The oil-gas migration and accumulation in the Songliao Basin were analyzed in the view of fluid dynamics by the authors. The key point of fluid dynamics is hydrodynamics. Oil-gas migration and accumulation are related...The oil-gas migration and accumulation in the Songliao Basin were analyzed in the view of fluid dynamics by the authors. The key point of fluid dynamics is hydrodynamics. Oil-gas migration and accumulation are related closely with formation and evolution of hydrodynamic field. Based on abundant data, initial formation pressure and other parameters, such as water head were studied. They can be used to understand the present distribution of hydrodynamic field and its hydrochemical features. Generally, the hydrodynamic field in the basin is obviously asymmetrical. In its north and east part, there are the areas of centripetal flow caused by topographic relief when meteoric water permeate downwards. Its south part is an evaporation-concentration area. The central depression is an area of centrifugal flow driven by sediment compaction and its cross-formational flow area. Only at the basin margin and in the local uplifted and denudated area are the meteoric water permeating downwards areas. The centrifugal flow driven by sediment compaction is the main dynamic factor that induces oil-gas migration and accumulation and its formation period corresponding to the main stage of oil-gas migration and accumulation. Moreover, the evolution of hydrodynamic field has the cyclic property, which results in phased oil-gas migration by stages, and further dominates the terraced annular oil and gas distribution, concentric with their corresponding sags.展开更多
Geochronology of oil-gas accumulation (OGA) is a challenging subject of petroleum geology in multi-cycle superimposed basins.By K-Ar dating of authigenic illite (AI) and fluid inclusion (FI) analysis combined wi...Geochronology of oil-gas accumulation (OGA) is a challenging subject of petroleum geology in multi-cycle superimposed basins.By K-Ar dating of authigenic illite (AI) and fluid inclusion (FI) analysis combined with apatite fission track (AFT) thermal modeling,a case study of constraining the OGA times of the Permian reservoirs in northeast Ordos basin (NOB) has been conducted in this paper.AI dating of the Permian oil-gas-bearing sandstone core-samples shows a wide time domain of 178-108 Ma.The distribution of the AI ages presents 2-stage primary OGA processes in the Permian reservoirs,which developed in the time domains of 175-155 Ma and 145-115 Ma with 2-peak ages of 165 Ma and 130 Ma,respectively.The FI temperature peaks of the samples and their projected ages on the AFT thermal path not only present two groups with a low and a high peak temperatures in ranges of 90-78℃ and 125-118℃,respectively corresponding to 2-stage primary OGA processes of 162-153 Ma and 140-128 Ma in the Permian reservoirs,but also appear a medium temperature group with the peak of 98℃ in agreement with a secondary OGA process of c.~30 Ma in the Upper Permian reservoirs.The integrated analysis of the AI and FI ages and the tectono-thermal evolution reveals that the Permian reservoirs in the NOB experienced at least 2-stage primary OGA processes of 165-153 Ma and 140-128 Ma in agreement with the subsidence thermal process of the Mid-Early Jurassic and the tectono-thermal event of the Early Cretaceous.Then,the Upper Permian reservoirs further experienced at least 1-stage secondary OGA process of c.~30 Ma in coincidence with a critical tectonic conversion between the slow and the rapid uplift processes from the Late Cretaceous to Neogene.展开更多
Based on field outcrop investigation,interpretation and analysis of drilling and seismic data,and consulting on a large number of previous research results,the characteristics of ancient marine hydrocarbon source rock...Based on field outcrop investigation,interpretation and analysis of drilling and seismic data,and consulting on a large number of previous research results,the characteristics of ancient marine hydrocarbon source rocks,favorable reservoir facies belts,hydrocarbon migration direction and reservoir-forming law in the Ordos Basin have been studied from the viewpoints of North China Craton breakup and Qilian-Qinling oceanic basin opening and closing.Four main results are obtained:(1)Controlled by deep-water shelf-rift,there are three suites of source rocks in the Ordos Basin and its periphery:Mesoproterozoic,Lower Cambrian and Middle-Upper Ordovician.(2)Controlled by littoral environment,paleo-uplift and platform margin,four types of reservoirs are developed in the area:Mesoproterozoic-Lower Cambrian littoral shallow sea quartz sandstone,Middle-Upper Cambrian–Ordovician weathering crust and dolomitized reservoir,and Ordovician L-shape platform margin reef and beach bodies.(3)Reservoir-forming assemblages vary greatly in the study area,with"upper generation and lower storage"as the main pattern in the platform,followed by"self-generation and self-storage".There are both"upper generation and lower storage"and"self-generation and self-storage"in the platform margin zone.In addition,in the case of communication between deep-large faults and the Changchengian system paleo-rift trough,there may also exist a"lower generation and upper reservoir"combination between the platform and the margin.(4)There are four new exploration fields including Qingyang paleo-uplift pre-Carboniferous weathering crust,L-shape platform margin zone in southwestern margin of the basin,Ordovician subsalt assemblage in central and eastern parts of the basin,and Mesoproterozoic–Cambrian.Among them,pre-Carboniferous weathering crust and L-shape platform margin facies zone are more realistic replacement areas,and Ordovician subsalt assemblage and the Proterozoic-Cambrian have certain potential and are worth exploring.展开更多
Based on comprehensive analysis of tectonic and fault evolution, core, well logging, seismic, drilling, and production data, the reservoir space characteristic, distribution, origin of fault-karst carbonate reservoir ...Based on comprehensive analysis of tectonic and fault evolution, core, well logging, seismic, drilling, and production data, the reservoir space characteristic, distribution, origin of fault-karst carbonate reservoir in Yueman block of South Tahe area, Halahatang oilfield, Tarim Basin, were studied systematically. And the regular pattern of hydrocarbon accumulation and enrichment was analyzed systematically based on development practice of the reservoirs. The results show that fault-karst carbonate reservoirs are distributed in the form of "body by body" discontinuously, heterogeneously and irregularly, which are controlled by the development of faults. Three formation models of fault-karst carbonate reservoirs, namely, the models controlled by the main deep-large fault, the secondary fault and the secondary internal fault, are built. The hydrocarbon accumulation and enrichment of fault-karst carbonate reservoirs is controlled by the spatiotemporal matching relation between hydrocarbon generation period and fault activity, and the size and segmentation of fault. The study results can effectively guide the well deployment and help the efficient development of fault-karst carbonate reservoirs of South Tahe area, Halahatang oilfield.展开更多
The Lankao-Liaocheng Fractural Zone is a large-seade NNE-trending struetural zone in the North China Crustoblock. Dated from the Late Arehean-Early Proterozoie, it is stil1 active now. Its nature varied with time in i...The Lankao-Liaocheng Fractural Zone is a large-seade NNE-trending struetural zone in the North China Crustoblock. Dated from the Late Arehean-Early Proterozoie, it is stil1 active now. Its nature varied with time in its developing process. It has became a tensile ultralithospherie fraetural zone at present or in diwa residual-mobility period. Some cenozoic oil-gas-bearing basins are distributed along the fraetural zone which fomed an important oil-gas accumulating belt in the North China Ctustoblock.展开更多
