In this study, a thermophilic oil-degrading bacterial consortium KO8-2 growing within the temperature range of 45--65℃ (with 55℃ being the optimum temperature) was isolated from oil-contaminated soil of Karamay in...In this study, a thermophilic oil-degrading bacterial consortium KO8-2 growing within the temperature range of 45--65℃ (with 55℃ being the optimum temperature) was isolated from oil-contaminated soil of Karamay in Xinjiang, China. Denaturing gradient gel electrophoresis (DGGE) showed that there were nine strains included in KO8-2, which originated from the genera of Bacillus, Geobacillus and Clostridium. They all belonged to thermophilic bacteria, and had been previously proved as degraders of at least one petroleum fraction. The crude oil degraded by KO8-2 was analyzed by infrared spectrophotometry, hydrocarbon group type analysis and gas chromatography. The results indicated that the bacterial consortium KO8-2 was able to utilize 64.33% of saturates, 27.06% of aromatics, 13.24% of resins and the oil removal efficiency reached up to 58.73% at 55 ~C when the oil concentration was 10 g/L. Detailed analysis showed that KO8-2 was able to utilize the hydrocarbon components before C19, and the n-alkanes ranging from C20--C33 were signifi- cantly degraded. The ratios of nC17/Pr and nC18/Ph were 3.12 and 3.87, respectively, before degradation, whereas after degradation the ratios reduced to 0.21 and 0.38, respectively. Compared with the control sample, the oil removal efficiency in KO8-2 composting reactor reached 50.12% after a degradation duration of 60 days.展开更多
A hydrocarbon degrading bacterial consortium KO5-2 was isolated from oil-contaminated soil of Karamay in Xinjiang, China, which could remove 56.9% of 10 g/L total petroleum hydrocarbons(TPH) at 30 ℃ after 7 days of i...A hydrocarbon degrading bacterial consortium KO5-2 was isolated from oil-contaminated soil of Karamay in Xinjiang, China, which could remove 56.9% of 10 g/L total petroleum hydrocarbons(TPH) at 30 ℃ after 7 days of incubation, and could also remove 100% of fluorene, 98.93% of phenanthrene and 65.73% of pyrene within 3, 7 and 9 days, respectively. Twelve strains from six different genera were isolated from KO5-2 and only eight ones were able to utilize the TPH. The denaturing gradient gel electrophoresis(DGGE) was used to investigate the microbial community shifts in five different carbon sources(including TPH, saturated hydrocarbons, fluorene, phenanthrene and pyrene). The test results indicated that the community compositions of KO5-2 in carbon sources of TPH and saturated hydrocarbons, respectively, were roughly the same, while they were distinctive in the three different carbon sources of PAHs. Rhodococcus sp. and Pseudomonas sp. could survive in the five kinds of carbon sources. Bacillus sp., Sphingomonas sp. and Ochrobactrum sp. likely played key roles in the degradation of saturated hydrocarbons, PAHs and phenanthrene, respectively. This study showed that specific bacterial phylotypes were associated with different contaminants and complex interactions between bacterial species, and the medium conditions influenced the biodegradation capacity of the microbial communities involved in bioremediation processes.展开更多
A laboratory study was performed to assess the biodegradation of lube oil in bio-reactor with 304# stainless steel as a biofilm carrier. Among 164 oil degrading bacterial cultures isolated from oil contaminated soil s...A laboratory study was performed to assess the biodegradation of lube oil in bio-reactor with 304# stainless steel as a biofilm carrier. Among 164 oil degrading bacterial cultures isolated from oil contaminated soil samples, Commaonas acidovorans Px1, Bacillus sp. Px2, Pseudomonas sp. Px3 were selected to prepare a mixed consortium for the study based on the efficiency of lube oil utilization. The percentage of oil degraded by the mixed bacterial consortium decreased slightly from 99% to 97.2% as the concentration of lube oil was increased from 2000 to 10,000 mg/L. The degradation of TDOC (total dissolved organic carbon) showed a similar tendency compared with lube oil removal, which indicated that the intermediates in degradation process hardly accumulated. Selected mixed bacterial consortium showed their edge compared to activated sludge. Scanning electron microscopy (SEM) photos showed that biofilms on stainless steel were robust and with a dimensional framework constructed by EPS (extracellular polymeric substances), which could promote the biodegradation of hydrocarbons. The increase of biofilm followed first-order kinetics with rate of 0.216 μg glucose/(cm2·day) in logarithm phase. With analysis of Fourier transform infrared spectroscopy (FT-IR) and gas chromatography-mass spectrometry (GC-MS) combined with removal of lube oil and TDOC, mixed bacterial consortium could degrade benzene and its derivatives, aromatic ring organic matters with a percentage over 97%.展开更多
We investigated the ability of a bacterial community constructed with six strains isolated from an oily sludge, to utilize diesel oil at high concentrations. The consortium was able to grow at concentrations up to 84 ...We investigated the ability of a bacterial community constructed with six strains isolated from an oily sludge, to utilize diesel oil at high concentrations. The consortium was able to grow at concentrations up to 84 g diesel oil/L and had produced biosurfactants during its active growth phase;these compounds, in their crude form, reduced the surface tension of distilled water from 72 mN/m to 31 mN/m, with a corresponding Critical Micelle Concentration value γCMC = 81 mg/L. The plot of specific growth rates obtained from the growth curves versus initial concentrations was found to fit adequately the experimental data by the Andrews inhibitory model, which resulted in the following kinetic constants: μmax = 0.535d-1 ± 0.063, KS = 18.68 g/L ± 3.59 and KI = 29.02 g/L ± 4.96, reflecting the slow biodegradation rate. At 25.2 g diesel oil/L, close to the optimal concentration S* = 23.28 g/L ± 4.23, the consortium metabolized diesel oil faster than each strain did individually, suggesting that the process was stimulated by a synergistic interaction between the members of the consortium.展开更多
