Understanding the origins of potential source rocks and unraveling the intricate connections between reservoir oils and their source formations in the Siwa Basin(Western Desert,Egypt)necessitate a thorough oil-source ...Understanding the origins of potential source rocks and unraveling the intricate connections between reservoir oils and their source formations in the Siwa Basin(Western Desert,Egypt)necessitate a thorough oil-source correlation investigation.This objective is achieved through a meticulous analysis of well-log responses,Rock-Eval pyrolysis,and biomarker data.The analysis of Total Organic Carbon across 31 samples representing Paleozoic formations in the Siwa A-1X well reveals a spectrum of organic richness ranging from 0.17 wt%to 2.04 wt%,thereby highlighting diverse levels of organic content and the presence of both Type II and Type III kerogen.Examination of the fingerprint characteristics of eight samples from the well suggests that the Dhiffah Formation comprises a blend of terrestrial and marine organic matter.Notably,a significant contribution from more oxidized residual organic matter and gas-prone Type III kerogen is observed.Contrarily,the Desouky and Zeitoun formations exhibit mixed organic matter indicative of a transitional environment,and thus featuring a pronounced marine influence within a more reducing setting,which is associated with Type II kerogen.Through analysis of five oil samples from different wells—SIWA L-1X,SIWA R-3X,SIWA D-1X,PTAH 5X,and PTAH 6X,it is evident that terrestrial organic matter,augmented by considerable marine input,was deposited in an oxidizing environment,and contains Type III kerogen.Geochemical scrutiny confirms the coexistence of mixed terrestrial organic matter within varying redox environments.Noteworthy is the uniformity of identified kerogen Types II and III across all samples,known to have potential for hydrocarbon generation.The discovery presented in this paper unveils captivating prospects concerning the genesis of oil in the Jurassic Safa reservoir,suggesting potential links to Paleozoic sources or even originating from the Safa Member itself.These revelations mark a substantial advancement in understanding source rock dynamics and their intricate relationship with reservoir oils within the Siwa Basin.By illuminating the processes of hydrocarbon genesis in the region,this study significantly enriches our knowledge base.展开更多
Oil and gas exploration near faults in shallow strata is investigated in this study based on an analysis of oil-source faults in reservoire-cap rock combinations without a source rock.The oil-source faults were mapped...Oil and gas exploration near faults in shallow strata is investigated in this study based on an analysis of oil-source faults in reservoire-cap rock combinations without a source rock.The oil-source faults were mapped by superimposition of the distribution area of oil-source faults and the leakage area of cap rocks.This method is applied to the mapping of oil-source faults for two sets of reservoire-cap rock combinations without a source rock in the Banqiao area of the Qikou Sag in the Bohai Bay Basin,eastern China.Combination B is formed by a mudstone cap rock of the middle sub-member of the 1st member of the Shahejie Formation(E3s1 M)with its underlying reservoir,while Combination C is formed by a mudstone cap rock of the 2nd member of the Dongying Formation(E_(3)d_(2))with its underlying reservoir.The results show that the oil-source faults of Combination B are relatively better developed and mainly occur in the northeast and southeast,while those of Combination C are not as well developed and are only distributed at the southeastern edge of the study area with a small proportion in the north.These results are consistent with the fact that oil and gas are mainly distributed near oil-source faults,proving the method proposed is workable in determining the oil-source faults in reservoire-cap rock combinations without a source rock.展开更多
This study considers the Upper Cretaceous Qingshankou Formation,Yaojia Formation,and the first member of the Nenjiang Formation in the Western Slope of the northern Songliao Basin.Dark mudstone with high abundances of...This study considers the Upper Cretaceous Qingshankou Formation,Yaojia Formation,and the first member of the Nenjiang Formation in the Western Slope of the northern Songliao Basin.Dark mudstone with high abundances of organic matter of Gulong and Qijia sags are considered to be significant source rocks in the study area.To evaluate their development characteristics,differences and effectiveness,geochemical parameters are analyzed.One-dimensional basin modeling and hydrocarbon evolution are also applied