Hepatitis B virus(HBV)reactivation(HBVr)represents a severe and potentially life-threatening condition,and preventive measures are available through blood test screening or prophylactic therapy administration.The asse...Hepatitis B virus(HBV)reactivation(HBVr)represents a severe and potentially life-threatening condition,and preventive measures are available through blood test screening or prophylactic therapy administration.The assessment of HBVr traditionally considers factors such as HBV profile,including hepatitis B surface antigen(HBsAg)and antibody to hepatitis B core antigen,along with type of medication(chemotherapy;immunomodulants).Nevertheless,consideration of possible patient’s underlying tumor and the specific malignancy type(solid or hematologic)plays a crucial role and needs to be assessed for decision-making process.展开更多
Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and manageme...Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and management.It delves into host immune responses and reactivation’s delicate balance,spanning innate and adaptive immunity.Viral factors’disruption of this balance,as are interac-tions between viral antigens,immune cells,cytokine networks,and immune checkpoint pathways,are examined.Notably,the roles of T cells,natural killer cells,and antigen-presenting cells are discussed,highlighting their influence on disease progression.HBV reactivation’s impact on disease severity,hepatic flares,liver fibrosis progression,and hepatocellular carcinoma is detailed.Management strategies,including anti-viral and immunomodulatory approaches,are critically analyzed.The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation.In conclusion,this compre-hensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation.With a dedicated focus on understanding its implic-ations for disease progression and the prospects of efficient management stra-tegies,this article contributes significantly to the knowledge base.The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches,ultimately enhancing disease management and elevating patient outcomes.The dynamic landscape of management strategies is critically scrutinized,spanning anti-viral and immunomodulatory approaches.The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.展开更多
Epstein-Barr virus (EBV) infects over 90% of the global population, establishing latent infections in most individuals. Under specific conditions like inflammation and immune suppression, EBV can be reactivated, leadi...Epstein-Barr virus (EBV) infects over 90% of the global population, establishing latent infections in most individuals. Under specific conditions like inflammation and immune suppression, EBV can be reactivated, leading to the initiation and progression of related diseases. While inflammation is known to induce EBV reactivation, the precise mechanisms underlying this phenomenon remain unclear. Chemokine (C-X-C motif) ligand (CXCL10), a key inflammatory factor, plays a significant role in various infectious diseases. In this study, we investigated how CXCL10 levels regulate the transition between the latent and lytic replication phases of the EBV lifecycle using cell culture, Western blot, fluorescent quantitative PCR, immunofluorescence, and flow cytometric apoptosis assays. Our findings indicate that CXCL10 induces EBV transition from latency to lytic replication through its receptor CXCR3 by regulating the downstream effector, exostosis-like glycosyltransferase 1. Additionally, CXCL10 activates the JAK2/STAT3 pathway. This study confirms the role of CXCL10 in promoting EBV lytic replication, providing crucial insights into the pathogenic mechanisms of inflammation-triggered EBV reactivation.展开更多
On September 5,2022,a strong earthquake with a magnitude of MS6.8 struck Luding County in Sichuan Province,China,triggering thousands of landslides along the Dadu River in the northwest-southeast(NW-SE)direction.We in...On September 5,2022,a strong earthquake with a magnitude of MS6.8 struck Luding County in Sichuan Province,China,triggering thousands of landslides along the Dadu River in the northwest-southeast(NW-SE)direction.We investigated the reactivation characteristics of historical landslides within the epicentral area of the Luding earthquake to identify the initiation mechanism of earthquake-induced landslides.Records of the two newly triggered and historical landslides were analyzed using manual and threshold methods;the spatial distribution of landslides was assessed in relation to topographical and geological factors using remote sensing images.This study sheds light on the spatial distribution patterns of landslides,especially those that occur above historical landslide areas.Our results revealed a similarity in the spatial distribution trends between historical landslides and new ones induced by earthquakes.These landslides tend to be concentrated within a range of 0.2 km from the river and 2 km from the fault.Notably,both rivers and faults predominantly influenced the reactivation of historical landslides.Remarkably,the reactivated landslides are characterized by their small to medium size and are predominantly situated in historical landslide zones.The number of reactivated landslides surpassed that of previously documented historical landslides within the study area.We provide insights into the critical factors responsible for historical landslides during the 2022 Luding earthquake,thereby enhancing our understanding of the potential implications for future co-seismic hazard assessments and mitigation strategies.展开更多
