Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides dista...Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides distasonis has a positive regulatory effect on lipid metabolism and bile acids(BAs)profile.Oligomeric procyanidins have been confirmed to be conducive to the prevention and treatment of AS,whose antiatherosclerotic effect may be associated with the promotion of gut probiotics.However,it remains unclear whether and how oligomeric procyanidins and P.distasonis combined(PPC)treatment can effectively alleviate high-fat diet(HFD)-induced AS.In this study,PPC treatment was found to significantly decrease atherosclerotic lesion,as well as alleviate the lipid metabolism disorder,inflammation and oxidative stress injury in ApoE^(-/-)mice.Surprisingly,targeted metabolomics demonstrated that PPC intervention altered the BA profile in mice by regulating the ratio of secondary BAs to primary BAs,and increased fecal BAs excretion.Further,quantitative polymerase chain reaction(qPCR)analysis showed that PPC intervention facilitated reverse cholesterol transport by upregulating Srb1 expression;In addition,PPC intervention promoted BA synthesis from cholesterol in liver by upregulating Cyp7a1 expression via suppression of the farnesoid X receptor(FXR)pathway,thus exhibiting a significant serum cholesterol-lowering effect.In summary,PPC attenuated HFD-induced AS in ApoE^(-/-)mice,which provides new insights into the design of novel and efficient anti-atherosclerotic strategies to prevent AS based on probiotics and prebiotics.展开更多
Objective The aim of the present study was to clarify the mechanism underlying glioma cell death upon oligomeric procyanidins (F2) exposure. Methods The cytotoxicity of F2 on U87 (human malignant glioblastoma cell lin...Objective The aim of the present study was to clarify the mechanism underlying glioma cell death upon oligomeric procyanidins (F2) exposure. Methods The cytotoxicity of F2 on U87 (human malignant glioblastoma cell line) and C6 (rat glioma cell line) cancer cells was evaluated, and changes of mitochondrial membrane potential (MMP) and production of reactive oxygen species (ROS) in drug-treated cells were monitored. Moreover, morphological changes associated with F2-induced cells death were examined. Results F2 induced a concentration-dependent increase in ROS production and decrease in MMP. Furthermore, pre-incubation with N-acetylcysteine (NAC) and rotenone (Rt), resulted in partial inhibition of F2-induced ROS generation and marked attenuation of cell death and the cytoplasmic vacuolization induced by F2. In addition, pretreatment with Rt markedly attenuated the MMP loss in F2-treated cells. However, pretreatment with NAC only markedly attenuated the MMP loss in F2-treated C6 cells. Conclusion The increase in ROS level is at least one of mechanisms associated with F2-induced glioma cell death as well as the cytoplasmic vacuolization formation that contribute to the cytotoxicity of F2 in glioma cells.展开更多
基金supported by the National Natural Science Foundation of China(32272331)。
文摘Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides distasonis has a positive regulatory effect on lipid metabolism and bile acids(BAs)profile.Oligomeric procyanidins have been confirmed to be conducive to the prevention and treatment of AS,whose antiatherosclerotic effect may be associated with the promotion of gut probiotics.However,it remains unclear whether and how oligomeric procyanidins and P.distasonis combined(PPC)treatment can effectively alleviate high-fat diet(HFD)-induced AS.In this study,PPC treatment was found to significantly decrease atherosclerotic lesion,as well as alleviate the lipid metabolism disorder,inflammation and oxidative stress injury in ApoE^(-/-)mice.Surprisingly,targeted metabolomics demonstrated that PPC intervention altered the BA profile in mice by regulating the ratio of secondary BAs to primary BAs,and increased fecal BAs excretion.Further,quantitative polymerase chain reaction(qPCR)analysis showed that PPC intervention facilitated reverse cholesterol transport by upregulating Srb1 expression;In addition,PPC intervention promoted BA synthesis from cholesterol in liver by upregulating Cyp7a1 expression via suppression of the farnesoid X receptor(FXR)pathway,thus exhibiting a significant serum cholesterol-lowering effect.In summary,PPC attenuated HFD-induced AS in ApoE^(-/-)mice,which provides new insights into the design of novel and efficient anti-atherosclerotic strategies to prevent AS based on probiotics and prebiotics.
基金supported by the Project of Key Laboratory for New Drug Screening of Liaoning Provinceby National Key Scientific Project for New Drug Discovery and Development,P. R.China (2009ZX09301-012)
文摘Objective The aim of the present study was to clarify the mechanism underlying glioma cell death upon oligomeric procyanidins (F2) exposure. Methods The cytotoxicity of F2 on U87 (human malignant glioblastoma cell line) and C6 (rat glioma cell line) cancer cells was evaluated, and changes of mitochondrial membrane potential (MMP) and production of reactive oxygen species (ROS) in drug-treated cells were monitored. Moreover, morphological changes associated with F2-induced cells death were examined. Results F2 induced a concentration-dependent increase in ROS production and decrease in MMP. Furthermore, pre-incubation with N-acetylcysteine (NAC) and rotenone (Rt), resulted in partial inhibition of F2-induced ROS generation and marked attenuation of cell death and the cytoplasmic vacuolization induced by F2. In addition, pretreatment with Rt markedly attenuated the MMP loss in F2-treated cells. However, pretreatment with NAC only markedly attenuated the MMP loss in F2-treated C6 cells. Conclusion The increase in ROS level is at least one of mechanisms associated with F2-induced glioma cell death as well as the cytoplasmic vacuolization formation that contribute to the cytotoxicity of F2 in glioma cells.