Tight sandstone reservoirs are widely developed in the Mesozoic Yanchang Formation of the Ordos Basin,China.There is a lack of understanding on the sedimentary setting,source-reservoir relationship and oil accumulatio...Tight sandstone reservoirs are widely developed in the Mesozoic Yanchang Formation of the Ordos Basin,China.There is a lack of understanding on the sedimentary setting,source-reservoir relationship and oil accumulation conditions in this area.In this study,through the comprehensive analysis of the distri-bution of tight oil,we evaluated the properties and petrological features of reservoir,geochemical characteristics of source rocks,the source-reservoir relationship,as well as the trapping,preservation and accumulation conditions of tight oil in the Chang 7 Member,and predicted the sweet spots of tight oil in the study area.The results show that the Chang 7 Member is a typical low-porosity and ultra-low permeability reservoir with great tightness,small pore throat and high capillary pressure,and must have been of near-source accumulation.The source rocks are mainly developed in the Chang 7_(3) submember,and the reservoirs mainly occur in the Chang 7_(1) and Chang 7_(2) submembers,forming a combination mode of“lower source rock and upper reservoir”.Sandbodies with good connectivity and fractures being well developed in local areas are the main hydrocarbon transport systems.The abnormal high pressure caused by hydrocarbon generation and pressurization is the main driving force of tight oil accumulation.The mode of hydrocarbon transportation is dominated by the vertical or lateral migration from under-lying source rocks or adjacent source rocks to reservoirs within a short distance.Following the integrated evaluation of lithology,physical properties and oil saturation of reservoirs and geochemical character-istics of source rocks,we grouped the sweet spots of Chang 7 Member into three types:Type I,Type II and Type III.Among others,the Type I sweet spots are the best in terms of porosity,permeability and source rock thickness and hydrocarbon enrichment which should be the focus of oilfield development.This study lays an important foundation for the economic and efficient development of tight oil in the Chang 7 Member of Heshui area,and has important implications on tight sandstone reservoirs in other regions of Ordos Basin in China.展开更多
This study dealt with the rhythmic Qian 3410 of the intersalt shale series in the Qianjiang Depression,in which the geological condition for oil accumulation in the rhythmic shale was investigated by using the basic d...This study dealt with the rhythmic Qian 3410 of the intersalt shale series in the Qianjiang Depression,in which the geological condition for oil accumulation in the rhythmic shale was investigated by using the basic drilling,core and well logging data,as well as data obtained from the thin section identification,SEM,mercury injection,X-ray diffraction and rock freezing heat analyses.The study result indicated that:1)the intersalt shale series are characterized by TOC in a range of 0.35%-6.38%(averaging 3.19%),Types I and II1 organic matter,and from immature to mature oil,indicative of a potential for generating a great volume of immature oil;2)in the target layer,mineral compositions are complicated,which can divide into argillaceous dolomite facies,argillaceous limestone facies,dolomitic mudstone facies,and calcium-mirabilite-filling dolomitic mudstone facies;and 3)of them,the argillaceous dolomite facies is the most contributory,with reservoir spaces consisting of intergranular pores as dominant,as well as rare dissolution pores and seams.It is characterized by high organic abundance(4.23%-6.38%),high content of brittle mineral(50%-71%),low content of clay mineral(18%-33%),high porosity(10.8%-26.3%)and good oil-bearing properties(S1 distributed in 3.48-5.64 mg/g,and S1/TOC value in a range of 348-564 oil mg/g).Therefore,the argillaceous dolomite facies was considered the key target series to be explored for the intersalt shale oil in the study area in the coming days.展开更多
The Late Permian was marked by a series of important geological events and widespread organic-rich black shale depositions,acting as important unconventional hydrocarbon source rocks.However,the mechanism of organic m...The Late Permian was marked by a series of important geological events and widespread organic-rich black shale depositions,acting as important unconventional hydrocarbon source rocks.However,the mechanism of organic matter(OM)enrichment throughout this period is still controversial.Based on geochemical data,the marine redox conditions,paleogeographic and hydrographic environment,primary productivity,volcanism,and terrigenous input during the Late Permian in the Lower Yangtze region have been studied from the Putaoling section,Chaohu,to provide new insights into OM accumulation.Five Phases are distinguished based on the TOC and environmental variations.In Phase I,anoxic conditions driven by water restriction enhanced OM preservation.In Phase II,euxinic and cycling hydrological environments were the two most substantial controlling factors for the massive OM deposition.During Phase III,intensified terrestrial input potentially diluted the OM in sediment and the presence of oxygen in bottom water weakened the preservation condition.Phase IV was characterized by a relatively higher abundance of mercury(Hg)and TOC(peak at 16.98 wt%),indicating that enhanced volcanism potentially stimulated higher productivity and a euxinic environment.In Phase V,extremely lean OM was preserved as a result of terrestrial dilutions and decreasing primary productivity.Phases I,II and IV are characterized as the most prominent OM-rich zones due to the effective interactions of the controlling factors,namely paleogeographic,hydrographic environment,volcanism,and redox conditions.展开更多
Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formation is the most developed strata of shale gas in southern China.Due to the complex sedimentary environment adjacent to the Kangdian Uplift,the favorable area for o...Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formation is the most developed strata of shale gas in southern China.Due to the complex sedimentary environment adjacent to the Kangdian Uplift,the favorable area for organic-rich shale development is still undetermined.The authors,therefore,focus on the mechanism of accumulation of organic matter and the characterization of the sedimentary environment of the Wufeng-Longmaxi Shales to have a more complete understanding and new discovering of organic matter enrichment and favorable area in the marginal region around Sichuan Basin.Multiple methods were applied in this study,including thin section identification,scanning electron microscopy(SEM)observations and X-ray diffraction(XRD),and elemental analysis on outcrop samples.Five lithofacies have been defined according to the mineralogical and petrological analyses,including mudstone,bioclastic limestone,silty shale,dolomitic shale,and carbonaceous siliceous shale.The paleo-environments have been reconstructed and the organic enrichment mechanism has been identified as a reduced environment and high productivity.The Wufeng period is generally a suboxic environment and the early Longmaxi period is a reducing environment based on geochemical characterization.High dolomite content in the study area is accompanied by high TOC,which may potentially indicate the restricted anoxic environment formed by biological flourishing in shallower water.And for the area close to the Kangdian Uplift,the shale gas generation capability is comparatively favorable.The geochemical parameters implied that new favorable areas for shale gas exploration could be targeted,and more shale gas resources in the mountain-basin transitional zone might be identified in the future.展开更多
The geological background of the fluvial and lacustrine depository system in the large mid-shallow layered depressed lake in the Songliao Basin has been proven to have the geological conditions for the formation of li...The geological background of the fluvial and lacustrine depository system in the large mid-shallow layered depressed lake in the Songliao Basin has been proven to have the geological conditions for the formation of lithologic reservoirs over a large area. Because the rise and fall of the base level caused considerable differences in the space at different periods, the types of sand bodies varied in different geologic periods; but at the same time, because of the differences in burial depths and the relative differences in positions of the siltstones and source rocks, the formation conditions and distributive regularities for oil-bearing groups of subtle reservoirs also vary accordingly. In view of the reality of the thinly-interbedded lithologic reservoir in the deltaic frontal facies belt, we have conducted a series of research to study the thinly-interbedded subtle reservoirs with the help of high resolution sequence stratigraphy, pattern recognition and the geophysical recognition and prediction techniques for thinly-interbedded subtle reservoirs, thus achieving a better effect and optimizing several exploration target areas, each of which has an oil reserve of about 100 million tons. This has shed light on further exploration of new subtle reservoirs.展开更多