This editorial commented on an article in the World Journal of Gastroenterology titled“Risks of Reactivation of Hepatitis B Virus in Oncological Patients Using Tyrosine Kinase-Inhibitors:Case Report and Literature An...This editorial commented on an article in the World Journal of Gastroenterology titled“Risks of Reactivation of Hepatitis B Virus in Oncological Patients Using Tyrosine Kinase-Inhibitors:Case Report and Literature Analysis”by Colapietro et al.In this editorial,we focused on providing a more comprehensive exploration of hepatitis B virus reactivation(HBVr)associated with the usage of tyrosine kinase inhibitors(TKIs).It includes insights into the mechanisms underlying HBV reactivation,the temporal relationship between TKIs and HBV reactivation,and preventive measures.The aim is to understand the need for nucleos(t)ide analogs(NAT)and serial blood tests for early recognition of reactivation and acute liver injury,along with management strategies.TKIs are considered to be an intermediate(1%-10%)of HBVr.Current guidelines stipulate that patients receiving therapy with high or moderate risks of reactivation or recent cancer diagnosis must have at least tested hepatitis B surface antigen,anti-hepatitis B core antigen(HBc),and anti-hepatitis B surface antibody.Anti-HBc screening in highly endemic areas means people with negative tests should be vaccinated against HBV.Nucleoside or nucleotide analogs(NAs)like entecavir(ETV),tenofovir disoproxil fumarate(TDF),and tenofovir alafenamide(TAF)form the basis of HBV reactivation prophylaxis and treatment during immunosuppression.Conversely,lamivudine,telbivudine,and adefovir are generally discouraged due to their reduced antiviral efficacy and higher risk of fostering drug-resistant viral strains.However,these less effective NAs may still be utilized in cases where ETV,TDF,and TAF are not feasible treatment options.展开更多
In this editorial,we offer a summary of the risk associated with hepatitis B reactivation(HBVr)in the setting of both solid and hematologic malignancies treated with Bruton tyrosine kinase(BTK)inhibitors,with insights...In this editorial,we offer a summary of the risk associated with hepatitis B reactivation(HBVr)in the setting of both solid and hematologic malignancies treated with Bruton tyrosine kinase(BTK)inhibitors,with insights derived from current studies.Furthermore,we emphasize the critical need for a framework regarding robust risk evaluation in patients undergoing such treatments.This framework is essential for identifying those at increased risk of HBVr,enabling healthcare providers to implement proactive measures to prevent reactivation and ensure the safe administration of BTK inhibitor therapy.展开更多
In this editorial we comment on the article published in the recent issue of the W orld Journal of Gastroenterology.We focus specifically on the problem of occult hepatitis B virus(HBV)infection,that is a result of pr...In this editorial we comment on the article published in the recent issue of the W orld Journal of Gastroenterology.We focus specifically on the problem of occult hepatitis B virus(HBV)infection,that is a result of previous hepatitis B(PHB)and a source for reactivation of HBV.The prevalence of PHB is underestimated due to the lack of population testing programs.However,this condition not only com-plicate anticancer treatment,but may be responsible for the development of other diseases,like cancer or autoimmune disorders.Here we unveil possible mecha-nisms responsible for realization of these processes and suggest practical approa-ches for diagnosis and treatment.展开更多
The risk of reactivation in patients with chronic or past/resolved hepatitis B virus(HBV)infection receiving chemotherapy or immunosuppressive drugs is a wellknown possibility.The indication of antiviral prophylaxis w...The risk of reactivation in patients with chronic or past/resolved hepatitis B virus(HBV)infection receiving chemotherapy or immunosuppressive drugs is a wellknown possibility.The indication of antiviral prophylaxis with nucleo(t)side analogue is given according to the risk of HBV reactivation of the prescribed therapy.Though the advent of new drugs is occurring in all the field of medicine,in the setting of hematologic malignancies the last few years have been characterized by several drug classes and innovative cellular treatment.As novel therapies,there are few data about the rate of HBV reactivation and the decision of starting or not an antiviral prophylaxis could be challenging.Moreover,patients are often treated with a combination of different drugs,so evaluating the actual role of these new therapies in increasing the risk of HBV reactivation is difficult.First results are now available,but further studies are still needed.Patients with chronic HBV infection[hepatitis B surface antigen(HBsAg)positive]are reasonably all treated.Past/resolved HBV patients(HBsAg negative)are the actual area of uncertainty where it could be difficult choosing between prophylaxis and pre-emptive strategy.展开更多
Hepatitis B virus(HBV)reactivation poses a significant clinical challenge,espe-cially in patients undergoing immunosuppressive therapies,including mono-clonal antibody treatments.This manuscript briefly explores the c...Hepatitis B virus(HBV)reactivation poses a significant clinical challenge,espe-cially in patients undergoing immunosuppressive therapies,including mono-clonal antibody treatments.This manuscript briefly explores the complex rela-tionship between monoclonal antibody therapy and HBV reactivation,drawing upon current literature and clinical case studies.It delves into the mechanisms underlying this phenomenon,highlighting the importance of risk assessment,monitoring,and prophylactic measures for patients at risk.The manuscript aims to enhance the understanding of HBV reactivation in the context of monoclonal antibody therapy,ultimately facilitating informed clinical decision-making and improved patient care.This paper will also briefly review the definition of HBV activation,assess the risks of reactivation,especially in patients treated with monoclonal antibodies,and consider management for patients with regard to screening,prophylaxis,and treatment.A better understanding of patients at risk can help clinicians provide optimum management to ensure successful patient outcomes and prevent morbidity.展开更多
Pre-diabetic insulin resistance is associated with sub-clinical inflammation and concomitant increase in systemic C-reactive protein(CRP)levels.Type 2 diabetes mellitus(T2DM)patients register even higher chronic level...Pre-diabetic insulin resistance is associated with sub-clinical inflammation and concomitant increase in systemic C-reactive protein(CRP)levels.Type 2 diabetes mellitus(T2DM)patients register even higher chronic levels of inflammation,with excess circulating CRP originating from both typical hepatic synthesis,and also visceral white adipose tissue.展开更多
