The growing interest in functionalized nanoparticles and their implementa</span></span><span><span><span style="font-family:"">tion in oilfield applications (e.g., drilling...The growing interest in functionalized nanoparticles and their implementa</span></span><span><span><span style="font-family:"">tion in oilfield applications (e.g., drilling fluids and enhanced oil recovery</span></span></span><span><span><span style="font-family:""> (EOR)) facilitate the ongoing efforts to improve their chemical functionalization performance in stabilization of water based or hydrocarbon based nanofluids. Cyclic azasilanes (CAS), substituted 1-aza-2-silacyclopentanes, possess a strained 5-member ring structure. Adjacent Si and N atoms in the ring provide opportunity for highly ef</span></span></span><span style="font-family:Verdana;"></span><span><span><span style="font-family:"">ficient covalent surface functionalization of hydroxylated nanoparticles through a catalyst-free and byproduct-free click <span>reaction. In this work, hydroxylated silica, alumina, diamond, and carbon</span> coated iron core-shell nanoparticles have been studied for monolayer CAS <span>functionalization. Two cyclic azasilanes with different R groups at N atom</span>, such as methyl (CAS-1) and aminoethyl (CAS-2), have been utilized to func<span>tionalize nanoparticles. All reactions were found to readily proceed under</span> mild conditions (room temperature, ambient pressure) during 1 - 2 hours of sonication. CAS functionalized adducts of hydroxylated nanoparticles have been isolated and</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">their microstructure, composition, solubility and thermal stability have been characterized. As a result, it has been demonstrated, for the first time, that covalent surface modification with cyclic azasilanes can be extended beyond the previously known porous silicon structures to hydroxylated silica, alumina and carbon nanoparticles. The developed methodology was also shown to provide access to the nanoparticles with the hydrophilic or hydrophobic surface functional groups needed to enable oilfield applications (e.g., EOR, tracers, drilling fluids) that require stable water based or hydrocarbon based colloidal systems.展开更多
Global warming touches everybody's nerve, and direct reason for sharp increasing of CO2 in the atmosphere results mainly from the use of fossil fuel in power generation and other industries. How can humans return th...Global warming touches everybody's nerve, and direct reason for sharp increasing of CO2 in the atmosphere results mainly from the use of fossil fuel in power generation and other industries. How can humans return this "devil" to underground, and keep a peaceful environment for human? Scientists from all over the world have been exploring them.展开更多
We esta blished our primary theory and method for processing and interpretating the thin in-terbed as an objective exploration.Based on the in-troduction of the maximum likelyhood function of probability statistics,st...We esta blished our primary theory and method for processing and interpretating the thin in-terbed as an objective exploration.Based on the in-troduction of the maximum likelyhood function of probability statistics,state variable model and re-currence estimation and examination theory,the“SO>ftv ware maximum likelyhood deconvolution’and“DELOP”has been developed.By using it,reflec-tivity with high resolution and high signal/noise ra-tio,minimum phase v wav elets,1 re.lative.interval ve-locities,absolute interval velocities and synthetic.展开更多
Offshore drilling has attracted more attention than ever before due to the increasing worldwide energy demand especially in China. High cost, long drilling cycles, and low rate of penetration (ROP) represent critica...Offshore drilling has attracted more attention than ever before due to the increasing worldwide energy demand especially in China. High cost, long drilling cycles, and low rate of penetration (ROP) represent critical challenges for offshore drilling operations. The hydraulic pulse generator was specifically designed, based on China offshore drilling technologies and parameters, to overcome problems encountered during offshore drilling. Both laboratory and field tests were conducted to collect the characteristics of the hydraulic pulse generator. The relationships between flow rate and pressure amplitude, pressure loss and pulse frequency were obtained, which can be used to optimize operation parameters for hydraulic pulse jet drilling. Meanwhile a bottom hole assembly (BHA) for pulse jet drilling has been designed, combining the hydraulic pulse generator with the conventional BHA, positive displacement motor, and rotary steerable system (RSS) etc. Furthermore, the hydraulic pulse jet technique has been successfully applied in more than 10 offshore wells in China. The depth of the applied wells ranged from 2,000 m to 4,100 m with drilling bit diameters of 311 mm and 216 mm. The field application results showed that hydraulic pulse jet technique was feasible for various bit types and formations, and that ROP could be significantly increased, by more than 25%.展开更多
A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media....A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media. Some techniques, such as the calculus of variations, energy analysis method, commutativity of the products of difference operators, decomposition of high-order difference operators and the theory of a priori estimates are introduced and an optimal order error estimates in l^2 norm is derived. This method has been applied successfully to the numerical simulation of enhanced oil production in actual oilfields, and the simulation results ate quite interesting and satisfactory.展开更多
A kind of second-order implicit upwind fractional step finite difference methods are presented for the numerical simulation of coupled systems for enhanced (chemical) oil production with capillary force in the porou...A kind of second-order implicit upwind fractional step finite difference methods are presented for the numerical simulation of coupled systems for enhanced (chemical) oil production with capillary force in the porous media. Some techniques, e.g., the calculus of variations, the energy analysis method, the commutativity of the products of difference operators, the decomposition of high-order difference operators, and the theory of a priori estimate, are introduced. An optimal order error estimate in the l2 norm is derived. The method is successfully used in the numerical simulation of the enhanced oil production in actual oilfields. The simulation results are satisfactory and interesting.展开更多
