling operations. 展开更多
关键词 oil-based DRILLING fluidS HIGH temperature HIGH pressure RHEOLOGICAL property MATHEMATICAL model
下载PDF
Probing the influence of secondary fracture connectivity on fracturing fluid flowback efficiency 被引量:3
14
作者 Yi-Ning Wu Li-Sha Tang +5 位作者 Yuan Li Li-Yuan Zhang Xu Jin Ming-Wei Zhao Xiang Feng Cai-Li Dai 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期973-981,共9页
A deep understanding of the geometric impacts of fracture on fracturing fluid flowback efficiency is essential for unconventional oil development. Using nuclear magnetic resonance and 2.5-dimensional matrix-fracture v... A deep understanding of the geometric impacts of fracture on fracturing fluid flowback efficiency is essential for unconventional oil development. Using nuclear magnetic resonance and 2.5-dimensional matrix-fracture visualization microfluidic models, qualitative and quantitative descriptions of the influences of connectivity between primary fracture and secondary fracture on flowback were given from core scale to pore network scale. The flow patterns of oil-gel breaking fluid two-phase flow during flowback under different fracture connectivity were analyzed. We found some counterintuitive results that non-connected secondary fracture (NCSF, not connect with artificial primary fracture and embedded in the matrix) is detrimental to flowbackefficiency. The NCSF accelerates the formation of oil channeling during flowback, resulting in a large amount of fracturing fluid trapped in the matrix, which is not beneficial for flowback. Whereas the connected secondary fracture (CSF, connected with the artificial primary fracture) is conducive to flowback. The walls of CSF become part of primary fracture, which expands the drainage area with low resistance, and delays the formation of the oil flow channel. Thus, CSF increases the high-speed flowback stage duration, thereby enhancing the flowback efficiency. The fracturing fluid flowback efficiency investigated here follows the sequence of the connected secondary fracture model (72%) > the matrix model (66%) > the non-connected secondary fracture model (38%). Our results contribute to hydraulic fracturing design and the prediction of flowback efficiency. 展开更多
关键词 fracturing fluid Secondary fracture connectivity Flowback efficiency Dual media Microfluidic model
下载PDF
On the efficient non-linear solver for hydraulic fracturing and well cementing simulations based on Anderson acceleration
15
作者 D.Yu.Derbyshev S.A.Boronin +1 位作者 G.V.Ovchinnikov A.A.Osiptsov 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3237-3257,共21页
The aim of this study is to create a fast and stable iterative technique for numerical solution of a quasi-linear elliptic pressure equation. We developed a modified version of the Anderson acceleration(AA)algorithm t... The aim of this study is to create a fast and stable iterative technique for numerical solution of a quasi-linear elliptic pressure equation. We developed a modified version of the Anderson acceleration(AA)algorithm to fixed-point(FP) iteration method. It computes the approximation to the solutions at each iteration based on the history of vectors in extended space, which includes the vector of unknowns, the discrete form of the operator, and the equation's right-hand side. Several constraints are applied to AA algorithm, including a limitation of the time step variation during the iteration process, which allows switching to the base FP iterations to maintain convergence. Compared to the base FP algorithm, the improved version of the AA algorithm enables a reliable and rapid convergence of the iterative solution for the quasi-linear elliptic pressure equation describing the flow of particle-laden yield-stress fluids in a narrow channel during hydraulic fracturing, a key technology for stimulating hydrocarbon-bearing reservoirs. In particular, the proposed AA algorithm allows for faster computations and resolution of unyielding zones in hydraulic fractures that cannot be calculated using the FP algorithm. The quasi-linear elliptic pressure equation under consideration describes various physical processes, such as the displacement of fluids with viscoplastic rheology in a narrow cylindrical annulus during well cementing,the displacement of cross-linked gel in a proppant pack filling hydraulic fractures during the early stage of well production(fracture flowback), and multiphase filtration in a rock formation. We estimate computational complexity of the developed algorithm as compared to Jacobian-based algorithms and show that the performance of the former one is higher in modelling of flows of viscoplastic fluids. We believe that the developed algorithm is a useful numerical tool that can be implemented in commercial simulators to obtain fast and converged solutions to the non-linear problems described above. 展开更多
关键词 Anderson acceleration Non-linear solver Hydraulic fracturing Well cementing Yield-stress fluid
下载PDF
Squeeze-Strengthening Effect of Silicone Oil-based Magnetorheological Fluid 被引量:2
16