Background Vascular hyporeactivity and leakage are key pathophysiologic features that produce multi-organ damage upon sepsis.We hypothesized that pericytes,a group of pluripotent cells that maintain vascular integrity...Background Vascular hyporeactivity and leakage are key pathophysiologic features that produce multi-organ damage upon sepsis.We hypothesized that pericytes,a group of pluripotent cells that maintain vascular integrity and tension,are protective against sepsis via regulating vascular reactivity and permeability.Methods We conducted a series of in vivo experiments using wild-type(WT),platelet-derived growth factor receptor-β(PDGFR-β)-Cre+mT/mG transgenic mice and Tie2-Cre+Cx43^(flox/flox)mice to examine the relative contribution of pericytes in sepsis,either induced by cecal ligation and puncture(CLP)or lipopolysaccharide(LPS)challenge.In a separate set of experiments with Sprague-Dawley(SD)rats,pericytes were depleted using CP-673451,a selective PDGFR-βinhibitor,at a dosage of 40 mg/(kg·d)for 7 consecutive days.Cultured pericytes,vascular endothelial cells(VECs)and vascular smooth muscle cells(VSMCs)were used for mechanistic investigations.The effects of pericytes and pericyte-derived microvesicles(PCMVs)and candidate miRNAs on vascular reactivity and barrier function were also examined.Results CLP and LPS induced severe injury/loss of pericytes,vascular hyporeactivity and leakage(P<0.05).Transplantation with exogenous pericytes protected vascular reactivity and barrier function via microvessel colonization(P<0.05).Cx43 knockout in either pericytes or VECs reduced pericyte colonization in microvessels(P<0.05).Additionally,PCMVs transferred miR-145 and miR-132 to VSMCs and VECs,respectively,exerting a protective effect on vascular reactivity and barrier function after sepsis(P<0.05).miR-145 primarily improved the contractile response of VSMCs by activating the sphingosine kinase 2(Sphk2)/sphingosine-1-phosphate receptor(S1PR)1/phosphorylation of myosin light chain 20 pathway,whereas miR-132 effectively improved the barrier function of VECs by activating the Sphk2/S1PR2/zonula occludens-1 and vascular endothelial-cadherin pathways.Conclusions Pericytes are protective against sepsis through regulating vascular reactivity and barrier function.Possible mechanisms include both direct colonization of microvasculature and secretion of PCMVs.展开更多
A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s...A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.展开更多
Formation behaviors of rod-like reactive shaped charge penetrator(RRSCP)and their effects on damage capability are investigated by experiments and numerical simulations.The pulsed X-ray technology and a spaced aluminu...Formation behaviors of rod-like reactive shaped charge penetrator(RRSCP)and their effects on damage capability are investigated by experiments and numerical simulations.The pulsed X-ray technology and a spaced aluminum/steel plate with the thicknesses of 5 mm/100 mm are used.Three types of sphericalsegment aluminum-polytetrafluoroethylene-copper(Al-PTFE-Cu)reactive liners with Cu contents of 0%,46.6%,and 66%are fabricated and tested.The experimental results show that the reactive liners can form excellent rod-shaped penetrators with tail skirts under the shaped charge effect,but the tail skirts disappear over time.Moreover,rupturing damage to the aluminum plate and penetration to the steel plate are caused by the RRSCP impact.From simulation analysis,the RRSCP is formed by a mechanically and chemically coupled response with the reactive liner activated by shock in its outer walls and bottom and then backward overturning,forming a leading reactive penetrator and a following chemical energy cluster.The unique formation structure determines the damage modes of the aluminum plate and the steel plate.Further analysis indicates that the formation behaviors and damage capability of Al-PTFE-Cu RRSCP strongly depend on Cu content.With increasing Cu content,the velocity,activation extent,and reaction extent of Al-PTFE-Cu RRSCP decrease,which contribute to elongation and alleviate the negative effects of chemical reactions on elongation,significantly increasing the length-diameter ratio and thus enhancing the capability of steel plate penetration.However,the lower activation extent and energetic density will weaken the RRSCP's capability of causing rupturing damage to the aluminum plate.展开更多
Following publication of the original article,the authors observed that both Fig.5 and Fig.4 depict the same image.Figure 5 was inaccurately referenced and displayed.The correct Fig.5 is copied below:The original arti...Following publication of the original article,the authors observed that both Fig.5 and Fig.4 depict the same image.Figure 5 was inaccurately referenced and displayed.The correct Fig.5 is copied below:The original article has been updated.展开更多
The textile industry generates large volumes of waste throughout its production process.Most of this waste is colored,therefore,discoloration is an important step toward recycling and reusing this waste.This study foc...The textile industry generates large volumes of waste throughout its production process.Most of this waste is colored,therefore,discoloration is an important step toward recycling and reusing this waste.This study focused on the chemical reductive discoloration of textile waste composed of cotton dyed with reactive dye.The experimental design demonstrated the significant influence of the concentration of reducing agent and time of reaction on the degree of whiteness of the cotton fibers.The concentration of the alkaline agent was not significant in the process.The optimization of the reaction conditions lead to Berger degree of 50.5±3.5.The discolored cotton was chemically recycled through dissolution in ionic liquid 1-ethyl-3-methylimidazolium chloride and regeneration in film form in water.The microstructure of the regenerated cellulose films was evaluated by Scanning Electron Microscopy(SEM)indicating complete dissolution and uniform regeneration.The discoloration process reduced the polymerization degree and crystallinity index of the cotton fibers but retained the cellulose I structure.The dissolution and cellulose regeneration process results in transparent films with an amorphous structure.The thermal behavior,evaluated by thermogravimetric analysis,indicated that residues and regenerated film presented a main decomposition step.The maximum decomposition rate temperature of the regenerated films was approximately 40℃lower than the cotton fibers,which correlates well with the reduction in polymerization degree and amorphous structure.In general,the study demonstrated that textile cotton waste dyed with reactive dyes can be chemically discolored to form transparent and amorphous films,contributing to the development of sustainable strategies for the textile industry.展开更多