to discuss the effectiveness of source rocks.Through the biomarker characteristics,the source–source,oil–oil,and oil–source correlations are assessed and the sources of crude oils in different rock units are determined.Based on the results,Gulong and Qijia source rocks have different organic matter primarily detrived from mixed sources and plankton,respectively.Gulong source rock has higher thermal evolution degree than Qijia source rock.The biomarker parameters of the source rocks are compared with 31 crude oil samples.The studied crude oils can be divided into two groups.The oil–source correlations show that group I oils from Qing II–III,Yao I,and Yao II–III members were probably derived from Gulong source rock and that only group II oils from Nen I member were derived from Qijia source rock.展开更多
The origin and source of the petroleum in the Jurassic reservoirs within the eastern Fukang sub-depression were geochemically investigated.They show thermal maturities matching the peak generation stage,while the cond...The origin and source of the petroleum in the Jurassic reservoirs within the eastern Fukang sub-depression were geochemically investigated.They show thermal maturities matching the peak generation stage,while the condensates are at the early stage of intense cracking.Oils and condensates may have experienced mild evaporative fractionation,while mixing of severely biodegraded with non-biodegraded oils has occurred.Using biomarkers and isotopes,petroleums were classified into GroupⅠ,ⅡandⅢgenetic groups,with GroupⅢfurther divided intoⅢa andⅢb subgroups.GroupⅠpetroleum displays heavy carbon isotopes,a strong predominance of pristine over phytane,high C_(19)and C_(20)tricyclic and C_(24)tetracyclic terpanes,low gammacerane,and dominant C_(29)steranes,while GroupⅡshows light carbon isotopes,a predominance of phytane over pristine,high C_(21)and C_(23)tricyclic with low C_(24)tetracyclic terpanes,high gammacerane and dominant C_(27)steranes.GroupⅢa petroleum shows mixing compositions of GroupⅠandⅡ,while GroupⅢb displays similar compositions to Group I,but with significantly higher Ts,C_(29)Ts and C_(30)diahopane proportions.Oil-source rock correlation suggests GroupⅠandⅡpetroleums originate from Jurassic and Permian source rocks,respectively,while GroupⅢa are mixtures sourced from these rocks andⅢb are mixtures from Jurassic and Triassic source rocks.展开更多
Organism relies or kerogens in oils are first observed by a confocal laser scanning microscope (CLSM) and a transmission electron microscope (TEM). The complexes of kerogens in oils are characterized by the presence o...Organism relies or kerogens in oils are first observed by a confocal laser scanning microscope (CLSM) and a transmission electron microscope (TEM). The complexes of kerogens in oils are characterized by the presence of a great variety of microfossils or macerals. These kerogens in oils are mainly the residues of the original organic substances from which oil formed, and minor kerogens from enclosing rocks enter the oils, therefore, the components and types of the kerogens in crude oils can serve as an indirect indicator of oil-source rock correlation. This method was applied to Jurassic oils in the Junggar Basin and the Turpan-Hami Basin, and there are two types of the kerogens in oils: one containing a lot of macerals from terrestrial plants may derive from coals, and the other, characterized by a high content of microscopic algae, fungus spores and Acritarch, may originate from Permian organic matter. In addition, the reflectance of the vitrodetrinites in oils can be used as an indicator of oil-source rock correlation.展开更多
An oil flow obtained from the Middle Ordovician Fengfeng Formation carbonate reservoir in the well KG-3, Kongxi burial-hill zone in 1993 marked a breakthrough in petroleum exploration of the high-mature Lower Palaeozo...An oil flow obtained from the Middle Ordovician Fengfeng Formation carbonate reservoir in the well KG-3, Kongxi burial-hill zone in 1993 marked a breakthrough in petroleum exploration of the high-mature Lower Palaeozoic strata, North China. Both the Lower member of the Fengfeng Formation and the Second Member of the Upper Majiagou Formation in the Middle Ordovician are supposed to be the main source beds. Oil generation peaks range from 1.0% to 1.6% in Ro, showing a “lag effect” of oil generation in high-mature carbonate source rocks under multicyclic tectonic movement conditions. The Kongxi burial-hill zone adjoins a potential Ordovician source kitchen. The KG-3 Ordovician burial-hill reservoir has undergone two oil filling events, i.e., an early event in the Late Carboniferous-Permian and a more significant late event in the early Eogene.展开更多