作者 刘新华 CHEN Qingqing +2 位作者 LIU Hao WANG Zhongbin ZHAO Huadong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期523-527,共5页
In order to study the squeeze-strengthening effect of silicone oil-based magnetorheological fluid (MRF), theoretical basis of disc squeezing brake was presented and a squeezing braking characteristics test-bed for M... In order to study the squeeze-strengthening effect of silicone oil-based magnetorheological fluid (MRF), theoretical basis of disc squeezing brake was presented and a squeezing braking characteristics test-bed for MRF was designed. Moreover, relevant experiments were carded out and the relationship between squeezing pressure and braking torque was proposed. Experiments results showed that the yield stress of MRF improved linearly with the increasing of external squeezing pressure and the braking torque increased three times when external squeezing pressure achieved 2 MPa. 展开更多
关键词 silicone oil-based magnetorheological fluid squeeze-strengthening effect yield stress braking characteristic
下载PDF
A novel triple responsive smart fluid for tight oil fracturing-oil expulsion integration 被引量:2
17
作者 Ming-Wei Gao Ming-Shan Zhang +5 位作者 Heng-Yi Du Ming-Wei Zhao Cai-Li Dai Qing You Shun Liu Zhe-Hui Jin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期982-992,共11页
The traditional multi-process to enhance tight oil recovery based on fracturing and huff-n-puff has obvious deficiencies,such as low recovery efficiency,rapid production decline,high cost,and complexity,etc.Therefore,... The traditional multi-process to enhance tight oil recovery based on fracturing and huff-n-puff has obvious deficiencies,such as low recovery efficiency,rapid production decline,high cost,and complexity,etc.Therefore,a new technology,the so-called fracturing-oil expulsion integration,which does not need flowback after fracturing while making full use of the fracturing energy and gel breaking fluids,are needed to enable efficient exploitation of tight oil.A novel triple-responsive smart fluid based on“pseudo-Gemini”zwitterionic viscoelastic surfactant(VES)consisting of N-erucylamidopropyl-N,N-dimethyl-3-ammonio-2-hydroxy-1-propane-sulfonate(EHSB),N,N,N′,N′-tetramethyl-1,3-propanediamine(TMEDA)and sodium p-toluenesulfonate(NaPts),is developed.Then,the rheology of smart fluid is systematically studied at varying conditions(CO_(2),temperature and pressure).Moreover,the mechanism of triple-response is discussed in detail.Finally,a series of fracturing and spontaneous imbibition performances are systematically investigated.The smart fluid shows excellent CO_(2)-,thermal-,and pressure-triple responsive behavior.It can meet the technical requirement of tight oil fracturing construction at 140°C in the presence of 3.5 MPa CO_(2).The gel breaking fluid shows excellent spontaneous imbibition oil expulsion(∼40%),salt resistance(1.2×104 mg/L Na+),temperature resistance(140°C)and aging stability(30 days). 展开更多
关键词 fracturing-oil expulsion integration Tight oil Triple responsive smart fluid "Pseudo-gemini"zwitterionic surfactant fracturing fluid Spontaneous imbibition
下载PDF
Investigation on microscopic invasion characteristics and retention mechanism of fracturing fluid in fractured porous media 被引量:2
18
作者 Qi-An Da Chuan-Jin Yao +3 位作者 Xue Zhang Xiao-Pu Wang Xiao-Huan Qu Guang-Lun Lei 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1745-1756,共12页
Reservoir damage caused by guar gum fracturing fluid and slick water seriously affects the subsequent oil and gas production. However, the invasion characteristics and retention mechanisms of fracturing fluids in the ... Reservoir damage caused by guar gum fracturing fluid and slick water seriously affects the subsequent oil and gas production. However, the invasion characteristics and retention mechanisms of fracturing fluids in the fracture-matrix zone are still unclear. In this work, a microscopic model reflecting the characteristics of the fracture-matrix zone was designed. Based on the microfluidic experimental method, the process of fracturing fluid invasion, flowback and retention in the fracture-matrix zone was investigated visually and characterized quantitatively. The factors and mechanisms affecting fracturing fluid retention in the fracture-matrix zone were analyzed and clarified. The results indicated that in the invasion process, the frontal swept range of slick water was larger than that of the guar gum fracturing fluid, and the oil displacement efficiency and damage rate were lower than those of the guar gum fracturing fluid under the same invasion pressure. With the increase in invasion pressure, the damage rate of slick water increased from 61.09% to 82.77%, and that of the guar gum fracturing fluid decreased from 93.45% to83.36%. Before subsequent oil production, the invaded fracturing fluid was mainly concentrated in the medium-high permeability area of the fracture-matrix zone. The main resistance of slick water was capillary force, while that of the guar fracturing fluid was mainly viscous resistance. The fracturing