期刊文献+
共找到163篇文章
< 1 2 9 >
每页显示 20 50 100
Synthesis of chitosan oligosaccharide selenium and its antitumor activity
1
作者 Yu-Mei Chen Yan Yu Chen +6 位作者 Yin-Yin Li Yue Bai Yang Dong Bing-Qiang Zhang Meng-Meng Chen Xi-Feng Zhang Jing Liu 《Traditional Medicine Research》 2024年第10期10-20,共11页
Background:Polysaccharides have various biological activities;the complexation of polysaccharides with trace element ions can produce synergistic effects,improving the original biological activities of sugars and trac... Background:Polysaccharides have various biological activities;the complexation of polysaccharides with trace element ions can produce synergistic effects,improving the original biological activities of sugars and trace elements.Methods:The preparation process of chitosan oligosaccharide selenium(COSSe)was optimized by the response surface method,followed by a detailed analysis of the resultant compound’s characteristics.The anti-cancer activity of COSSe was studied using the human ovarian cancer cell line SKOV3 as a cell model.Results:The prepared COSSe response surface was well predicted,indicating successful chitosan oligosaccharide binding with selenium.Response surface method analyses identified the optimal synthesis conditions for COSSe:the reaction time of 5.08 h,the reaction temperature of 71.8°C,and mass ratio(Na2SeO3:chitosan oligosaccharide)of 1.02.Under the optimal conditions,the final product,the selenium content,reached 1.302%.The results of cell experiments showed that COSSe significantly inhibited SKOV3 proliferation in a concentration-dependent manner.RNA-seq results showed that chitosan oligosaccharide and COSSe significantly modulated the expression of genes’DNA metabolic processes and cell cycle in SKOV3 cells.Gene enrichment analysis showed the inhibition of the cell cycle,and the results of flow cytometry showed that SKOV3 cells increased in the S phase and decreased in the G2/M phase,with a noted suppression in the protein expression of cyclin-dependent kinase 2(CDK2)and cyclin A1(CCNA1).Conclusion:COSSe has a stronger effect than chitosan oligosaccharide,leading to the arrest of the cell cycle in the S phase.Thus,COSSe may be an effective candidate for the treatment of ovarian cancer. 展开更多
关键词 chitosan oligosaccharide chitosan oligosaccharide selenium ovarian cancer SKOV3 RNA-SEQ
下载PDF
Alginate oligosaccharide-mediated butyrate-HIF-1α axis improves skin aging in mice
2
作者 Ting Gao Yixuan Li +1 位作者 Xiaoyu Wang Fazheng Ren 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第5期678-692,共15页
The“gut-skin”axis has been proved and is considered as a novel therapy for the prevention of skin aging.The antioxidant efficacy of oligomannonic acid(MAOS)makes it an intriguing target for use to improve skin aging... The“gut-skin”axis has been proved and is considered as a novel therapy for the prevention of skin aging.The antioxidant efficacy of oligomannonic acid(MAOS)makes it an intriguing target for use to improve skin aging.The present study further explored whereby MAOS-mediated gut-skin axis balance prevented skin aging in mice.The data indicated the skin aging phenotypes,oxidative stress,skin mitochondrial dysfunction,and intestinal dysbiosis(especially the butyrate and HIF-1a levels decreased)in aging mice.Similarly,fecal microbiota transplantation(FMT)from aging mice rebuild the aging-like phenotypes.Further,we demonstrated MAOS-mediated colonic butyrate-HIF-1a axis homeostasis promoted the entry of butyrate into the skin,upregulated mitophagy level and ultimately improving skin aging via HDAC3/PHD/HIF-1a/mitophagy loop in skin of mice.Overall,our study offered a better insights of the effectiveness of alginate oligosaccharides(AOS),promised to become a personalized targeted therapeutic agents,on gut-skin axis disorder inducing skin aging. 展开更多
关键词 Alginate oligosaccharide Skin aging BUTYRATE HIF-1A MITOPHAGY
下载PDF
In situ visualization of the cellular uptake and sub-cellular distribution of mussel oligosaccharides
3
作者 Zhenjie Yu Huarong Shao +7 位作者 Xintian Shao Linyan Yu Yanan Gao Youxiao Ren Fei Liu Caicai Meng Peixue Ling Qixin Chen 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第6期840-850,共11页