Subtle traps or oil pools have become an important exploration play in the Dongying Depression, Bohai Bay Basin, east China. Despite recent successes in exploration, the formation mechanisms of subtle traps are still ...Subtle traps or oil pools have become an important exploration play in the Dongying Depression, Bohai Bay Basin, east China. Despite recent successes in exploration, the formation mechanisms of subtle traps are still not well understood. The majority of subtle oil pools in the Dongying Depression are developed in the middle interval of the Es3 Member of the Paleogene Shahejie Formation with the subtle traps being primarily of lenticular basin-floor turbidite sands encompassed in mudstones. Oil in the subtle traps was previously thought to have migrated directly from the surrounding source rocks of the same formation (Es3). Detailed geochemical investigation of 41 oils and 41 rock samples from the depression now indicates that the oils from the subtle traps cannot be correlated well with the surrounding Es3 source rocks, which are characterized by high Pr/ Ph (〉1), low Gammacerane/C30hopane, representing a freshwater lacustrine setting. In contrast the oils features low Pr/Ph (〈1) and relatively high Gammacerane content, showing a genetic affinity with the underlying Es4 source rocks, which also have the same qualities, indicating a brackish lacustrine setting. Oils in the Es3 subtle traps are probably derived from mixed sources with the contribution from the upper Es4 source rocks predominating. Therefore unconventional oil migration and accumulation mechanisms need to be invoked to explain the pooling of oils from the ES4 source rocks, which probably came through a thick low interval of the Es3 source rocks with no apparent structural or stratigraphic pathways. We suggest that the subtle oil migration pathway probably plays an important role here. This finding may have significant implications for future exploration and the remaining resource evaluation in the Dongying Depression.展开更多
Based on the geological and geochemical analysis of potential source rocks in different formations and the classification of crude oil types,combined with the hydrocarbon generation thermal simulation experiments,the ...Based on the geological and geochemical analysis of potential source rocks in different formations and the classification of crude oil types,combined with the hydrocarbon generation thermal simulation experiments,the source,genesis,and distribution of different types of oils in the Mahu large oil province of the Junggar Basin are investigated.Four sets of potential source rocks are developed in the Mahu Sag.Specifically,the source rocks of the Permian Fengcheng Formation have the highest hydrocarbon generation potential and contain mainly TypesⅡandⅠorganic matters,with a high oil generation capacity.In contrast,the source rocks in other formations exhibit lower hydrocarbon generation potential and contain mainly TypeⅢorganic matter,with dominant gas generation.Oils in the Mahu Sag can be classified as three types:A,B and C,which display ascending,mountainous and descending C_(20)-C_(21)-C_(23)tricyclic terpenes abundance patterns in sequence,and gradually increasing relative content of tricyclic terpenes and sterane isomerization parameters,indicating an increasing oil maturity.Different types of oils are distributed spatially in an obviously orderly manner:Type A oil is close to the edge of the sag,Type C oil is concentrated in the center of the sag,and Type B oil lies in the slope area between Type A and Type C.The results of oil-source correlation and thermal simulation experiments show that the three types of oils come from the source rocks of the Fengcheng Formation at different thermal evolution stages.This new understanding of the differential genesis of oils in the Mahu Sag reasonably explains the source,distribution,and genetic mechanism of the three types of oils.The study results are of important guidance for the comprehensive and three-dimensional oil exploration,the identification of oil distribution in the total petroleum system,and the prediction of favorable exploration areas in the Mahu Sag.展开更多
