Fluid typing from nuclear magnetic resonance(NMR)logging in oil-wet tight sandstone reservoirs is proving to be diffi cult;thus,research into the NMR logging response mechanism and analysis methods is critical.The NMR...Fluid typing from nuclear magnetic resonance(NMR)logging in oil-wet tight sandstone reservoirs is proving to be diffi cult;thus,research into the NMR logging response mechanism and analysis methods is critical.The NMR response mechanism and theoretical method were investigated based on the oil-water distribution in the pores under oil-wet conditions.The data processing method is studied based on NMR dual-TW activation principle,and the equations of macroscopic magnetization vector,fl uid volume,and relaxation parameters are derived,which is a nonlinear inversion problem.The simulated annealing algorithm is used,and the fl uid relaxation parameters,oil volume,and water volume of the fl ushing zone are calculated.An ideal reservoir model is set up,and simulation results indicate that the above-mentioned NMR relaxation theory and algorithms are valid.A case study is conducted in Huanjiang Oilfi eld in the Ordos Basin,China.The calculated oil saturation of the fl ushing zone is consistent with the oil saturation calculated using the Archie formula,and the test results indicated that the new method is applicable.Moreover,the fl uid-typing cross-plot combined with oil test data is constructed on the basis of the saturation of the fl ushing zone,improving the accuracy of fl uid identifi cation.展开更多
Low-speed rotation of disc in an internal circulation of a novel de-emulsification with rotation-dise horizental contactor(RHC-D) realized de-emulsification for O/W emulsions due to repeated coalescence in oil-wet nar...Low-speed rotation of disc in an internal circulation of a novel de-emulsification with rotation-dise horizental contactor(RHC-D) realized de-emulsification for O/W emulsions due to repeated coalescence in oil-wet narrow channels at a low rotation speed. For three emulsions included ethanol/water/2-ethyl-1-hexanol, ethanol/water/2-ethyl-1-hexanol/SDS(Sodium Dodecyl Sulfonate) and 2-ethyl-1-hexanol/water/SDS emulsion, deemulsification ratios of oil phase could reach 1, 1 and 0.67 respectively at 170 r·min-1, and de-emulsification ratios increased obviously after agitating 10 min. De-emulsification experiment in the seam indicated that oil droplet sizes in O/W emulsion became larger after de-emulsification. The main de-emulsification mechanism in RHCD was the coalescence of oil droplets in oil-wet narrow channels. With increase of the rotation speed, oil droplets dispersed better in the aqueous phase. However, de-emulsification effect enhanced due to the increase of the coalescence rate at a bit higher rotation speed. In addition, internal circulation made those O/W emulsions to be broken repeatedly, consequently de-emulsification ratio increased. Repeated de-emulsification through internal circulation might make continuous extraction of ethanol come true at a low rotation speed.展开更多
基金This work was supported by the National Natural Science Foundation of China(41774144)the National Science and Technology Major Project“The Demonstration Project for Exploration and Development of Large Lithostratigraphic Oil and Gas Reservoirs in the Ordos Basin(2016ZX05050).
文摘Fluid typing from nuclear magnetic resonance(NMR)logging in oil-wet tight sandstone reservoirs is proving to be diffi cult;thus,research into the NMR logging response mechanism and analysis methods is critical.The NMR response mechanism and theoretical method were investigated based on the oil-water distribution in the pores under oil-wet conditions.The data processing method is studied based on NMR dual-TW activation principle,and the equations of macroscopic magnetization vector,fl uid volume,and relaxation parameters are derived,which is a nonlinear inversion problem.The simulated annealing algorithm is used,and the fl uid relaxation parameters,oil volume,and water volume of the fl ushing zone are calculated.An ideal reservoir model is set up,and simulation results indicate that the above-mentioned NMR relaxation theory and algorithms are valid.A case study is conducted in Huanjiang Oilfi eld in the Ordos Basin,China.The calculated oil saturation of the fl ushing zone is consistent with the oil saturation calculated using the Archie formula,and the test results indicated that the new method is applicable.Moreover,the fl uid-typing cross-plot combined with oil test data is constructed on the basis of the saturation of the fl ushing zone,improving the accuracy of fl uid identifi cation.
文摘Low-speed rotation of disc in an internal circulation of a novel de-emulsification with rotation-dise horizental contactor(RHC-D) realized de-emulsification for O/W emulsions due to repeated coalescence in oil-wet narrow channels at a low rotation speed. For three emulsions included ethanol/water/2-ethyl-1-hexanol, ethanol/water/2-ethyl-1-hexanol/SDS(Sodium Dodecyl Sulfonate) and 2-ethyl-1-hexanol/water/SDS emulsion, deemulsification ratios of oil phase could reach 1, 1 and 0.67 respectively at 170 r·min-1, and de-emulsification ratios increased obviously after agitating 10 min. De-emulsification experiment in the seam indicated that oil droplet sizes in O/W emulsion became larger after de-emulsification. The main de-emulsification mechanism in RHCD was the coalescence of oil droplets in oil-wet narrow channels. With increase of the rotation speed, oil droplets dispersed better in the aqueous phase. However, de-emulsification effect enhanced due to the increase of the coalescence rate at a bit higher rotation speed. In addition, internal circulation made those O/W emulsions to be broken repeatedly, consequently de-emulsification ratio increased. Repeated de-emulsification through internal circulation might make continuous extraction of ethanol come true at a low rotation speed.