Unlike chemosynthetic drugs designed for specific molecular and disease targets,active small-molecule natural products typically have a wide range of bioactivities and multiple targets,necessitating extensive screenin... Unlike chemosynthetic drugs designed for specific molecular and disease targets,active small-molecule natural products typically have a wide range of bioactivities and multiple targets,necessitating extensive screening and development.To address this issue,we propose a strategy for the direct in situ microdynamic examination of potential drug candidates to rapidly identify their effects and mechanisms of action.As a proof-of-concept,we investigated the behavior of mussel oligosaccharide(MOS-1)by tracking the subcellular dynamics of fluorescently labeled MOS-1 in cultured cells.We recorded the entire dynamic process of the localization of fluorescein isothiocyanate(FITC)-MOS-1 to the lysosomes and visualized the distribution of the drug within the cell.Remarkably,lysosomes containing FITC-MOS-1 actively recruited lipid droplets,leading to fusion events and increased cellular lipid consumption.These drug behaviors confirmed MOS-1 is a candidate for the treatment of lipid-related diseases.Furthermore,in a high-fat HepG2 cell model and in high-fat diet-fed apolipoprotein E(ApoE)^(-/-)mice,MOS-1 significantly promoted triglyceride degradation,reduced lipid droplet accumulation,lowered serum triglyceride levels,and mitigated liver damage and steatosis.Overall,our work supports the prioritization of in situ visual monitoring of drug location and distribution in subcellular compartments during the drug development phase,as this methodology contributes to the rapid identification of drug indications.Collectively,this methodology is significant for the screening and development of selective small-molecule drugs,and is expected to expedite the identification of candidate molecules with medicinal effects. 展开更多
关键词 Cellular imaging Fluorescence labeling Mussel oligosaccharide Lipid metabolism
下载PDF
Structural elucidation of mulberry leaf oligosaccharide and its selective promotion of gut microbiota to alleviate type 2 diabetes mellitus
4
作者 Tenggen Hu Yuanshan Yu +6 位作者 Jijun Wu Yujuan Xu Gengsheng Xiao Kejing An Erna Li Sentai Liao Yuxiao Zou 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2161-2173,共13页
Two oligosaccharide fractions(MLO 2-1 and 2-2)were purified from enzymatic hydrolysate of mulberry leaf polysaccharide.The results of simulated digestion showed that MLO 2-2 was a digestible oligosaccharide,which coul... Two oligosaccharide fractions(MLO 2-1 and 2-2)were purified from enzymatic hydrolysate of mulberry leaf polysaccharide.The results of simulated digestion showed that MLO 2-2 was a digestible oligosaccharide,which could be degraded by human digestive juice;while MLO 2-1 possessed the non-digestible property in the upper gastrointestinal tract and performed the function by regulating the gut microbiota.Hence,MLO 2-1 was selected for the further analysis.The structure of MLO 2-1 was elucidated as follow:α-T-Glcp-(1→3)-β-Glcp-(1→5)-α-Araf-(1→5)-α-Araf-1→5)-α-Araf-(1→3)-α-(2-OAc)-Glcp-1.The in vitro fecal fermentation results showed that MLO 2-1 could modulate the composition of gut microbiota.Meanwhile,MLO 2-1 was effectively metabolized by fecal bacteria to produce lactate and short chain fatty acids,especially acetate and butyrate.The specific metabolic pathways of MLO 2-1 by gut microbiota were further illuminated.Gut microbiota analysis revealed that MLO 2-1 selectively promoted the growth of Ligilactobacillus murinus,a commensal bacterium presented a reduced level in T2DM mice.Animal experiments indicated that MLO 2-1 and L.murinus exhibited hypoglycemic activities.These results demonstrated that MLO 2-1 might alleviate T2DM by selectively accelerating the proliferation of L.murinus. 展开更多
关键词 Mulberry leaf oligosaccharide Characterization Gut microbiota Lactobacillus murinus Hypoglycemic activity
下载PDF
Physiological and Transcriptome Analysis Illuminates the Molecular Mechanisms of the Drought Resistance Improved by Alginate Oligosaccharides in Triticum aestivum L.