Since the discovery of the Tahe oilfield, it has been controversial on whether the main source rock is in the Cambrian or Middle-Upper Ordovician strata. In this paper, it is assumed that the crude oil from the Wells ...Since the discovery of the Tahe oilfield, it has been controversial on whether the main source rock is in the Cambrian or Middle-Upper Ordovician strata. In this paper, it is assumed that the crude oil from the Wells YM 2 and TD 2 was derived from the Middle-Upper Ordovician and Cambrian source rocks, respectively. We analyzed the biomarkers of the crude oil, asphalt-adsorbed hydrocarbon and saturated hydrocarbon in bitumen inclusions from the Lunnan and Hade areas in the North Uplift of the Tarim Basin. Results show that the ratios of tricyclic terpane C2~/C23 in the crude oil, asphalt-adsorbed hydrocarbon and saturated hydrocarbon in bitumen inclusions are less than 1.0, indicating that they might be from Upper Ordovician source rocks; the ratios of C28/(C27+C28+C29) steranes in the saturated hydrocarbon from reservoir bitumen and bitumen inclusions are higher than 25, suggesting that they might come from the Cambrian source rocks, however, the ratios of C28/(C27+C28+C29) steranes in oil from the North Uplift are less than 25, suggesting that they might be sourced from the Upper Ordovician source rocks. These findings demonstrate that the sources of crude oil in the Tarim Basin are complicated. The chemical composition and carbon isotopes of Ordovician reservoired oil in the Tarim Basin indicated that the crude oil in the North Uplift (including the Tahe oilfield) and Tazhong Depression was within mixture areas of crude oil from the Wells YM 2 and TD 2 as the end members of the Cambrian and Middle-Upper Ordovician sourced oils, respectively. This observation suggests that the crude oil in the Ordovician strata is a mixture of oils from the Cambrian and Ordovician source rocks, with increasing contribution from the Cambrian source rocks from the southern slope of the North Uplift to northern slope of the Central Uplift of the Tarim Basin. Considering the lithology and sedimentary facies data, the spatial distribution of the Cambrian, Middle-Lower Ordovician and Upper Ordovician source rocks was reconstructed on the basis of seismic reflection characteristics, and high-quality source rocks were revealed to be mainly located in the slope belt of the basin and were longitudinally developed over the maximum flooding surface during the progressive-regressive cycle. Affected by the transformation of the tectonic framework in the basin, the overlays of source rocks in different regions are different and the distribution of oil and gas was determined by the initial basin sedimentary structure and later reformation process. The northern slope of the Central Uplift-Shuntuo-Gucheng areas would be a recent important target for oil and gas exploration, since they have been near the slope area for a long time.展开更多
Late-stage is defined here as the period when Neotectonism occurred since 5.1 Ma. Most petroliferous basins in China lie in the areas where Neotectonism occurred intensively. In recent years, Chinese petroleum geologi...Late-stage is defined here as the period when Neotectonism occurred since 5.1 Ma. Most petroliferous basins in China lie in the areas where Neotectonism occurred intensively. In recent years, Chinese petroleum geologists have paid much attention to late-stage petroleum accumulation. The PL19-3 giant oilfield is situated where faulting activities occurred violently during Neotectonism. To understand the mechanism of lat-stage rapid accumulation, we discussed the most important aspects responsible for the formation of the giant oilfield, including oil generation, active oil-source rock occurrence, fault activity and fault conduits, late-stage rapid oil injection as well as the distinguishing indicators. This study shows that: (1) sufficient oil was supplied to the PL19-3 field since 5.1 Ma because the PL19-3 structure was surrounded by four sags in which three intervals of high-quality source rocks remained active during Neotectonism; (2) densely distributed faults and high porosity/permeability sandstone carrier beds comprised the effective conduit system for oil migration and injection; (3) oil migrated along the faults and charged the PL19-3 structure rapidly by means of seismic pumping which was triggered by frequent earthquakes during Neotetonism. It is documented that elevated reservoir temperature, abnormal geothermal gradients and abnormally high homogenization temperatures of the fluid inclusions are the indicators for late-stage rapid oil accumulation.展开更多