The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synth...The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synthesized from diethyl carbonate,trimethylopropanes,allyl bromide,and 1,1,3,3,5,5,7,7-octadecylosiloxane as the main raw materials.BEMOPOMTS can be used as reactive diluents in the field of cationic UV curing.It has good thermal stability,and the addition of BEMOPOMTS significantly improves the tensile strength and elongation at break of epoxy resin.Compared with the pure epoxy resin,adding 20%BEMOPOMTS increased the elastic modulus by 25%to 677 MPa.展开更多
We evaluate an adaptive optimisation methodology,Bayesian optimisation(BO),for designing a minimum weight explosive reactive armour(ERA)for protection against a surrogate medium calibre kinetic energy(KE)long rod proj...We evaluate an adaptive optimisation methodology,Bayesian optimisation(BO),for designing a minimum weight explosive reactive armour(ERA)for protection against a surrogate medium calibre kinetic energy(KE)long rod projectile and surrogate shaped charge(SC)warhead.We perform the optimisation using a conventional BO methodology and compare it with a conventional trial-and-error approach from a human expert.A third approach,utilising a novel human-machine teaming framework for BO is also evaluated.Data for the optimisation is generated using numerical simulations that are demonstrated to provide reasonable qualitative agreement with reference experiments.The human-machine teaming methodology is shown to identify the optimum ERA design in the fewest number of evaluations,outperforming both the stand-alone human and stand-alone BO methodologies.From a design space of almost 1800 configurations the human-machine teaming approach identifies the minimum weight ERA design in 10 samples.展开更多
Reactive transport equations in porous media are critical in various scientific and engineering disciplines,but solving these equations can be computationally expensive when exploring different scenarios,such as varyi...Reactive transport equations in porous media are critical in various scientific and engineering disciplines,but solving these equations can be computationally expensive when exploring different scenarios,such as varying porous structures and initial or boundary conditions.The deep operator network(DeepONet)has emerged as a popular deep learning framework for solving parametric partial differential equations.However,applying the DeepONet to porous media presents significant challenges due to its limited capability to extract representative features from intricate structures.To address this issue,we propose the Porous-DeepONet,a simple yet highly effective extension of the DeepONet framework that leverages convolutional neural networks(CNNs)to learn the solution operators of parametric reactive transport equations in porous media.By incorporating CNNs,we can effectively capture the intricate features of porous media,enabling accurate and efficient learning of the solution operators.We demonstrate the effectiveness of the Porous-DeepONet in accurately and rapidly learning the solution operators of parametric reactive transport equations with various boundary conditions,multiple phases,and multiphysical fields through five examples.This approach offers significant computational savings,potentially reducing the computation time by 50–1000 times compared with the finite-element method.Our work may provide a robust alternative for solving parametric reactive transport equations in porous media,paving the way for exploring complex phenomena in porous media.展开更多
The trade-off between efficiency and stability has limited the application of TiO_(2)as a catalyst due to its poor surface reactivity.Here,we present a modification of a TiO_(2)layer with highly stable Sub-5 nm Fe_(2)...The trade-off between efficiency and stability has limited the application of TiO_(2)as a catalyst due to its poor surface reactivity.Here,we present a modification of a TiO_(2)layer with highly stable Sub-5 nm Fe_(2)O_(3)nanoparticles(NP)by modulating its structure-surface reactivity relationship to attain efficiency-stability balance via a voltage-assisted oxidation approach.In situ simultaneous oxidation of the Ti substrate and Fe precursor using high-energy plasma driven by high voltage resulted in uniform distribution of Fe_(2)O_(3)NP embedded within porous TiO_(2)layer.Comprehensive surface characterizations with density functional theory demonstrated an improved electronic transition in TiO_(2)due to the presence of surface defects from reactive oxygen species and possible charge transfer from Ti to Fe;it also unexpectedly increased the active site in the TiO_(2)layer due to uncoordinated electrons in Sub-5 nm Fe_(2)O_(3)NP/TiO_(2)catalyst,thereby enhancing the adsorption of chemical functional groups on the catalyst.This unique embedded structure exhibited remarkable improvement in reducing 4-nitrophenol to 4-aminophenol,achieving approximately 99%efficiency in 20 min without stability decay after 20 consecutive cycles,outperforming previously reported TiO_(2)-based catalysts.This finding proposes a modified-electrochemical strategy enabling facile construction of TiO_(2)with nanoscale oxides extandable to other metal oxide systems.展开更多
文摘Hepatitis B virus(HBV)reactivation(HBVr)represents a severe and potentially life-threatening condition,and preventive measures are available through blood test screening or prophylactic therapy administration.The assessment of HBVr traditionally considers factors such as HBV profile,including hepatitis B surface antigen(HBsAg)and antibody to hepatitis B core antigen,along with type of medication(chemotherapy;immunomodulants).Nevertheless,consideration of possible patient’s underlying tumor and the specific malignancy type(solid or hematologic)plays a crucial role and needs to be assessed for decision-making process.