The South Yellow Sea Basin(SYSB) has multiple sets of proven source rocks and good hydrocarbon prospects,but no industrial oil and gas has been explored at present.To solve this puzzle for petroleum geologists,we syst...The South Yellow Sea Basin(SYSB) has multiple sets of proven source rocks and good hydrocarbon prospects,but no industrial oil and gas has been explored at present.To solve this puzzle for petroleum geologists,we systematically investigated the marine hydrocarbon geological conditions based on cores and testing data from borehole CSDP-2,the first exploration well with continuous coring in SYSB.The qualities of source rocks are evaluated in detail according to organic matter abundance,type,and maturity.The reservoir characterization mainly includes porosity,permeability,and reservoir space.Displacement pressure test and stratum thickness are the main foundations for defining the caprocks.Then,the oil-source rock correlation in the Permian and stratum model are analyzed to determine the favorable source-reservoir-caprock assemblages.The results show that three sets of effective source rocks(the Lower Triassic,Upper Permian,and Lower Permian),two sets of tight sandstone re servoirs(the Upper Permian and Lower Silurian-Upper Devonian),and two sets of caprocks(the Lower Triassic and Carboniferous) combine to constitute the hydrocarbon reservoir-forming as se mblages of "lower-ge neration and upper-accumlation" and "self-generation and self-accumlation",thus laying a solid foundation for promising petroleum prospects.The three sets of marine source rocks are characterized by successive generation and expulsion stages,which guarantees multistage hydrocarbon accumulation.Another three sets of continental source rocks distributed across the Middle Jurassic,Upper Cretaceous,and Paleogene depression areas,especially in the Northern Depression,may supplement some hydrocarbons for the Central Uplift through faults and the Indosinian unconformity.The favorable Permian exploration strata have been identified in the Central Uplift of SYSB.First,the Lower Permian and Upper Permian source rocks with high organic matter abundance and high thermal maturity supply sufficient hydrocarbons.Secondly,the interbedding relationship between the source rocks and sandstones in the Upper Permian strata ensures that hydrocarbons have been migrated into the nearby Upper Permian sandstones,reflecting near-source hydrocarbon accumulation.Finally,the good sealing property of the Lower Triassic Qinglong Formation caprocks plays an indispensable role in hydrocarbon preservation of the Permian reservoirs.This conclusion is supported by direct oil shows,gas logging anomalous layers,and hydrocarbon-bearing fluid inclusions.展开更多
According to the latest drilling and the analysis of the burial history,source rock evolution history and hydrocarbon accumulation history,the sub-source hydrocarbon accumulation characteristics of the Permian reservo...According to the latest drilling and the analysis of the burial history,source rock evolution history and hydrocarbon accumulation history,the sub-source hydrocarbon accumulation characteristics of the Permian reservoirs in the Jinan Sag,eastern Junggar Basin,are clarified,and the hydrocarbon accumulation model of these reservoirs is established.The results are obtained in four aspects.First,the main body of the thick salified lake basin source rocks in the Lucaogou Formation has reached the mature stage with abundant resource base.Large-scale reservoirs are developed in the Jingjingzigou,Wutonggou and Lucaogou formations.Vertically,there are multiple sets of good regional seals,the source-reservoir-caprock assemblage is good,and there are three reservoir-forming assemblages:sub-source,intra-source and above-source.Second,dissolution,hydrocarbon charging and pore-preserving effect,and presence of chlorite film effectively increase the sub-source pore space.Oil charging is earlier than the time when the reservoir becomes densified,which improves the efficiency of hydrocarbon accumulation.Third,buoyancy and source-reservoir pressure difference together constitute the driving force of oil charging,and the micro-faults within the formation give the advantage of"source-reservoir lateral docking"under the source rock.Microfractures can be critical channels for efficient seepage and continuous charging of oil in different periods.Fourth,the Jingjingzigou Formation experienced three periods of oil accumulation in the Middle-Late Permian,Middle-Late Jurassic and Late Neogene,with the characteristics of long-distance migration and accumulation in early stage,mixed charging and accumulation in middle stage and short-distance migration and high-position accumulation in late stage.The discovery and theoretical understanding of the Permian reservoirs in the Jinan Sag reveal that the thrust belt has good conditions for forming large reservoirs,and it is promising for exploration.The study results are of guidance and reference significance for oil and gas exploration in the Jinan Sag and other geologically similar areas.展开更多
Mangroves can not only provide multiple ecosystem service functions,but are also efficient carbon producers,capturers,and sinks.The estimation of the organic carbon accumulation rate(OCAR)in mangrove sediments is fund...Mangroves can not only provide multiple ecosystem service functions,but are also efficient carbon producers,capturers,and sinks.The estimation of the organic carbon accumulation rate(OCAR)in mangrove sediments is fundamental for elucidating the role of mangroves in the global carbon budget.In particular,understanding the past changes in the OCAR in mangrove sediments is vital for predicting the future role of mangroves in the rapidly changing environment.In this study,three dated sediment cores from interior and fringe of mangroves in the Yingluo Bay,China,were used to reconstruct the spatiotemporal variations of the calculated OCAR since 1900 in this area.The increasing OCAR in the mangrove interior was attributed to mangrove flourishment induced by climate change characterized by the rising temperature.However,in the mangrove fringe,the strengthening hydrodynamic conditions under the sea level rise were responsible for the decreasing OCAR,particularly after the1940 s.Furthermore,the duration of inundation by seawater was the primary factors controlling the spatial variability of the OCAR from the mangrove fringe to interior,while the strengthened hydrodynamic conditions after the 1940 s broke this original pattern.展开更多
A long term simulation test on salt-water dynamics in unsaturated soils with different groundwater depths and soil texture profiles under stable evaporation condition was conducted.Salinity sensors and tensiometers we...A long term simulation test on salt-water dynamics in unsaturated soils with different groundwater depths and soil texture profiles under stable evaporation condition was conducted.Salinity sensors and tensiometers were used to monitor salt and water variation in soils.The experiment revealed that in the process of fresh groundwater moving upwards by capillary rise in the column,the salts in subsoil were brought upwards and accumulated in the surface soil,and consequently the salinization of surface soil took place.The rate of salt accumulation is determined mainly by the volume of capillary water flow and the conditions of salts contained in the soil profile.Water flux in soils decreased obviously when groundwater depths fell below 1.5m.When there was an interbedded clay layer 30cm in thickness in the silty loam soil profile or a clay layer 100cm in thickness at the top layer,the water flux was 3-5 times less than in the soil profile of homogeneous silty loam soil.Therefore,the rate of salt accumulation was decreased and the effect of variation of groundwater depth on the water flux in soils was weakened comparatively.If there was precipitation or irrigation supplying water to the soil,the groundwater could rarely take a direct part in the process of salt accumulation in surface soil,especially,in soil profiles with an interbedded stratum or a clayey surface soil layer.展开更多
Up to now,the Sulige area in Ordos Basin has the favorable exploration area of 55×10^(3) km^(2),the total reserve of natural gas of nearly 6×10^(12) m^(3) and the proven reserve(including basic proven reserv...Up to now,the Sulige area in Ordos Basin has the favorable exploration area of 55×10^(3) km^(2),the total reserve of natural gas of nearly 6×10^(12) m^(3) and the proven reserve(including basic proven reserve)of 4.77×10^(12) m^(3),where the annual production of natural gas reaches 23×10^(9) m^(3),and the Sulige gasfield is the largest onshore natural gas field in China.The pay zone of the Sulige gasfield mainly is Member 8 of Shihezi Formation and Member 1 of Shanxi Formation of Permian which belong to the typical tight sandstone gas reservoir.The coal measure strata in Carboniferous Benxi Formation,Permian Taiyuan Formation and Shanxi Formation provide abundant gas sources for the Gulige gas reservoirs.An open-flow sedimentary model of lacustrine delta is developed,the gentle bottom,sand supply from multisource,strong hydrodynamic force and multi-period superposition control the distribution of largearea reservoir sand body.Lithology of the reservoir is the sandstone of the fluvial-delta facies,the physical property is poor and the heterogeneity is strong,the average porosity ranges from 4%to 12%and the average permeability varies from 0.01 to 1 mD.The gas reservoir is characterized by wide hydrocarbon generation,pervasive hydrocarbon charging,short-range migration and massive accumulation.The pressure coefficient of the gas reservoir ranges from 0.62 to 0.90,indicating the low-pressure gas reservoir,and the single-well yield is low.Full digital seismic technique in the desert area,nonlongitudinal seismic technique in the loess plateau,accurate logging evaluation technique,tight sand reservoir stimulation technology and horizontal well development technology are key technologies for exploration and development of Sulige gasfield.展开更多