A detailed correlation of Hetianhe condensates versus typical source rocks from the Tarim Basin was established. Moreover, the genetic relationship between the condensates and their associated gases was also studied b...A detailed correlation of Hetianhe condensates versus typical source rocks from the Tarim Basin was established. Moreover, the genetic relationship between the condensates and their associated gases was also studied based on their geochemical com- positions and fluid inclusion data. Hetianhe condensates are characterized by high pristine/phytane (Pr/Ph) ratios, high relative abundances of Czs regular steranes, C26-C27 triaromatic steroids, and triaromatic dinosteranes, and relatively heavy stable car- bon isotopic compositions. They geochemically correlate well with the Cambrian source rocks, indicating that these conden- sates are derived from the Cambrian rocks. Based on several molecular maturity parameters, the condensates are recognized as being moderately to highly mature, which are too low in maturity to extensively crack into gases. The gases and condensates of the Hetianhe Field are derived from the same source rocks and the gases are from oil-cracking; however, clear evidence indi- cates that the gases were not cracked from their associated condensates and that the gas generation from oil-cracking did not occur in the present reservoirs. The liquid condensates produced from wellheads were likely dissolved in their associated gases underground and carried into the reservoirs by the gases.展开更多
基金the research project is funded by Abdullah Alrushaid Chair for Earth Science Remote Sensing Research at King Saud University,Riyadh,Saudi Arabia.。
文摘Understanding the origins of potential source rocks and unraveling the intricate connections between reservoir oils and their source formations in the Siwa Basin(Western Desert,Egypt)necessitate a thorough oil-source correlation investigation.This objective is achieved through a meticulous analysis of well-log responses,Rock-Eval pyrolysis,and biomarker data.The analysis of Total Organic Carbon across 31 samples representing Paleozoic formations in the Siwa A-1X well reveals a spectrum of organic richness ranging from 0.17 wt%to 2.04 wt%,thereby highlighting diverse levels of organic content and the presence of both Type II and Type III kerogen.Examination of the fingerprint characteristics of eight samples from the well suggests that the Dhiffah Formation comprises a blend of terrestrial and marine organic matter.Notably,a significant contribution from more oxidized residual organic matter and gas-prone Type III kerogen is observed.Contrarily,the Desouky and Zeitoun formations exhibit mixed organic matter indicative of a transitional environment,and thus featuring a pronounced marine influence within a more reducing setting,which is associated with Type II kerogen.Through analysis of five oil samples from different wells—SIWA L-1X,SIWA R-3X,SIWA D-1X,PTAH 5X,and PTAH 6X,it is evident that terrestrial organic matter,augmented by considerable marine input,was deposited in an oxidizing environment,and contains Type III kerogen.Geochemical scrutiny confirms the coexistence of mixed terrestrial organic matter within varying redox environments.Noteworthy is the uniformity of identified kerogen Types II and III across all samples,known to have potential for hydrocarbon generation.The discovery presented in this paper unveils captivating prospects concerning the genesis of oil in the Jurassic Safa reservoir,suggesting potential links to Paleozoic sources or even originating from the Safa Member itself.These revelations mark a substantial advancement in understanding source rock dynamics and their intricate relationship with reservoir oils within the Siwa Basin.By illuminating the processes of hydrocarbon genesis in the region,this study significantly enriches our knowledge base.
基金The National Natural Science Foundation of China(grant IDs 41872157,42072157).
文摘Oil and gas exploration near faults in shallow strata is investigated in this study based on an analysis of oil-source faults in reservoire-cap rock combinations without a source rock.The oil-source faults were mapped by superimposition of the distribution area of oil-source faults and the leakage area of cap rocks.This method is applied to the mapping of oil-source faults for two sets of reservoire-cap rock combinations without a source rock in the Banqiao area of the Qikou Sag in the Bohai Bay Basin,eastern China.Combination B is formed by a mudstone cap rock of the middle sub-member of the 1st member of the Shahejie Formation(E3s1 M)with its underlying reservoir,while Combination C is formed by a mudstone cap rock of the 2nd member of the Dongying Formation(E_(3)d_(2))with its underlying reservoir.The results show that the oil-source faults of Combination B are relatively better developed and mainly occur in the northeast and southeast,while those of Combination C are not as well developed and are only distributed at the southeastern edge of the study area with a small proportion in the north.These results are consistent with the fact that oil and gas are mainly distributed near oil-source faults,proving the method proposed is workable in determining the oil-source faults in reservoire-cap rock combinations without a source rock.