文摘Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and management.It delves into host immune responses and reactivation’s delicate balance,spanning innate and adaptive immunity.Viral factors’disruption of this balance,as are interac-tions between viral antigens,immune cells,cytokine networks,and immune checkpoint pathways,are examined.Notably,the roles of T cells,natural killer cells,and antigen-presenting cells are discussed,highlighting their influence on disease progression.HBV reactivation’s impact on disease severity,hepatic flares,liver fibrosis progression,and hepatocellular carcinoma is detailed.Management strategies,including anti-viral and immunomodulatory approaches,are critically analyzed.The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation.In conclusion,this compre-hensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation.With a dedicated focus on understanding its implic-ations for disease progression and the prospects of efficient management stra-tegies,this article contributes significantly to the knowledge base.The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches,ultimately enhancing disease management and elevating patient outcomes.The dynamic landscape of management strategies is critically scrutinized,spanning anti-viral and immunomodulatory approaches.The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.
文摘Epstein-Barr virus (EBV) infects over 90% of the global population, establishing latent infections in most individuals. Under specific conditions like inflammation and immune suppression, EBV can be reactivated, leading to the initiation and progression of related diseases. While inflammation is known to induce EBV reactivation, the precise mechanisms underlying this phenomenon remain unclear. Chemokine (C-X-C motif) ligand (CXCL10), a key inflammatory factor, plays a significant role in various infectious diseases. In this study, we investigated how CXCL10 levels regulate the transition between the latent and lytic replication phases of the EBV lifecycle using cell culture, Western blot, fluorescent quantitative PCR, immunofluorescence, and flow cytometric apoptosis assays. Our findings indicate that CXCL10 induces EBV transition from latency to lytic replication through its receptor CXCR3 by regulating the downstream effector, exostosis-like glycosyltransferase 1. Additionally, CXCL10 activates the JAK2/STAT3 pathway. This study confirms the role of CXCL10 in promoting EBV lytic replication, providing crucial insights into the pathogenic mechanisms of inflammation-triggered EBV reactivation.
基金financially supported by the National Key R&D Program of China (No. 2022YFF0800604)the National Natural Science Foundation of China (No. 42207224)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2022Z021)
文摘On September 5,2022,a strong earthquake with a magnitude of MS6.8 struck Luding County in Sichuan Province,China,triggering thousands of landslides along the Dadu River in the northwest-southeast(NW-SE)direction.We investigated the reactivation characteristics of historical landslides within the epicentral area of the Luding earthquake to identify the initiation mechanism of earthquake-induced landslides.Records of the two newly triggered and historical landslides were analyzed using manual and threshold methods;the spatial distribution of landslides was assessed in relation to topographical and geological factors using remote sensing images.This study sheds light on the spatial distribution patterns of landslides,especially those that occur above historical landslide areas.Our results revealed a similarity in the spatial distribution trends between historical landslides and new ones induced by earthquakes.These landslides tend to be concentrated within a range of 0.2 km from the river and 2 km from the fault.Notably,both rivers and faults predominantly influenced the reactivation of historical landslides.Remarkably,the reactivated landslides are characterized by their small to medium size and are predominantly situated in historical landslide zones.The number of reactivated landslides surpassed that of previously documented historical landslides within the study area.We provide insights into the critical factors responsible for historical landslides during the 2022 Luding earthquake,thereby enhancing our understanding of the potential implications for future co-seismic hazard assessments and mitigation strategies.