The Qinshui Basin has been explored for more than 60 years through two stages of oil and gas reconnaissance survey and exploration&development of coalbed methane(CBM),it has become the largest CBM industrializatio...The Qinshui Basin has been explored for more than 60 years through two stages of oil and gas reconnaissance survey and exploration&development of coalbed methane(CBM),it has become the largest CBM industrialization base in China and also is a model which successfully realize commercialization of CBM of high rank coal-bearing basin in the world.Although the high-rank coal field is characterized by low pressure,low permeability,low saturation and strong heterogeneity,the exploration practice and research show that the accumulation conditions of CBM reservoir in the Qinshui Basin are superior.As main productive intervals,No.15 coal seam of Taiyuan Formation and No.3 coal seam of Shanxi Formation respectively belong to the epicontinental-sea carbonate platform sedimentary system and the epicontinental-sea shallow-water delta sedimentary system.The coal seam has large thickness,and is mostly composed of humic coal and mainly contains vitrinite.Affected by tectonic thermal events in the Yanshanian period,the coal rank is high,the adsorption capacity is strong,and the gas content is large.Formation of the CBM reservoir goes through three stages including two stages of hydrocarbon generation,gas phase transformation and sealing of hydrodynamics and roof and floor.In view of the characteristics of the Qinshui Basin topography and the high rank coal,a series of key technologies for exploration and development are developed,including mountainous region seismic acquisition,processing and interpretation technology,drilling and completion technology of multiple wells,drilling and completion technology of multiple horizontal wells dominated by compound V type,deplugging secondary fracturing stimulation technology,control technology of high rank CBM drainage,and CBM gathering and transportation technology,which effectively supports the scale and industrialization development of high rank CBM in the Qinshui Basin.展开更多
The PL 19e3 Oilfield is the only super-large monolithic oilfield with oil and gas reserves up to 1×10^(9) t in the Bohai Bay Basin,and it has been successfully developed.Exploration and development practices have...The PL 19e3 Oilfield is the only super-large monolithic oilfield with oil and gas reserves up to 1×10^(9) t in the Bohai Bay Basin,and it has been successfully developed.Exploration and development practices have provided abundant data for analyzing formation conditions of this super-large oilfield.On the basis of the exploration and development history,fundamental reservoir features,and with available geological,geophysical and test data,the hydrocarbon accumulation conditions and key exploration&development technologies of the PL 19e3 Oilfield were discussed.The key conditions for forming the super-large Neogene oilfield include four aspects.Firstly,the oilfield is located at the high position of the uplift that contacts the brachy-axis of the multi-ridge slope in the biggest hydrocarbon-rich sag in the Bohai Bay Basin,thus it has sufficient hydrocarbon source and extremely superior hydrocarbon migration condition.Secondly,the large-scale torsional anticlines which formed in the Neogene under the control of the Tanlu strike-slipping movement provide sufficient storage spaces for oil and gas preservation.Thirdly,the“multiple sets of composite reservoir-caprock assemblages”developing in the special shallow-water delta further contributes greatly to the effective storage space for oil and gas preservation.Fourthly,due to the coupling of the uplift and strike slip in the neotectonic period,extensive faulting activities constantly released the pressure while the late period massive hydrocarbon expulsion of the Bozhong took place at the same time,which assures the constant and intense charging of oil and gas.The super-large PL 19e3 Oilfield was controlled by the coupling effects of all those special geologic factors.In view of this oilfield's features(e.g.violently reformation caused by strike slip,and the special sedimentary environment of shallow-water delta),some key practical technologies for exploration and development have been developed.Such technologies include:the special prestack depth migration processing for gas cloud zones,the prediction of thin interbed reservoirs based on high-precision inversion of geologic model,the reservoir description for the shallow-water braided river delta,the quantitative description for remaining oil in the commingled oil reservoirs with wide well spacing and long well interval,and the well pattern adjustment for formations during high water cut period in the complex fluvial-facies oilfields.展开更多
To reveal the enrichment conditions and resource potential of coal-rock gas in the Ordos Basin,this paper presents a systematic research on the sedimentary environment,distribution,physical properties,reservoir charac...To reveal the enrichment conditions and resource potential of coal-rock gas in the Ordos Basin,this paper presents a systematic research on the sedimentary environment,distribution,physical properties,reservoir characteristics,gas-bearing characteristics and gas accumulation play of deep coals.The results show that thick coals are widely distributed in the Carboniferous–Permian of the Ordos Basin.The main coal seams Carboniferous 5~#and Permian 8~#in the Carboniferous–Permian have strong hydrocarbon generation capacity and high thermal evolution degree,which provide abundant materials for the formation of coal-rock gas.Deep coal reservoirs have good physical properties,especially porosity and permeability.Coal seams Carboniferous 5~#and Permian 8~#exhibit the average porosity of 4.1%and 6.4%,and the average permeability of 8.7×10^(-3)μm^(2)and 15.7×10^(-3)μm^(2),respectively.Cleats and fissures are developed in the coals,and together with the micropores,constitute the main storage space.With the increase of evolution degree,the micropore volume tends to increase.The development degree of cleats and fissures has a great impact on permeability.The coal reservoirs and their industrial compositions exhibit significantly heterogeneous distribution in the vertical direction.The bright coal seam,which is in the middle and upper section,less affected by ash filling compared with the lower section,and contains well-developed pores and fissures,is a high-quality reservoir interval.The deep coals present good gas-bearing characteristics in Ordos Basin,with the gas content of 7.5–20.0 m^(3)/t,and the proportion of free gas(greater than 10%,mostly 11.0%–55.1%)in coal-rock gas significantly higher than that in shallow coals.The enrichment degree of free gas in deep coals is controlled by the number of macropores and microfractures.The coal rock pressure testing shows that the coal-limestone and coal-mudstone combinations for gas accumulation have good sealing capacity,and the mudstone/limestone(roof)-coal-mudstone(floor)combination generally indicates high coal-rock gas values.The coal-rock gas resources in the Ordos Basin were preliminarily estimated by the volume method to be 22.38×10^(12)m^(3),and the main coal-rock gas prospects in the Ordos Basin were defined.In the central-east of the Ordos Basin,Wushenqi,Hengshan-Suide,Yan'an,Zichang,and Yichuan are coal-rock gas prospects for the coal seam#8 of the Benxi Formation,and Linxian West,Mizhi,Yichuan-Huangling,Yulin,and Wushenqi-Hengshan are coal-rock gas prospects for the coal seam#5 of the Shanxi Formation,which are expected to become new areas for increased gas reserves and production.展开更多
文摘The oil-gas migration and accumulation in the Songliao Basin were analyzed in the view of fluid dynamics by the authors. The key point of fluid dynamics is hydrodynamics. Oil-gas migration and accumulation are related closely with formation and evolution of hydrodynamic field. Based on abundant data, initial formation pressure and other parameters, such as water head were studied. They can be used to understand the present distribution of hydrodynamic field and its hydrochemical features. Generally, the hydrodynamic field in the basin is obviously asymmetrical. In its north and east part, there are the areas of centripetal flow caused by topographic relief when meteoric water permeate downwards. Its south part is an evaporation-concentration area. The central depression is an area of centrifugal flow driven by sediment compaction and its cross-formational flow area. Only at the basin margin and in the local uplifted and denudated area are the meteoric water permeating downwards areas. The centrifugal flow driven by sediment compaction is the main dynamic factor that induces oil-gas migration and accumulation and its formation period corresponding to the main stage of oil-gas migration and accumulation. Moreover, the evolution of hydrodynamic field has the cyclic property, which results in phased oil-gas migration by stages, and further dominates the terraced annular oil and gas distribution, concentric with their corresponding sags.