文摘This study considers the Upper Cretaceous Qingshankou Formation,Yaojia Formation,and the first member of the Nenjiang Formation in the Western Slope of the northern Songliao Basin.Dark mudstone with high abundances of organic matter of Gulong and Qijia sags are considered to be significant source rocks in the study area.To evaluate their development characteristics,differences and effectiveness,geochemical parameters are analyzed.One-dimensional basin modeling and hydrocarbon evolution are also applied to discuss the effectiveness of source rocks.Through the biomarker characteristics,the source–source,oil–oil,and oil–source correlations are assessed and the sources of crude oils in different rock units are determined.Based on the results,Gulong and Qijia source rocks have different organic matter primarily detrived from mixed sources and plankton,respectively.Gulong source rock has higher thermal evolution degree than Qijia source rock.The biomarker parameters of the source rocks are compared with 31 crude oil samples.The studied crude oils can be divided into two groups.The oil–source correlations show that group I oils from Qing II–III,Yao I,and Yao II–III members were probably derived from Gulong source rock and that only group II oils from Nen I member were derived from Qijia source rock.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.20CX02108A)the Development Fund of the Key Laboratory of Deep Oil&Gas,China University of Petroleum(East China)。
文摘The origin and source of the petroleum in the Jurassic reservoirs within the eastern Fukang sub-depression were geochemically investigated.They show thermal maturities matching the peak generation stage,while the condensates are at the early stage of intense cracking.Oils and condensates may have experienced mild evaporative fractionation,while mixing of severely biodegraded with non-biodegraded oils has occurred.Using biomarkers and isotopes,petroleums were classified into GroupⅠ,ⅡandⅢgenetic groups,with GroupⅢfurther divided intoⅢa andⅢb subgroups.GroupⅠpetroleum displays heavy carbon isotopes,a strong predominance of pristine over phytane,high C_(19)and C_(20)tricyclic and C_(24)tetracyclic terpanes,low gammacerane,and dominant C_(29)steranes,while GroupⅡshows light carbon isotopes,a predominance of phytane over pristine,high C_(21)and C_(23)tricyclic with low C_(24)tetracyclic terpanes,high gammacerane and dominant C_(27)steranes.GroupⅢa petroleum shows mixing compositions of GroupⅠandⅡ,while GroupⅢb displays similar compositions to Group I,but with significantly higher Ts,C_(29)Ts and C_(30)diahopane proportions.Oil-source rock correlation suggests GroupⅠandⅡpetroleums originate from Jurassic and Permian source rocks,respectively,while GroupⅢa are mixtures sourced from these rocks andⅢb are mixtures from Jurassic and Triassic source rocks.
文摘Organism relies or kerogens in oils are first observed by a confocal laser scanning microscope (CLSM) and a transmission electron microscope (TEM). The complexes of kerogens in oils are characterized by the presence of a great variety of microfossils or macerals. These kerogens in oils are mainly the residues of the original organic substances from which oil formed, and minor kerogens from enclosing rocks enter the oils, therefore, the components and types of the kerogens in crude oils can serve as an indirect indicator of oil-source rock correlation. This method was applied to Jurassic oils in the Junggar Basin and the Turpan-Hami Basin, and there are two types of the kerogens in oils: one containing a lot of macerals from terrestrial plants may derive from coals, and the other, characterized by a high content of microscopic algae, fungus spores and Acritarch, may originate from Permian organic matter. In addition, the reflectance of the vitrodetrinites in oils can be used as an indicator of oil-source rock correlation.
文摘An oil flow obtained from the Middle Ordovician Fengfeng Formation carbonate reservoir in the well KG-3, Kongxi burial-hill zone in 1993 marked a breakthrough in petroleum exploration of the high-mature Lower Palaeozoic strata, North China. Both the Lower member of the Fengfeng Formation and the Second Member of the Upper Majiagou Formation in the Middle Ordovician are supposed to be the main source beds. Oil generation peaks range from 1.0% to 1.6% in Ro, showing a “lag effect” of oil generation in high-mature carbonate source rocks under multicyclic tectonic movement conditions. The Kongxi burial-hill zone adjoins a potential Ordovician source kitchen. The KG-3 Ordovician burial-hill reservoir has undergone two oil filling events, i.e., an early event in the Late Carboniferous-Permian and a more significant late event in the early Eogene.
基金provided by National Natural Science Foundation of China(Grant No.#40772077/D0206)an opening project of the Key Laboratory for Hydrocarbon Accumulation,Ministry of Education(China University of Petroleum)(2001-2).