文摘This editorial commented on an article in the World Journal of Gastroenterology titled“Risks of Reactivation of Hepatitis B Virus in Oncological Patients Using Tyrosine Kinase-Inhibitors:Case Report and Literature Analysis”by Colapietro et al.In this editorial,we focused on providing a more comprehensive exploration of hepatitis B virus reactivation(HBVr)associated with the usage of tyrosine kinase inhibitors(TKIs).It includes insights into the mechanisms underlying HBV reactivation,the temporal relationship between TKIs and HBV reactivation,and preventive measures.The aim is to understand the need for nucleos(t)ide analogs(NAT)and serial blood tests for early recognition of reactivation and acute liver injury,along with management strategies.TKIs are considered to be an intermediate(1%-10%)of HBVr.Current guidelines stipulate that patients receiving therapy with high or moderate risks of reactivation or recent cancer diagnosis must have at least tested hepatitis B surface antigen,anti-hepatitis B core antigen(HBc),and anti-hepatitis B surface antibody.Anti-HBc screening in highly endemic areas means people with negative tests should be vaccinated against HBV.Nucleoside or nucleotide analogs(NAs)like entecavir(ETV),tenofovir disoproxil fumarate(TDF),and tenofovir alafenamide(TAF)form the basis of HBV reactivation prophylaxis and treatment during immunosuppression.Conversely,lamivudine,telbivudine,and adefovir are generally discouraged due to their reduced antiviral efficacy and higher risk of fostering drug-resistant viral strains.However,these less effective NAs may still be utilized in cases where ETV,TDF,and TAF are not feasible treatment options.
文摘In this editorial,we offer a summary of the risk associated with hepatitis B reactivation(HBVr)in the setting of both solid and hematologic malignancies treated with Bruton tyrosine kinase(BTK)inhibitors,with insights derived from current studies.Furthermore,we emphasize the critical need for a framework regarding robust risk evaluation in patients undergoing such treatments.This framework is essential for identifying those at increased risk of HBVr,enabling healthcare providers to implement proactive measures to prevent reactivation and ensure the safe administration of BTK inhibitor therapy.
基金Supported by Ministry of Science and Higher education of Russia,No.FGMF-2022-0005Moscow Healthcare Department,No.123040700014-4.
文摘In this editorial we comment on the article published in the recent issue of the W orld Journal of Gastroenterology.We focus specifically on the problem of occult hepatitis B virus(HBV)infection,that is a result of previous hepatitis B(PHB)and a source for reactivation of HBV.The prevalence of PHB is underestimated due to the lack of population testing programs.However,this condition not only com-plicate anticancer treatment,but may be responsible for the development of other diseases,like cancer or autoimmune disorders.Here we unveil possible mecha-nisms responsible for realization of these processes and suggest practical approa-ches for diagnosis and treatment.
文摘The risk of reactivation in patients with chronic or past/resolved hepatitis B virus(HBV)infection receiving chemotherapy or immunosuppressive drugs is a wellknown possibility.The indication of antiviral prophylaxis with nucleo(t)side analogue is given according to the risk of HBV reactivation of the prescribed therapy.Though the advent of new drugs is occurring in all the field of medicine,in the setting of hematologic malignancies the last few years have been characterized by several drug classes and innovative cellular treatment.As novel therapies,there are few data about the rate of HBV reactivation and the decision of starting or not an antiviral prophylaxis could be challenging.Moreover,patients are often treated with a combination of different drugs,so evaluating the actual role of these new therapies in increasing the risk of HBV reactivation is difficult.First results are now available,but further studies are still needed.Patients with chronic HBV infection[hepatitis B surface antigen(HBsAg)positive]are reasonably all treated.Past/resolved HBV patients(HBsAg negative)are the actual area of uncertainty where it could be difficult choosing between prophylaxis and pre-emptive strategy.
文摘Hepatitis B virus(HBV)reactivation poses a significant clinical challenge,espe-cially in patients undergoing immunosuppressive therapies,including mono-clonal antibody treatments.This manuscript briefly explores the complex rela-tionship between monoclonal antibody therapy and HBV reactivation,drawing upon current literature and clinical case studies.It delves into the mechanisms underlying this phenomenon,highlighting the importance of risk assessment,monitoring,and prophylactic measures for patients at risk.The manuscript aims to enhance the understanding of HBV reactivation in the context of monoclonal antibody therapy,ultimately facilitating informed clinical decision-making and improved patient care.This paper will also briefly review the definition of HBV activation,assess the risks of reactivation,especially in patients treated with monoclonal antibodies,and consider management for patients with regard to screening,prophylaxis,and treatment.A better understanding of patients at risk can help clinicians provide optimum management to ensure successful patient outcomes and prevent morbidity.
文摘Pre-diabetic insulin resistance is associated with sub-clinical inflammation and concomitant increase in systemic C-reactive protein(CRP)levels.Type 2 diabetes mellitus(T2DM)patients register even higher chronic levels of inflammation,with excess circulating CRP originating from both typical hepatic synthesis,and also visceral white adipose tissue.
基金supported by the Key Projects and Innovation Group of National Natural Science Foundation of China(81830065),the Innovation Groups of NSFC(81721001),and the Young Scientists Fund(82102279).