基金supported by the National Basic Research Program of China (No.2003CB2146007)the Special Research Fund for the Doctoral Program of Colleges and Universities of the National Education Ministry of China (No. 20116101110006)+2 种基金the Key Project of Natural Science Basic Research Plan in Shaanxi Province of China (No.2012JZ5001)the Oil-gas Survey Project of China Geological Survey Bureau (1212011220761)the Preferred Foundation of Study Abroad Returnees of the Human Resources and Social Security of China
文摘Geochronology of oil-gas accumulation (OGA) is a challenging subject of petroleum geology in multi-cycle superimposed basins.By K-Ar dating of authigenic illite (AI) and fluid inclusion (FI) analysis combined with apatite fission track (AFT) thermal modeling,a case study of constraining the OGA times of the Permian reservoirs in northeast Ordos basin (NOB) has been conducted in this paper.AI dating of the Permian oil-gas-bearing sandstone core-samples shows a wide time domain of 178-108 Ma.The distribution of the AI ages presents 2-stage primary OGA processes in the Permian reservoirs,which developed in the time domains of 175-155 Ma and 145-115 Ma with 2-peak ages of 165 Ma and 130 Ma,respectively.The FI temperature peaks of the samples and their projected ages on the AFT thermal path not only present two groups with a low and a high peak temperatures in ranges of 90-78℃ and 125-118℃,respectively corresponding to 2-stage primary OGA processes of 162-153 Ma and 140-128 Ma in the Permian reservoirs,but also appear a medium temperature group with the peak of 98℃ in agreement with a secondary OGA process of c.~30 Ma in the Upper Permian reservoirs.The integrated analysis of the AI and FI ages and the tectono-thermal evolution reveals that the Permian reservoirs in the NOB experienced at least 2-stage primary OGA processes of 165-153 Ma and 140-128 Ma in agreement with the subsidence thermal process of the Mid-Early Jurassic and the tectono-thermal event of the Early Cretaceous.Then,the Upper Permian reservoirs further experienced at least 1-stage secondary OGA process of c.~30 Ma in coincidence with a critical tectonic conversion between the slow and the rapid uplift processes from the Late Cretaceous to Neogene.
基金Supported by the PetroChina Special S&T Project(2016E-0502)National Natural Science Foundation of China(41772099,41872116).
文摘Based on field outcrop investigation,interpretation and analysis of drilling and seismic data,and consulting on a large number of previous research results,the characteristics of ancient marine hydrocarbon source rocks,favorable reservoir facies belts,hydrocarbon migration direction and reservoir-forming law in the Ordos Basin have been studied from the viewpoints of North China Craton breakup and Qilian-Qinling oceanic basin opening and closing.Four main results are obtained:(1)Controlled by deep-water shelf-rift,there are three suites of source rocks in the Ordos Basin and its periphery:Mesoproterozoic,Lower Cambrian and Middle-Upper Ordovician.(2)Controlled by littoral environment,paleo-uplift and platform margin,four types of reservoirs are developed in the area:Mesoproterozoic-Lower Cambrian littoral shallow sea quartz sandstone,Middle-Upper Cambrian–Ordovician weathering crust and dolomitized reservoir,and Ordovician L-shape platform margin reef and beach bodies.(3)Reservoir-forming assemblages vary greatly in the study area,with"upper generation and lower storage"as the main pattern in the platform,followed by"self-generation and self-storage".There are both"upper generation and lower storage"and"self-generation and self-storage"in the platform margin zone.In addition,in the case of communication between deep-large faults and the Changchengian system paleo-rift trough,there may also exist a"lower generation and upper reservoir"combination between the platform and the margin.(4)There are four new exploration fields including Qingyang paleo-uplift pre-Carboniferous weathering crust,L-shape platform margin zone in southwestern margin of the basin,Ordovician subsalt assemblage in central and eastern parts of the basin,and Mesoproterozoic–Cambrian.Among them,pre-Carboniferous weathering crust and L-shape platform margin facies zone are more realistic replacement areas,and Ordovician subsalt assemblage and the Proterozoic-Cambrian have certain potential and are worth exploring.
基金Supported by the China National Sicence and Technology Project(2016ZX05004)
文摘Based on comprehensive analysis of tectonic and fault evolution, core, well logging, seismic, drilling, and production data, the reservoir space characteristic, distribution, origin of fault-karst carbonate reservoir in Yueman block of South Tahe area, Halahatang oilfield, Tarim Basin, were studied systematically. And the regular pattern of hydrocarbon accumulation and enrichment was analyzed systematically based on development practice of the reservoirs. The results show that fault-karst carbonate reservoirs are distributed in the form of "body by body" discontinuously, heterogeneously and irregularly, which are controlled by the development of faults. Three formation models of fault-karst carbonate reservoirs, namely, the models controlled by the main deep-large fault, the secondary fault and the secondary internal fault, are built. The hydrocarbon accumulation and enrichment of fault-karst carbonate reservoirs is controlled by the spatiotemporal matching relation between hydrocarbon generation period and fault activity, and the size and segmentation of fault. The study results can effectively guide the well deployment and help the efficient development of fault-karst carbonate reservoirs of South Tahe area, Halahatang oilfield.
文摘The Lankao-Liaocheng Fractural Zone is a large-seade NNE-trending struetural zone in the North China Crustoblock. Dated from the Late Arehean-Early Proterozoie, it is stil1 active now. Its nature varied with time in its developing process. It has became a tensile ultralithospherie fraetural zone at present or in diwa residual-mobility period. Some cenozoic oil-gas-bearing basins are distributed along the fraetural zone which fomed an important oil-gas accumulating belt in the North China Ctustoblock.
基金This work was supported by PetroChina Innovation Foundation(No.2020D-5007-0202)Opening Foundation of State Key Laboratory of Continental Dynamics,Northwest University(No.20LCD09).