文摘Subtle traps or oil pools have become an important exploration play in the Dongying Depression, Bohai Bay Basin, east China. Despite recent successes in exploration, the formation mechanisms of subtle traps are still not well understood. The majority of subtle oil pools in the Dongying Depression are developed in the middle interval of the Es3 Member of the Paleogene Shahejie Formation with the subtle traps being primarily of lenticular basin-floor turbidite sands encompassed in mudstones. Oil in the subtle traps was previously thought to have migrated directly from the surrounding source rocks of the same formation (Es3). Detailed geochemical investigation of 41 oils and 41 rock samples from the depression now indicates that the oils from the subtle traps cannot be correlated well with the surrounding Es3 source rocks, which are characterized by high Pr/ Ph (〉1), low Gammacerane/C30hopane, representing a freshwater lacustrine setting. In contrast the oils features low Pr/Ph (〈1) and relatively high Gammacerane content, showing a genetic affinity with the underlying Es4 source rocks, which also have the same qualities, indicating a brackish lacustrine setting. Oils in the Es3 subtle traps are probably derived from mixed sources with the contribution from the upper Es4 source rocks predominating. Therefore unconventional oil migration and accumulation mechanisms need to be invoked to explain the pooling of oils from the ES4 source rocks, which probably came through a thick low interval of the Es3 source rocks with no apparent structural or stratigraphic pathways. We suggest that the subtle oil migration pathway probably plays an important role here. This finding may have significant implications for future exploration and the remaining resource evaluation in the Dongying Depression.
文摘Based on the geological and geochemical analysis of potential source rocks in different formations and the classification of crude oil types,combined with the hydrocarbon generation thermal simulation experiments,the source,genesis,and distribution of different types of oils in the Mahu large oil province of the Junggar Basin are investigated.Four sets of potential source rocks are developed in the Mahu Sag.Specifically,the source rocks of the Permian Fengcheng Formation have the highest hydrocarbon generation potential and contain mainly TypesⅡandⅠorganic matters,with a high oil generation capacity.In contrast,the source rocks in other formations exhibit lower hydrocarbon generation potential and contain mainly TypeⅢorganic matter,with dominant gas generation.Oils in the Mahu Sag can be classified as three types:A,B and C,which display ascending,mountainous and descending C_(20)-C_(21)-C_(23)tricyclic terpenes abundance patterns in sequence,and gradually increasing relative content of tricyclic terpenes and sterane isomerization parameters,indicating an increasing oil maturity.Different types of oils are distributed spatially in an obviously orderly manner:Type A oil is close to the edge of the sag,Type C oil is concentrated in the center of the sag,and Type B oil lies in the slope area between Type A and Type C.The results of oil-source correlation and thermal simulation experiments show that the three types of oils come from the source rocks of the Fengcheng Formation at different thermal evolution stages.This new understanding of the differential genesis of oils in the Mahu Sag reasonably explains the source,distribution,and genetic mechanism of the three types of oils.The study results are of important guidance for the comprehensive and three-dimensional oil exploration,the identification of oil distribution in the total petroleum system,and the prediction of favorable exploration areas in the Mahu Sag.