fluid retention was most serious in the low permeability region and the region near the end of the fracture.The experimental and numerical simulation results showed that increasing the production pressure difference could improve the velocity field distribution of the fracture-matrix zone, increase the flowback swept range and finally reduce the retention rate of the fracture fluid. The retention mechanisms of slick water in the fracture-matrix zone include emulsion retention and flow field retention, while those of the guar gum fracturing fluid include viscous retention and flow field retention. Emulsion retention is caused by capillary force and flow interception effect. Viscous retention is caused by the viscous resistance of polymer, while flow-field retention is caused by uneven distribution of flowback velocity. 展开更多
关键词 Microfluidic experiment Reservoir damage fracturing fluid fracture-matrix zone Retention mechanism
下载PDF
Fracturing and Episodic Fluid Expulsion in Pressure Compartments 被引量:1
19
作者 Mei Lianfu Department of Petroleum Geology, China University of Geosciences, Wuhan 430074 Wang C.Y. Department of Geology and Geophysics, University of California, Berkeley 94720 Cai Yongen Department of Geology, Peking University, Beijing 100871 《Journal of Earth Science》 SCIE CAS CSCD 1998年第2期32-36,共5页
The fracturing of the pressure compartments in sedimentary basins may not be caused completely by natural hydraulic fracturing. On the bases of fracture mechanics and numerical simulation, we consider that there are t... The fracturing of the pressure compartments in sedimentary basins may not be caused completely by natural hydraulic fracturing. On the bases of fracture mechanics and numerical simulation, we consider that there are two mechanisms concerning the fracturing of pressure compartments, which are as follows: (1) natural hydraulic fracturing of the sediments within pressure compartments, and (2) tensile fracturing due to tangential traction. When the fracture, formed in the sediments within pressure compartments due to hydraulic fracturing, arrives at the base of the seal, the intensely tangential tensile stresses are created and lead to the fracturing of the seal. After the seal fractured, the fluid escaped from the pressure compartments. In a shallow pressure compartment, the duration of fracture opening and fluid expulsion is about 10-20 years in a cycle. 展开更多
关键词 pressure compartments fracturing episodic fluid expulsion.
下载PDF
Experimental study on the adverse effect of gel fracturing fluid on gas sorption behavior for Illinois coal 被引量:1
20
作者 Qiming Huang Jun Li +1 位作者 Shimin Liu Gang Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第6期1250-1261,共12页
Hydraulic fracturing is an effective technology for coal reservoir stimulation.After fracturing operation and flowback,a fraction of fracturing fluid will be essentially remained in the formation which ultimately dama... Hydraulic fracturing is an effective technology for coal reservoir stimulation.After fracturing operation and flowback,a fraction of fracturing fluid will be essentially remained in the formation which ultimately damages the flowability of the formation.In this study,we quantified the gel-based fracturing fluid induced damages on gas sorption for Illinois coal in US.We conducted the high-pressure methane and CO_(2)sorption experiments to investigate the sorption damage due to the gel residue.The infrared spectroscopy tests were used to analyze the evolution of the functional group of the coal during fracturing fluid treatment.The results show that there is no significant chemical reaction between the fracturing fluid and coal,and the damage of sorption is attributed to the physical blockage and interactions.As the concentration of fracturing fluid increases,the density of residues on the coal surface increases and the adhesion film becomes progressively denser.The adhesion film on coal can apparently reduce the number of adsorption sites for gas and lead to a decrease of gas sorption capacity.In addition,the gel residue can decrease the interconnectivity of pore structure of coal which can also limit the sorption capacity by isolating the gas from the potential sorption sites.For the low concentration of fracturing fluid,the Langmuir volume was reduced to less than one-half of that of raw coal.After the fracturing fluid invades,the desorption hysteresis of methane and CO_(2)in coal was found to be amplified.The impact on the methane desorption hysteresis is significantly higher than CO_(2)does.The reason for the increasing of hysteresis may be that the adsorption swelling caused by the residue adhered on the pore edge,or the pore blockage caused by the residue invasion under high gas pressure.The results of this study quantitatively confirm the fracturing fluid induced gas sorption damage on coal and provide a baseline assessment for coal fracturing fluid formulation and technology. 展开更多
关键词 Hydraulic fracturing fracturing fluid Coalbed methane Sorption hysteresis
下载PDF
上一页 1 2 195 下一页 到第
使用帮助 返回顶部