文摘Tight sandstone reservoirs are widely developed in the Mesozoic Yanchang Formation of the Ordos Basin,China.There is a lack of understanding on the sedimentary setting,source-reservoir relationship and oil accumulation conditions in this area.In this study,through the comprehensive analysis of the distri-bution of tight oil,we evaluated the properties and petrological features of reservoir,geochemical characteristics of source rocks,the source-reservoir relationship,as well as the trapping,preservation and accumulation conditions of tight oil in the Chang 7 Member,and predicted the sweet spots of tight oil in the study area.The results show that the Chang 7 Member is a typical low-porosity and ultra-low permeability reservoir with great tightness,small pore throat and high capillary pressure,and must have been of near-source accumulation.The source rocks are mainly developed in the Chang 7_(3) submember,and the reservoirs mainly occur in the Chang 7_(1) and Chang 7_(2) submembers,forming a combination mode of“lower source rock and upper reservoir”.Sandbodies with good connectivity and fractures being well developed in local areas are the main hydrocarbon transport systems.The abnormal high pressure caused by hydrocarbon generation and pressurization is the main driving force of tight oil accumulation.The mode of hydrocarbon transportation is dominated by the vertical or lateral migration from under-lying source rocks or adjacent source rocks to reservoirs within a short distance.Following the integrated evaluation of lithology,physical properties and oil saturation of reservoirs and geochemical character-istics of source rocks,we grouped the sweet spots of Chang 7 Member into three types:Type I,Type II and Type III.Among others,the Type I sweet spots are the best in terms of porosity,permeability and source rock thickness and hydrocarbon enrichment which should be the focus of oilfield development.This study lays an important foundation for the economic and efficient development of tight oil in the Chang 7 Member of Heshui area,and has important implications on tight sandstone reservoirs in other regions of Ordos Basin in China.
基金funded by the 2018 Undergraduate Training Program for Innovation and Entrepreneurship of Yangtze University,the project number is 2018267.
文摘This study dealt with the rhythmic Qian 3410 of the intersalt shale series in the Qianjiang Depression,in which the geological condition for oil accumulation in the rhythmic shale was investigated by using the basic drilling,core and well logging data,as well as data obtained from the thin section identification,SEM,mercury injection,X-ray diffraction and rock freezing heat analyses.The study result indicated that:1)the intersalt shale series are characterized by TOC in a range of 0.35%-6.38%(averaging 3.19%),Types I and II1 organic matter,and from immature to mature oil,indicative of a potential for generating a great volume of immature oil;2)in the target layer,mineral compositions are complicated,which can divide into argillaceous dolomite facies,argillaceous limestone facies,dolomitic mudstone facies,and calcium-mirabilite-filling dolomitic mudstone facies;and 3)of them,the argillaceous dolomite facies is the most contributory,with reservoir spaces consisting of intergranular pores as dominant,as well as rare dissolution pores and seams.It is characterized by high organic abundance(4.23%-6.38%),high content of brittle mineral(50%-71%),low content of clay mineral(18%-33%),high porosity(10.8%-26.3%)and good oil-bearing properties(S1 distributed in 3.48-5.64 mg/g,and S1/TOC value in a range of 348-564 oil mg/g).Therefore,the argillaceous dolomite facies was considered the key target series to be explored for the intersalt shale oil in the study area in the coming days.
基金supported by the Fundamental and Commonwealth Geological Survey of Oil and Gas of China(Grant No.DD 20221662)the National Natural Science Foundation of China(NSFC)Program(Grant No.42302124).
文摘The Late Permian was marked by a series of important geological events and widespread organic-rich black shale depositions,acting as important unconventional hydrocarbon source rocks.However,the mechanism of organic matter(OM)enrichment throughout this period is still controversial.Based on geochemical data,the marine redox conditions,paleogeographic and hydrographic environment,primary productivity,volcanism,and terrigenous input during the Late Permian in the Lower Yangtze region have been studied from the Putaoling section,Chaohu,to provide new insights into OM accumulation.Five Phases are distinguished based on the TOC and environmental variations.In Phase I,anoxic conditions driven by water restriction enhanced OM preservation.In Phase II,euxinic and cycling hydrological environments were the two most substantial controlling factors for the massive OM deposition.During Phase III,intensified terrestrial input potentially diluted the OM in sediment and the presence of oxygen in bottom water weakened the preservation condition.Phase IV was characterized by a relatively higher abundance of mercury(Hg)and TOC(peak at 16.98 wt%),indicating that enhanced volcanism potentially stimulated higher productivity and a euxinic environment.In Phase V,extremely lean OM was preserved as a result of terrestrial dilutions and decreasing primary productivity.Phases I,II and IV are characterized as the most prominent OM-rich zones due to the effective interactions of the controlling factors,namely paleogeographic,hydrographic environment,volcanism,and redox conditions.
基金jointly funded by the National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(PLC20210104)China Geological Survey(DD20221661)China National Science and Technology Major Project“Test and Application of Shale Gas Exploration and Evaluation Technology(2016ZX05034004)”。
文摘Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formation is the most developed strata of shale gas in southern China.Due to the complex sedimentary environment adjacent to the Kangdian Uplift,the favorable area for organic-rich shale development is still undetermined.The authors,therefore,focus on the mechanism of accumulation of organic matter and the characterization of the sedimentary environment of the Wufeng-Longmaxi Shales to have a more complete understanding and new discovering of organic matter enrichment and favorable area in the marginal region around Sichuan Basin.Multiple methods were applied in this study,including thin section identification,scanning electron microscopy(SEM)observations and X-ray diffraction(XRD),and elemental analysis on outcrop samples.Five lithofacies have been defined according to the mineralogical and petrological analyses,including mudstone,bioclastic limestone,silty shale,dolomitic shale,and carbonaceous siliceous shale.The paleo-environments have been reconstructed and the organic enrichment mechanism has been identified as a reduced environment and high productivity.The Wufeng period is generally a suboxic environment and the early Longmaxi period is a reducing environment based on geochemical characterization.High dolomite content in the study area is accompanied by high TOC,which may potentially indicate the restricted anoxic environment formed by biological flourishing in shallower water.And for the area close to the Kangdian Uplift,the shale gas generation capability is comparatively favorable.The geochemical parameters implied that new favorable areas for shale gas exploration could be targeted,and more shale gas resources in the mountain-basin transitional zone might be identified in the future.
文摘The geological background of the fluvial and lacustrine depository system in the large mid-shallow layered depressed lake in the Songliao Basin has been proven to have the geological conditions for the formation of lithologic reservoirs over a large area. Because the rise and fall of the base level caused considerable differences in the space at different periods, the types of sand bodies varied in different geologic periods; but at the same time, because of the differences in burial depths and the relative differences in positions of the siltstones and source rocks, the formation conditions and distributive regularities for oil-bearing groups of subtle reservoirs also vary accordingly. In view of the reality of the thinly-interbedded lithologic reservoir in the deltaic frontal facies belt, we have conducted a series of research to study the thinly-interbedded subtle reservoirs with the help of high resolution sequence stratigraphy, pattern recognition and the geophysical recognition and prediction techniques for thinly-interbedded subtle reservoirs, thus achieving a better effect and optimizing several exploration target areas, each of which has an oil reserve of about 100 million tons. This has shed light on further exploration of new subtle reservoirs.