文摘The growing interest in functionalized nanoparticles and their implementa</span></span><span><span><span style="font-family:"">tion in oilfield applications (e.g., drilling fluids and enhanced oil recovery</span></span></span><span><span><span style="font-family:""> (EOR)) facilitate the ongoing efforts to improve their chemical functionalization performance in stabilization of water based or hydrocarbon based nanofluids. Cyclic azasilanes (CAS), substituted 1-aza-2-silacyclopentanes, possess a strained 5-member ring structure. Adjacent Si and N atoms in the ring provide opportunity for highly ef</span></span></span><span style="font-family:Verdana;"></span><span><span><span style="font-family:"">ficient covalent surface functionalization of hydroxylated nanoparticles through a catalyst-free and byproduct-free click <span>reaction. In this work, hydroxylated silica, alumina, diamond, and carbon</span> coated iron core-shell nanoparticles have been studied for monolayer CAS <span>functionalization. Two cyclic azasilanes with different R groups at N atom</span>, such as methyl (CAS-1) and aminoethyl (CAS-2), have been utilized to func<span>tionalize nanoparticles. All reactions were found to readily proceed under</span> mild conditions (room temperature, ambient pressure) during 1 - 2 hours of sonication. CAS functionalized adducts of hydroxylated nanoparticles have been isolated and</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">their microstructure, composition, solubility and thermal stability have been characterized. As a result, it has been demonstrated, for the first time, that covalent surface modification with cyclic azasilanes can be extended beyond the previously known porous silicon structures to hydroxylated silica, alumina and carbon nanoparticles. The developed methodology was also shown to provide access to the nanoparticles with the hydrophilic or hydrophobic surface functional groups needed to enable oilfield applications (e.g., EOR, tracers, drilling fluids) that require stable water based or hydrocarbon based colloidal systems.
文摘Global warming touches everybody's nerve, and direct reason for sharp increasing of CO2 in the atmosphere results mainly from the use of fossil fuel in power generation and other industries. How can humans return this "devil" to underground, and keep a peaceful environment for human? Scientists from all over the world have been exploring them.
文摘We esta blished our primary theory and method for processing and interpretating the thin in-terbed as an objective exploration.Based on the in-troduction of the maximum likelyhood function of probability statistics,state variable model and re-currence estimation and examination theory,the“SO>ftv ware maximum likelyhood deconvolution’and“DELOP”has been developed.By using it,reflec-tivity with high resolution and high signal/noise ra-tio,minimum phase v wav elets,1 re.lative.interval ve-locities,absolute interval velocities and synthetic.
基金financial support from the Program for New Century Excellent Talents in University (No. NCET-12-0971)
文摘Offshore drilling has attracted more attention than ever before due to the increasing worldwide energy demand especially in China. High cost, long drilling cycles, and low rate of penetration (ROP) represent critical challenges for offshore drilling operations. The hydraulic pulse generator was specifically designed, based on China offshore drilling technologies and parameters, to overcome problems encountered during offshore drilling. Both laboratory and field tests were conducted to collect the characteristics of the hydraulic pulse generator. The relationships between flow rate and pressure amplitude, pressure loss and pulse frequency were obtained, which can be used to optimize operation parameters for hydraulic pulse jet drilling. Meanwhile a bottom hole assembly (BHA) for pulse jet drilling has been designed, combining the hydraulic pulse generator with the conventional BHA, positive displacement motor, and rotary steerable system (RSS) etc. Furthermore, the hydraulic pulse jet technique has been successfully applied in more than 10 offshore wells in China. The depth of the applied wells ranged from 2,000 m to 4,100 m with drilling bit diameters of 311 mm and 216 mm. The field application results showed that hydraulic pulse jet technique was feasible for various bit types and formations, and that ROP could be significantly increased, by more than 25%.
基金supported by the Major State Basic Research Development Program of China(G19990328)National Tackling Key Program(2011ZX05011-004+6 种基金2011ZX0505220050200069)National Natural Science Foundation of China(11101244112712311077112410372052)Doctorate Foundation of the Ministry of Education of China(20030422047)
文摘A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media. Some techniques, such as the calculus of variations, energy analysis method, commutativity of the products of difference operators, decomposition of high-order difference operators and the theory of a priori estimates are introduced and an optimal order error estimates in l^2 norm is derived. This method has been applied successfully to the numerical simulation of enhanced oil production in actual oilfields, and the simulation results ate quite interesting and satisfactory.
基金Project supported by the Major State Basic Research Development Program of China(No.G19990328)the National Natural Science Foundation of China(Nos.10771124,10372052,and 11101244)+2 种基金the National Tackling Key Problems Program of China(Nos.2011ZX05011-004,2011ZX05052,and 2005020069)the Doctorate Foundation of the Ministry of Education of China(No.20030422047)the Natural Science Foundation of Shandong Province of China(No.ZR2011AM015)
文摘A kind of second-order implicit upwind fractional step finite difference methods are presented for the numerical simulation of coupled systems for enhanced (chemical) oil production with capillary force in the porous media. Some techniques, e.g., the calculus of variations, the energy analysis method, the commutativity of the products of difference operators, the decomposition of high-order difference operators, and the theory of a priori estimate, are introduced. An optimal order error estimate in the l2 norm is derived. The method is successfully used in the numerical simulation of the enhanced oil production in actual oilfields. The simulation results are satisfactory and interesting.