文摘Background Vascular hyporeactivity and leakage are key pathophysiologic features that produce multi-organ damage upon sepsis.We hypothesized that pericytes,a group of pluripotent cells that maintain vascular integrity and tension,are protective against sepsis via regulating vascular reactivity and permeability.Methods We conducted a series of in vivo experiments using wild-type(WT),platelet-derived growth factor receptor-β(PDGFR-β)-Cre+mT/mG transgenic mice and Tie2-Cre+Cx43^(flox/flox)mice to examine the relative contribution of pericytes in sepsis,either induced by cecal ligation and puncture(CLP)or lipopolysaccharide(LPS)challenge.In a separate set of experiments with Sprague-Dawley(SD)rats,pericytes were depleted using CP-673451,a selective PDGFR-βinhibitor,at a dosage of 40 mg/(kg·d)for 7 consecutive days.Cultured pericytes,vascular endothelial cells(VECs)and vascular smooth muscle cells(VSMCs)were used for mechanistic investigations.The effects of pericytes and pericyte-derived microvesicles(PCMVs)and candidate miRNAs on vascular reactivity and barrier function were also examined.Results CLP and LPS induced severe injury/loss of pericytes,vascular hyporeactivity and leakage(P<0.05).Transplantation with exogenous pericytes protected vascular reactivity and barrier function via microvessel colonization(P<0.05).Cx43 knockout in either pericytes or VECs reduced pericyte colonization in microvessels(P<0.05).Additionally,PCMVs transferred miR-145 and miR-132 to VSMCs and VECs,respectively,exerting a protective effect on vascular reactivity and barrier function after sepsis(P<0.05).miR-145 primarily improved the contractile response of VSMCs by activating the sphingosine kinase 2(Sphk2)/sphingosine-1-phosphate receptor(S1PR)1/phosphorylation of myosin light chain 20 pathway,whereas miR-132 effectively improved the barrier function of VECs by activating the Sphk2/S1PR2/zonula occludens-1 and vascular endothelial-cadherin pathways.Conclusions Pericytes are protective against sepsis through regulating vascular reactivity and barrier function.Possible mechanisms include both direct colonization of microvasculature and secretion of PCMVs.
基金supported by the Youth Foundation of State Key Laboratory of Explosion Science and Technology (Grant No.QNKT22-12)the State Key Program of National Natural Science Foundation of China (Grant No.12132003)。
文摘A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.
基金the National Natural Science Foundation of China(No.12172052 and No.12132003).
文摘Formation behaviors of rod-like reactive shaped charge penetrator(RRSCP)and their effects on damage capability are investigated by experiments and numerical simulations.The pulsed X-ray technology and a spaced aluminum/steel plate with the thicknesses of 5 mm/100 mm are used.Three types of sphericalsegment aluminum-polytetrafluoroethylene-copper(Al-PTFE-Cu)reactive liners with Cu contents of 0%,46.6%,and 66%are fabricated and tested.The experimental results show that the reactive liners can form excellent rod-shaped penetrators with tail skirts under the shaped charge effect,but the tail skirts disappear over time.Moreover,rupturing damage to the aluminum plate and penetration to the steel plate are caused by the RRSCP impact.From simulation analysis,the RRSCP is formed by a mechanically and chemically coupled response with the reactive liner activated by shock in its outer walls and bottom and then backward overturning,forming a leading reactive penetrator and a following chemical energy cluster.The unique formation structure determines the damage modes of the aluminum plate and the steel plate.Further analysis indicates that the formation behaviors and damage capability of Al-PTFE-Cu RRSCP strongly depend on Cu content.With increasing Cu content,the velocity,activation extent,and reaction extent of Al-PTFE-Cu RRSCP decrease,which contribute to elongation and alleviate the negative effects of chemical reactions on elongation,significantly increasing the length-diameter ratio and thus enhancing the capability of steel plate penetration.However,the lower activation extent and energetic density will weaken the RRSCP's capability of causing rupturing damage to the aluminum plate.
文摘Following publication of the original article,the authors observed that both Fig.5 and Fig.4 depict the same image.Figure 5 was inaccurately referenced and displayed.The correct Fig.5 is copied below:The original article has been updated.
基金supportad by Fundação de AmparoàPesquisa e Inovação do Estado de Santa Caturina(FAPESC)(Grant Number 2021TR000327)by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil(CAPES)-Finance Code 001.
文摘The textile industry generates large volumes of waste throughout its production process.Most of this waste is colored,therefore,discoloration is an important step toward recycling and reusing this waste.This study focused on the chemical reductive discoloration of textile waste composed of cotton dyed with reactive dye.The experimental design demonstrated the significant influence of the concentration of reducing agent and time of reaction on the degree of whiteness of the cotton fibers.The concentration of the alkaline agent was not significant in the process.The optimization of the reaction conditions lead to Berger degree of 50.5±3.5.The discolored cotton was chemically recycled through dissolution in ionic liquid 1-ethyl-3-methylimidazolium chloride and regeneration in film form in water.The microstructure of the regenerated cellulose films was evaluated by Scanning Electron Microscopy(SEM)indicating complete dissolution and uniform regeneration.The discoloration process reduced the polymerization degree and crystallinity index of the cotton fibers but retained the cellulose I structure.The dissolution and cellulose regeneration process results in transparent films with an amorphous structure.The thermal behavior,evaluated by thermogravimetric analysis,indicated that residues and regenerated film presented a main decomposition step.The maximum decomposition rate temperature of the regenerated films was approximately 40℃lower than the cotton fibers,which correlates well with the reduction in polymerization degree and amorphous structure.In general,the study demonstrated that textile cotton waste dyed with reactive dyes can be chemically discolored to form transparent and amorphous films,contributing to the development of sustainable strategies for the textile industry.