Inoculation with efficient microbes had been proved to be the most important way for the bioremediation of polluted environments. For the treatment of abandoned site of Beijing Coking Chemical Plant contaminated with ...Inoculation with efficient microbes had been proved to be the most important way for the bioremediation of polluted environments. For the treatment of abandoned site of Beijing Coking Chemical Plant contaminated with high level of high-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), a bacterial consortium capable of degrading HMW-PAHs, designated 1-18-1, was enriched and screened from HMW-PAHs contaminated soil. Its degrading ability was analyzed by high performance liquid chromatography (HPLC), and the community structure was investigated by construction and analyses of the 16S rRNA gene clone libraries (A, B and F) at different transfers. The results indicated that 1-18-1 was able to utilize pyrene, fluoranthene and benzo[a]pyrene as sole carbon and energy source for growth. The degradation rate of pyrene and fluoranthene reached 82.8% and 96.2% after incubation for 8 days at 30℃, respectively; while the degradation rate of benzo[a]pyrene was only 65.1% after incubation for 28 days at 30℃. Totally, 108, 100 and 100 valid clones were randomly selected and sequenced from the libraries A, B, and E Phylogenetic analyses showed that all the clones could be divided into 5 groups, Bacteroidetes, ct-Proteobacteria, Actinobacteria, β-Proteobacteda and γ- Proteobacteria. Sequence similarity analyses showed total 39 operational taxonomic units (OTUs) in the libraries. The predominant bacterial groups were α-Proteobacteria (19 OTUs, 48.7%), γ-Proteobacteria (90TUs, 23.1%) and β-Proteobacteria (80TUs, 20.5%). During the transfer process, the proportions of α-Proteobacteria and β-Proteobacteria increased greatly (from 47% to 93%), while γ-Proteobacteda decreased from 32% (library A) to 6% (library F); and Bacteroidetes group disappeared in libraries B and F.展开更多
基金the support provided by the Research&Technology Development Project of China National Petroleum Corporation(No.2008D-4704-2)
文摘In this study, a thermophilic oil-degrading bacterial consortium KO8-2 growing within the temperature range of 45--65℃ (with 55℃ being the optimum temperature) was isolated from oil-contaminated soil of Karamay in Xinjiang, China. Denaturing gradient gel electrophoresis (DGGE) showed that there were nine strains included in KO8-2, which originated from the genera of Bacillus, Geobacillus and Clostridium. They all belonged to thermophilic bacteria, and had been previously proved as degraders of at least one petroleum fraction. The crude oil degraded by KO8-2 was analyzed by infrared spectrophotometry, hydrocarbon group type analysis and gas chromatography. The results indicated that the bacterial consortium KO8-2 was able to utilize 64.33% of saturates, 27.06% of aromatics, 13.24% of resins and the oil removal efficiency reached up to 58.73% at 55 ~C when the oil concentration was 10 g/L. Detailed analysis showed that KO8-2 was able to utilize the hydrocarbon components before C19, and the n-alkanes ranging from C20--C33 were signifi- cantly degraded. The ratios of nC17/Pr and nC18/Ph were 3.12 and 3.87, respectively, before degradation, whereas after degradation the ratios reduced to 0.21 and 0.38, respectively. Compared with the control sample, the oil removal efficiency in KO8-2 composting reactor reached 50.12% after a degradation duration of 60 days.
基金supported by the Scientific Research Fund of Liaoning Provincial Education Department (L2014148)
文摘A hydrocarbon degrading bacterial consortium KO5-2 was isolated from oil-contaminated soil of Karamay in Xinjiang, China, which could remove 56.9% of 10 g/L total petroleum hydrocarbons(TPH) at 30 ℃ after 7 days of incubation, and could also remove 100% of fluorene, 98.93% of phenanthrene and 65.73% of pyrene within 3, 7 and 9 days, respectively. Twelve strains from six different genera were isolated from KO5-2 and only eight ones were able to utilize the TPH. The denaturing gradient gel electrophoresis(DGGE) was used to investigate the microbial community shifts in five different carbon sources(including TPH, saturated hydrocarbons, fluorene, phenanthrene and pyrene). The test results indicated that the community compositions of KO5-2 in carbon sources of TPH and saturated hydrocarbons, respectively, were roughly the same, while they were distinctive in the three different carbon sources of PAHs. Rhodococcus sp. and Pseudomonas sp. could survive in the five kinds of carbon sources. Bacillus sp., Sphingomonas sp. and Ochrobactrum sp. likely played key roles in the degradation of saturated hydrocarbons, PAHs and phenanthrene, respectively. This study showed that specific bacterial phylotypes were associated with different contaminants and complex interactions between bacterial species, and the medium conditions influenced the biodegradation capacity of the microbial communities involved in bioremediation processes.