基金the National Natural Science Foundation of China(Nos.41906188,41806057,41776081)the National Marine Geology Project of China(Nos.DD20160147,DD20190365)+1 种基金the National Program on Global Change and Air-Sea Interaction(No.GASI-GEOGE-02)the Special Fund for the Taishan Scholar Program of Shandong Province(No.ts201511061)。
文摘The South Yellow Sea Basin(SYSB) has multiple sets of proven source rocks and good hydrocarbon prospects,but no industrial oil and gas has been explored at present.To solve this puzzle for petroleum geologists,we systematically investigated the marine hydrocarbon geological conditions based on cores and testing data from borehole CSDP-2,the first exploration well with continuous coring in SYSB.The qualities of source rocks are evaluated in detail according to organic matter abundance,type,and maturity.The reservoir characterization mainly includes porosity,permeability,and reservoir space.Displacement pressure test and stratum thickness are the main foundations for defining the caprocks.Then,the oil-source rock correlation in the Permian and stratum model are analyzed to determine the favorable source-reservoir-caprock assemblages.The results show that three sets of effective source rocks(the Lower Triassic,Upper Permian,and Lower Permian),two sets of tight sandstone re servoirs(the Upper Permian and Lower Silurian-Upper Devonian),and two sets of caprocks(the Lower Triassic and Carboniferous) combine to constitute the hydrocarbon reservoir-forming as se mblages of "lower-ge neration and upper-accumlation" and "self-generation and self-accumlation",thus laying a solid foundation for promising petroleum prospects.The three sets of marine source rocks are characterized by successive generation and expulsion stages,which guarantees multistage hydrocarbon accumulation.Another three sets of continental source rocks distributed across the Middle Jurassic,Upper Cretaceous,and Paleogene depression areas,especially in the Northern Depression,may supplement some hydrocarbons for the Central Uplift through faults and the Indosinian unconformity.The favorable Permian exploration strata have been identified in the Central Uplift of SYSB.First,the Lower Permian and Upper Permian source rocks with high organic matter abundance and high thermal maturity supply sufficient hydrocarbons.Secondly,the interbedding relationship between the source rocks and sandstones in the Upper Permian strata ensures that hydrocarbons have been migrated into the nearby Upper Permian sandstones,reflecting near-source hydrocarbon accumulation.Finally,the good sealing property of the Lower Triassic Qinglong Formation caprocks plays an indispensable role in hydrocarbon preservation of the Permian reservoirs.This conclusion is supported by direct oil shows,gas logging anomalous layers,and hydrocarbon-bearing fluid inclusions.
基金Supported by the PetroChina Oil&Gas and New Energy Company Project(2022KT0405)PetroChina Science and Technology Major Project(2021DJ0605)Basic and Prospective Science and Technology Project of Petrochina Science and Technology Management Department(2021DJ0404).
文摘According to the latest drilling and the analysis of the burial history,source rock evolution history and hydrocarbon accumulation history,the sub-source hydrocarbon accumulation characteristics of the Permian reservoirs in the Jinan Sag,eastern Junggar Basin,are clarified,and the hydrocarbon accumulation model of these reservoirs is established.The results are obtained in four aspects.First,the main body of the thick salified lake basin source rocks in the Lucaogou Formation has reached the mature stage with abundant resource base.Large-scale reservoirs are developed in the Jingjingzigou,Wutonggou and Lucaogou formations.Vertically,there are multiple sets of good regional seals,the source-reservoir-caprock assemblage is good,and there are three reservoir-forming assemblages:sub-source,intra-source and above-source.Second,dissolution,hydrocarbon charging and pore-preserving effect,and presence of chlorite film effectively increase the sub-source pore space.Oil charging is earlier than the time when the reservoir becomes densified,which improves the efficiency of hydrocarbon accumulation.Third,buoyancy and source-reservoir pressure difference together constitute the driving force of oil charging,and the micro-faults within the formation give the advantage of"source-reservoir lateral docking"under the source rock.Microfractures can be critical channels for efficient seepage and continuous charging of oil in different periods.Fourth,the Jingjingzigou Formation experienced three periods of oil accumulation in the Middle-Late Permian,Middle-Late Jurassic and Late Neogene,with the characteristics of long-distance migration and accumulation in early stage,mixed charging and accumulation in middle stage and short-distance migration and high-position accumulation in late stage.The discovery and theoretical understanding of the Permian reservoirs in the Jinan Sag reveal that the thrust belt has good conditions for forming large reservoirs,and it is promising for exploration.The study results are of guidance and reference significance for oil and gas exploration in the Jinan Sag and other geologically similar areas.
基金The National Natural Science Foundation of China under contract Nos 41976068 and 41576061。
文摘Mangroves can not only provide multiple ecosystem service functions,but are also efficient carbon producers,capturers,and sinks.The estimation of the organic carbon accumulation rate(OCAR)in mangrove sediments is fundamental for elucidating the role of mangroves in the global carbon budget.In particular,understanding the past changes in the OCAR in mangrove sediments is vital for predicting the future role of mangroves in the rapidly changing environment.In this study,three dated sediment cores from interior and fringe of mangroves in the Yingluo Bay,China,were used to reconstruct the spatiotemporal variations of the calculated OCAR since 1900 in this area.The increasing OCAR in the mangrove interior was attributed to mangrove flourishment induced by climate change characterized by the rising temperature.However,in the mangrove fringe,the strengthening hydrodynamic conditions under the sea level rise were responsible for the decreasing OCAR,particularly after the1940 s.Furthermore,the duration of inundation by seawater was the primary factors controlling the spatial variability of the OCAR from the mangrove fringe to interior,while the strengthened hydrodynamic conditions after the 1940 s broke this original pattern.
文摘A long term simulation test on salt-water dynamics in unsaturated soils with different groundwater depths and soil texture profiles under stable evaporation condition was conducted.Salinity sensors and tensiometers were used to monitor salt and water variation in soils.The experiment revealed that in the process of fresh groundwater moving upwards by capillary rise in the column,the salts in subsoil were brought upwards and accumulated in the surface soil,and consequently the salinization of surface soil took place.The rate of salt accumulation is determined mainly by the volume of capillary water flow and the conditions of salts contained in the soil profile.Water flux in soils decreased obviously when groundwater depths fell below 1.5m.When there was an interbedded clay layer 30cm in thickness in the silty loam soil profile or a clay layer 100cm in thickness at the top layer,the water flux was 3-5 times less than in the soil profile of homogeneous silty loam soil.Therefore,the rate of salt accumulation was decreased and the effect of variation of groundwater depth on the water flux in soils was weakened comparatively.If there was precipitation or irrigation supplying water to the soil,the groundwater could rarely take a direct part in the process of salt accumulation in surface soil,especially,in soil profiles with an interbedded stratum or a clayey surface soil layer.
基金The work was supported by the Science and Technology Major Project of PetroChina(No.2016E-05)Preliminary Project of PetroChina Exploration&Production Company(No.135YQZP-2017-KT11).