基金Funded by the National Natural Science Foundation of China(No.21865017)。
文摘The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synthesized from diethyl carbonate,trimethylopropanes,allyl bromide,and 1,1,3,3,5,5,7,7-octadecylosiloxane as the main raw materials.BEMOPOMTS can be used as reactive diluents in the field of cationic UV curing.It has good thermal stability,and the addition of BEMOPOMTS significantly improves the tensile strength and elongation at break of epoxy resin.Compared with the pure epoxy resin,adding 20%BEMOPOMTS increased the elastic modulus by 25%to 677 MPa.
文摘We evaluate an adaptive optimisation methodology,Bayesian optimisation(BO),for designing a minimum weight explosive reactive armour(ERA)for protection against a surrogate medium calibre kinetic energy(KE)long rod projectile and surrogate shaped charge(SC)warhead.We perform the optimisation using a conventional BO methodology and compare it with a conventional trial-and-error approach from a human expert.A third approach,utilising a novel human-machine teaming framework for BO is also evaluated.Data for the optimisation is generated using numerical simulations that are demonstrated to provide reasonable qualitative agreement with reference experiments.The human-machine teaming methodology is shown to identify the optimum ERA design in the fewest number of evaluations,outperforming both the stand-alone human and stand-alone BO methodologies.From a design space of almost 1800 configurations the human-machine teaming approach identifies the minimum weight ERA design in 10 samples.
基金supported by the National Key Research and Development Program of China(2022YFA1503501)the National Natural Science Foundation of China(22378112,22278127,and 22078088)+1 种基金the Fundamental Research Funds for the Central Universities(2022ZFJH004)the Shanghai Rising-Star Program(21QA1401900).
文摘Reactive transport equations in porous media are critical in various scientific and engineering disciplines,but solving these equations can be computationally expensive when exploring different scenarios,such as varying porous structures and initial or boundary conditions.The deep operator network(DeepONet)has emerged as a popular deep learning framework for solving parametric partial differential equations.However,applying the DeepONet to porous media presents significant challenges due to its limited capability to extract representative features from intricate structures.To address this issue,we propose the Porous-DeepONet,a simple yet highly effective extension of the DeepONet framework that leverages convolutional neural networks(CNNs)to learn the solution operators of parametric reactive transport equations in porous media.By incorporating CNNs,we can effectively capture the intricate features of porous media,enabling accurate and efficient learning of the solution operators.We demonstrate the effectiveness of the Porous-DeepONet in accurately and rapidly learning the solution operators of parametric reactive transport equations with various boundary conditions,multiple phases,and multiphysical fields through five examples.This approach offers significant computational savings,potentially reducing the computation time by 50–1000 times compared with the finite-element method.Our work may provide a robust alternative for solving parametric reactive transport equations in porous media,paving the way for exploring complex phenomena in porous media.
基金supported by the National Projects of the National Research Foundation(NRF)funded by Republic of Korea(#2022R1F1A1072739 and#2022R1A2C1004392)Prof.Nashrah is also grateful for financial supports by the YU Infra-Project in conjunction with BK21 FOUR National Program(#222A251009)by the Nano-Fab-NRF grant funded by Republic of Korea(#2009-0082580).
文摘The trade-off between efficiency and stability has limited the application of TiO_(2)as a catalyst due to its poor surface reactivity.Here,we present a modification of a TiO_(2)layer with highly stable Sub-5 nm Fe_(2)O_(3)nanoparticles(NP)by modulating its structure-surface reactivity relationship to attain efficiency-stability balance via a voltage-assisted oxidation approach.In situ simultaneous oxidation of the Ti substrate and Fe precursor using high-energy plasma driven by high voltage resulted in uniform distribution of Fe_(2)O_(3)NP embedded within porous TiO_(2)layer.Comprehensive surface characterizations with density functional theory demonstrated an improved electronic transition in TiO_(2)due to the presence of surface defects from reactive oxygen species and possible charge transfer from Ti to Fe;it also unexpectedly increased the active site in the TiO_(2)layer due to uncoordinated electrons in Sub-5 nm Fe_(2)O_(3)NP/TiO_(2)catalyst,thereby enhancing the adsorption of chemical functional groups on the catalyst.This unique embedded structure exhibited remarkable improvement in reducing 4-nitrophenol to 4-aminophenol,achieving approximately 99%efficiency in 20 min without stability decay after 20 consecutive cycles,outperforming previously reported TiO_(2)-based catalysts.This finding proposes a modified-electrochemical strategy enabling facile construction of TiO_(2)with nanoscale oxides extandable to other metal oxide systems.