基金supported by the Foundation of Science and Technology Commission of Shanghai Municipality(No. 08230707100)the State Education Ministry (No.200802471044)+2 种基金the National Major Project of Science& Technology Ministry of China (No. 2008ZX07421-002)the International S&T Cooperation Projects from Ministry of Science and Technology of China (No.2009DFA90740)the State Key Laboratory of Pollution Control and Resource Reuse, China (No. PCR-RY08001)
文摘A laboratory study was performed to assess the biodegradation of lube oil in bio-reactor with 304# stainless steel as a biofilm carrier. Among 164 oil degrading bacterial cultures isolated from oil contaminated soil samples, Commaonas acidovorans Px1, Bacillus sp. Px2, Pseudomonas sp. Px3 were selected to prepare a mixed consortium for the study based on the efficiency of lube oil utilization. The percentage of oil degraded by the mixed bacterial consortium decreased slightly from 99% to 97.2% as the concentration of lube oil was increased from 2000 to 10,000 mg/L. The degradation of TDOC (total dissolved organic carbon) showed a similar tendency compared with lube oil removal, which indicated that the intermediates in degradation process hardly accumulated. Selected mixed bacterial consortium showed their edge compared to activated sludge. Scanning electron microscopy (SEM) photos showed that biofilms on stainless steel were robust and with a dimensional framework constructed by EPS (extracellular polymeric substances), which could promote the biodegradation of hydrocarbons. The increase of biofilm followed first-order kinetics with rate of 0.216 μg glucose/(cm2·day) in logarithm phase. With analysis of Fourier transform infrared spectroscopy (FT-IR) and gas chromatography-mass spectrometry (GC-MS) combined with removal of lube oil and TDOC, mixed bacterial consortium could degrade benzene and its derivatives, aromatic ring organic matters with a percentage over 97%.
文摘We investigated the ability of a bacterial community constructed with six strains isolated from an oily sludge, to utilize diesel oil at high concentrations. The consortium was able to grow at concentrations up to 84 g diesel oil/L and had produced biosurfactants during its active growth phase;these compounds, in their crude form, reduced the surface tension of distilled water from 72 mN/m to 31 mN/m, with a corresponding Critical Micelle Concentration value γCMC = 81 mg/L. The plot of specific growth rates obtained from the growth curves versus initial concentrations was found to fit adequately the experimental data by the Andrews inhibitory model, which resulted in the following kinetic constants: μmax = 0.535d-1 ± 0.063, KS = 18.68 g/L ± 3.59 and KI = 29.02 g/L ± 4.96, reflecting the slow biodegradation rate. At 25.2 g diesel oil/L, close to the optimal concentration S* = 23.28 g/L ± 4.23, the consortium metabolized diesel oil faster than each strain did individually, suggesting that the process was stimulated by a synergistic interaction between the members of the consortium.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(No. KSCS2-YW-G-055-01)the High-Tech Research and Development Program(863)of China(No.2006AA06Z316)the Program of Beijing Academy of Science Technology(No.IE012009610019-1)
文摘Inoculation with efficient microbes had been proved to be the most important way for the bioremediation of polluted environments. For the treatment of abandoned site of Beijing Coking Chemical Plant contaminated with high level of high-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), a bacterial consortium capable of degrading HMW-PAHs, designated 1-18-1, was enriched and screened from HMW-PAHs contaminated soil. Its degrading ability was analyzed by high performance liquid chromatography (HPLC), and the community structure was investigated by construction and analyses of the 16S rRNA gene clone libraries (A, B and F) at different transfers. The results indicated that 1-18-1 was able to utilize pyrene, fluoranthene and benzo[a]pyrene as sole carbon and energy source for growth. The degradation rate of pyrene and fluoranthene reached 82.8% and 96.2% after incubation for 8 days at 30℃, respectively; while the degradation rate of benzo[a]pyrene was only 65.1% after incubation for 28 days at 30℃. Totally, 108, 100 and 100 valid clones were randomly selected and sequenced from the libraries A, B, and E Phylogenetic analyses showed that all the clones could be divided into 5 groups, Bacteroidetes, ct-Proteobacteria, Actinobacteria, β-Proteobacteda and γ- Proteobacteria. Sequence similarity analyses showed total 39 operational taxonomic units (OTUs) in the libraries. The predominant bacterial groups were α-Proteobacteria (19 OTUs, 48.7%), γ-Proteobacteria (90TUs, 23.1%) and β-Proteobacteria (80TUs, 20.5%). During the transfer process, the proportions of α-Proteobacteria and β-Proteobacteria increased greatly (from 47% to 93%), while γ-Proteobacteda decreased from 32% (library A) to 6% (library F); and Bacteroidetes group disappeared in libraries B and F.