文摘Up to now,the Sulige area in Ordos Basin has the favorable exploration area of 55×10^(3) km^(2),the total reserve of natural gas of nearly 6×10^(12) m^(3) and the proven reserve(including basic proven reserve)of 4.77×10^(12) m^(3),where the annual production of natural gas reaches 23×10^(9) m^(3),and the Sulige gasfield is the largest onshore natural gas field in China.The pay zone of the Sulige gasfield mainly is Member 8 of Shihezi Formation and Member 1 of Shanxi Formation of Permian which belong to the typical tight sandstone gas reservoir.The coal measure strata in Carboniferous Benxi Formation,Permian Taiyuan Formation and Shanxi Formation provide abundant gas sources for the Gulige gas reservoirs.An open-flow sedimentary model of lacustrine delta is developed,the gentle bottom,sand supply from multisource,strong hydrodynamic force and multi-period superposition control the distribution of largearea reservoir sand body.Lithology of the reservoir is the sandstone of the fluvial-delta facies,the physical property is poor and the heterogeneity is strong,the average porosity ranges from 4%to 12%and the average permeability varies from 0.01 to 1 mD.The gas reservoir is characterized by wide hydrocarbon generation,pervasive hydrocarbon charging,short-range migration and massive accumulation.The pressure coefficient of the gas reservoir ranges from 0.62 to 0.90,indicating the low-pressure gas reservoir,and the single-well yield is low.Full digital seismic technique in the desert area,nonlongitudinal seismic technique in the loess plateau,accurate logging evaluation technique,tight sand reservoir stimulation technology and horizontal well development technology are key technologies for exploration and development of Sulige gasfield.
基金This research is supported by the National Basic Research Program of China(973 Program)(2009CB219600)National Science and Technology Major Project(2016ZX05003-002).
文摘The Qinshui Basin has been explored for more than 60 years through two stages of oil and gas reconnaissance survey and exploration&development of coalbed methane(CBM),it has become the largest CBM industrialization base in China and also is a model which successfully realize commercialization of CBM of high rank coal-bearing basin in the world.Although the high-rank coal field is characterized by low pressure,low permeability,low saturation and strong heterogeneity,the exploration practice and research show that the accumulation conditions of CBM reservoir in the Qinshui Basin are superior.As main productive intervals,No.15 coal seam of Taiyuan Formation and No.3 coal seam of Shanxi Formation respectively belong to the epicontinental-sea carbonate platform sedimentary system and the epicontinental-sea shallow-water delta sedimentary system.The coal seam has large thickness,and is mostly composed of humic coal and mainly contains vitrinite.Affected by tectonic thermal events in the Yanshanian period,the coal rank is high,the adsorption capacity is strong,and the gas content is large.Formation of the CBM reservoir goes through three stages including two stages of hydrocarbon generation,gas phase transformation and sealing of hydrodynamics and roof and floor.In view of the characteristics of the Qinshui Basin topography and the high rank coal,a series of key technologies for exploration and development are developed,including mountainous region seismic acquisition,processing and interpretation technology,drilling and completion technology of multiple wells,drilling and completion technology of multiple horizontal wells dominated by compound V type,deplugging secondary fracturing stimulation technology,control technology of high rank CBM drainage,and CBM gathering and transportation technology,which effectively supports the scale and industrialization development of high rank CBM in the Qinshui Basin.
基金The work was supported by the National Science and Technology Major Project of China(No.2016ZX05024-003).
文摘The PL 19e3 Oilfield is the only super-large monolithic oilfield with oil and gas reserves up to 1×10^(9) t in the Bohai Bay Basin,and it has been successfully developed.Exploration and development practices have provided abundant data for analyzing formation conditions of this super-large oilfield.On the basis of the exploration and development history,fundamental reservoir features,and with available geological,geophysical and test data,the hydrocarbon accumulation conditions and key exploration&development technologies of the PL 19e3 Oilfield were discussed.The key conditions for forming the super-large Neogene oilfield include four aspects.Firstly,the oilfield is located at the high position of the uplift that contacts the brachy-axis of the multi-ridge slope in the biggest hydrocarbon-rich sag in the Bohai Bay Basin,thus it has sufficient hydrocarbon source and extremely superior hydrocarbon migration condition.Secondly,the large-scale torsional anticlines which formed in the Neogene under the control of the Tanlu strike-slipping movement provide sufficient storage spaces for oil and gas preservation.Thirdly,the“multiple sets of composite reservoir-caprock assemblages”developing in the special shallow-water delta further contributes greatly to the effective storage space for oil and gas preservation.Fourthly,due to the coupling of the uplift and strike slip in the neotectonic period,extensive faulting activities constantly released the pressure while the late period massive hydrocarbon expulsion of the Bozhong took place at the same time,which assures the constant and intense charging of oil and gas.The super-large PL 19e3 Oilfield was controlled by the coupling effects of all those special geologic factors.In view of this oilfield's features(e.g.violently reformation caused by strike slip,and the special sedimentary environment of shallow-water delta),some key practical technologies for exploration and development have been developed.Such technologies include:the special prestack depth migration processing for gas cloud zones,the prediction of thin interbed reservoirs based on high-precision inversion of geologic model,the reservoir description for the shallow-water braided river delta,the quantitative description for remaining oil in the commingled oil reservoirs with wide well spacing and long well interval,and the well pattern adjustment for formations during high water cut period in the complex fluvial-facies oilfields.
基金Supported by the China National Petroleum Corporation Science and Technology Project(2023ZZ18)CNPC Changqing Oilfield Company Project(2022D-JB01)。
文摘To reveal the enrichment conditions and resource potential of coal-rock gas in the Ordos Basin,this paper presents a systematic research on the sedimentary environment,distribution,physical properties,reservoir characteristics,gas-bearing characteristics and gas accumulation play of deep coals.The results show that thick coals are widely distributed in the Carboniferous–Permian of the Ordos Basin.The main coal seams Carboniferous 5~#and Permian 8~#in the Carboniferous–Permian have strong hydrocarbon generation capacity and high thermal evolution degree,which provide abundant materials for the formation of coal-rock gas.Deep coal reservoirs have good physical properties,especially porosity and permeability.Coal seams Carboniferous 5~#and Permian 8~#exhibit the average porosity of 4.1%and 6.4%,and the average permeability of 8.7×10^(-3)μm^(2)and 15.7×10^(-3)μm^(2),respectively.Cleats and fissures are developed in the coals,and together with the micropores,constitute the main storage space.With the increase of evolution degree,the micropore volume tends to increase.The development degree of cleats and fissures has a great impact on permeability.The coal reservoirs and their industrial compositions exhibit significantly heterogeneous distribution in the vertical direction.The bright coal seam,which is in the middle and upper section,less affected by ash filling compared with the lower section,and contains well-developed pores and fissures,is a high-quality reservoir interval.The deep coals present good gas-bearing characteristics in Ordos Basin,with the gas content of 7.5–20.0 m^(3)/t,and the proportion of free gas(greater than 10%,mostly 11.0%–55.1%)in coal-rock gas significantly higher than that in shallow coals.The enrichment degree of free gas in deep coals is controlled by the number of macropores and microfractures.The coal rock pressure testing shows that the coal-limestone and coal-mudstone combinations for gas accumulation have good sealing capacity,and the mudstone/limestone(roof)-coal-mudstone(floor)combination generally indicates high coal-rock gas values.The coal-rock gas resources in the Ordos Basin were preliminarily estimated by the volume method to be 22.38×10^(12)m^(3),and the main coal-rock gas prospects in the Ordos Basin were defined.In the central-east of the Ordos Basin,Wushenqi,Hengshan-Suide,Yan'an,Zichang,and Yichuan are coal-rock gas prospects for the coal seam#8 of the Benxi Formation,and Linxian West,Mizhi,Yichuan-Huangling,Yulin,and Wushenqi-Hengshan are coal-rock gas prospects for the coal seam#5 of the Shanxi Formation,which are expected to become new areas for increased gas reserves and production.