基金supported by the National Natural Science Foundation of China(Grant Nos.41230312,41322016,41625009)the Key Project of China National Program for Fundamental Research and Development(Grant No. 2012CB214800)
文摘Since the discovery of the Tahe oilfield, it has been controversial on whether the main source rock is in the Cambrian or Middle-Upper Ordovician strata. In this paper, it is assumed that the crude oil from the Wells YM 2 and TD 2 was derived from the Middle-Upper Ordovician and Cambrian source rocks, respectively. We analyzed the biomarkers of the crude oil, asphalt-adsorbed hydrocarbon and saturated hydrocarbon in bitumen inclusions from the Lunnan and Hade areas in the North Uplift of the Tarim Basin. Results show that the ratios of tricyclic terpane C2~/C23 in the crude oil, asphalt-adsorbed hydrocarbon and saturated hydrocarbon in bitumen inclusions are less than 1.0, indicating that they might be from Upper Ordovician source rocks; the ratios of C28/(C27+C28+C29) steranes in the saturated hydrocarbon from reservoir bitumen and bitumen inclusions are higher than 25, suggesting that they might come from the Cambrian source rocks, however, the ratios of C28/(C27+C28+C29) steranes in oil from the North Uplift are less than 25, suggesting that they might be sourced from the Upper Ordovician source rocks. These findings demonstrate that the sources of crude oil in the Tarim Basin are complicated. The chemical composition and carbon isotopes of Ordovician reservoired oil in the Tarim Basin indicated that the crude oil in the North Uplift (including the Tahe oilfield) and Tazhong Depression was within mixture areas of crude oil from the Wells YM 2 and TD 2 as the end members of the Cambrian and Middle-Upper Ordovician sourced oils, respectively. This observation suggests that the crude oil in the Ordovician strata is a mixture of oils from the Cambrian and Ordovician source rocks, with increasing contribution from the Cambrian source rocks from the southern slope of the North Uplift to northern slope of the Central Uplift of the Tarim Basin. Considering the lithology and sedimentary facies data, the spatial distribution of the Cambrian, Middle-Lower Ordovician and Upper Ordovician source rocks was reconstructed on the basis of seismic reflection characteristics, and high-quality source rocks were revealed to be mainly located in the slope belt of the basin and were longitudinally developed over the maximum flooding surface during the progressive-regressive cycle. Affected by the transformation of the tectonic framework in the basin, the overlays of source rocks in different regions are different and the distribution of oil and gas was determined by the initial basin sedimentary structure and later reformation process. The northern slope of the Central Uplift-Shuntuo-Gucheng areas would be a recent important target for oil and gas exploration, since they have been near the slope area for a long time.
基金supported by Program for Innovative Research Team in the University (Grant No. IRT0658)National Natural Science Foundation of China (Grant No. 90914006)
文摘Late-stage is defined here as the period when Neotectonism occurred since 5.1 Ma. Most petroliferous basins in China lie in the areas where Neotectonism occurred intensively. In recent years, Chinese petroleum geologists have paid much attention to late-stage petroleum accumulation. The PL19-3 giant oilfield is situated where faulting activities occurred violently during Neotectonism. To understand the mechanism of lat-stage rapid accumulation, we discussed the most important aspects responsible for the formation of the giant oilfield, including oil generation, active oil-source rock occurrence, fault activity and fault conduits, late-stage rapid oil injection as well as the distinguishing indicators. This study shows that: (1) sufficient oil was supplied to the PL19-3 field since 5.1 Ma because the PL19-3 structure was surrounded by four sags in which three intervals of high-quality source rocks remained active during Neotectonism; (2) densely distributed faults and high porosity/permeability sandstone carrier beds comprised the effective conduit system for oil migration and injection; (3) oil migrated along the faults and charged the PL19-3 structure rapidly by means of seismic pumping which was triggered by frequent earthquakes during Neotetonism. It is documented that elevated reservoir temperature, abnormal geothermal gradients and abnormally high homogenization temperatures of the fluid inclusions are the indicators for late-stage rapid oil accumulation.
基金supported by the Science Foundation of China University of Petroleum,Beijing(Grant No.2462014YJRC017)
文摘A detailed correlation of Hetianhe condensates versus typical source rocks from the Tarim Basin was established. Moreover, the genetic relationship between the condensates and their associated gases was also studied based on their geochemical com- positions and fluid inclusion data. Hetianhe condensates are characterized by high pristine/phytane (Pr/Ph) ratios, high relative abundances of Czs regular steranes, C26-C27 triaromatic steroids, and triaromatic dinosteranes, and relatively heavy stable car- bon isotopic compositions. They geochemically correlate well with the Cambrian source rocks, indicating that these conden- sates are derived from the Cambrian rocks. Based on several molecular maturity parameters, the condensates are recognized as being moderately to highly mature, which are too low in maturity to extensively crack into gases. The gases and condensates of the Hetianhe Field are derived from the same source rocks and the gases are from oil-cracking; however, clear evidence indi- cates that the gases were not cracked from their associated condensates and that the gas generation from oil-cracking did not occur in the present reservoirs. The liquid condensates produced from wellheads were likely dissolved in their associated gases underground and carried into the reservoirs by the gases.