5
作者 Yunhong Zhang Yonghui Yang Jiawei Mao 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期185-212,共28页
Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with ... Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with AOS were analyzed under drought stress simulated with polyethylene glycol-6000.The results showed that AOS promoted the growth of wheat seedlings and reduced oxidative damage by improving peroxidase and superoxide dismutase activities under drought stress.A total of 10,064 and 15,208 differentially expressed unigenes(DEGs)obtained from the AOS treatment and control samples at 24 and 72 h after dehydration,respectively,were mainly enriched in the biosynthesis of secondary metabolites(phenylpropanoid biosynthesis,flavonoid biosynthesis),carbohydrate metabolism(starch and sucrose metabolism,carbon fixation in photosynthetic organisms),lipid metabolism(fatty acid elongation,biosynthesis of unsaturated fatty acids,alpha-linolenic acid metabolism,cutin,suberine and wax biosynthesis),and signaling transduction pathways.The up-regulated genes were related to,for example,chlorophyll a-b binding protein,amylosynthease,phosphotransferase,peroxidase,phenylalanine ammonia lyase,flavone synthase,glutathione synthetase.Signaling molecules(including MAPK,plant hormones,H_(2)O_(2) and calcium)and transcription factors(mainly including NAC,MYB,MYB-related,WRKY,bZIP family members)were involved in the AOS-induced wheat drought resistance.The results obtained in this study help underpin the mechanisms of wheat drought resistance improved by AOS,and provides a theoretical basis for the application of AOS as an environmentally sustainable biological method to improve drought resistance in agriculture. 展开更多
关键词 Alginate oligosaccharides Triticum aestivum L. drought resistance TRANSCRIPTOMIC physiological analysis
下载PDF
Therapeutic potential and mechanism of functional oligosaccharides in inflammatory bowel disease: a review 被引量:4
6
作者 Xiaochun Yang Deyong Zeng +4 位作者 Chongyang Li Wenchen Yu Guilin Xie Yingchun Zhang Weihong Lu 《Food Science and Human Wellness》 SCIE CSCD 2023年第6期2135-2150,共16页
Inflammatory bowel disease(IBD)is characterized by recurrent attacks and long courses,and the number of patients has expanded rapidly year by year.Additionally,current conventional strategies exist serious adverse eff... Inflammatory bowel disease(IBD)is characterized by recurrent attacks and long courses,and the number of patients has expanded rapidly year by year.Additionally,current conventional strategies exist serious adverse effects.In this case,it is an urgent issue to find out an effective and safe treatment.Functional oligosaccharides possess safe and excellent physiological activities,and have attracted enormous attention due to their great therapeutic potential for IBD.This review emphasizes the attenuating effects of distinct functional oligosaccharides on IBD and their structure,and summarizes the main mechanisms from the aspects of regulating intestinal fl ora structure,repairing intestinal barrier,modulating immune function and mediating related signaling pathways in order to reveal the relationship between functional oligosaccharides,immune regulation,intestinal epithelial cells,gut fl ora and IBD treatment.Oligosaccharides possess excellent protective effects on IBD,and can be considered as safe and functional ingredients in the health food and pharmaceutical industry. 展开更多
关键词 oligosaccharideS COLITIS PATHOGENESIS Signaling pathway Action mechanism
下载PDF
Enzymatically prepared alginate oligosaccharides improve broiler chicken growth performance by modulating the gut microbiota and growth hormone signals 被引量:3
7
作者 A La Teng Zhu La Yuqing Feng +6 位作者 Die Hu Yimei Feng Xiaolu Jin Dan Liu Yuming Guo Gong Cheng Yongfei Hu 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第5期2107-2127,共21页
Background Alginate oligosaccharide(AOS)holds great potential as a novel feed supplement in farm animals.However,the effects of AOS on chicken health and the underlying mechanisms are not fully understood.This study a... Background Alginate oligosaccharide(AOS)holds great potential as a novel feed supplement in farm animals.However,the effects of AOS on chicken health and the underlying mechanisms are not fully understood.This study aimed to optimize the enzymatic preparation of AOS by using bacterial alginate lyases expressed in yeast,investigate the effects of the prepared AOS on the growth performance and gut health of broiler chickens,and reveal the underlying mechanisms.Results Five alginate lyases from bacteria were cloned into Pichia pastoris GS115 and the alginate lyase PDE9 was expressed at relatively high yield,activity and stability in P.pastoris.Animal trials were carried out using 3201-day-old male Arbor Acres broilers(four groups;8 replicates/group×10 chicks/replicate)receiving either a basal diet or the same diet supplemented with 100,200 and 400 mg/kg PDE9-prepared AOS for 42 d.The results showed that dietary supplementation of 200 mg/kg AOS displayed the highest activity in promoting the birds’ADG and ADFI(P<0.05).AOS ameliorated the intestinal morphology,absorption function and barrier function,as indicated by the enhanced(P<0.05)intestinal villus height,maltase activity,and the expression of PEPT,SGLT1,ZNT1,and occludin.AOS also increased serum insulin-like growth factor-1,ghrelin(P<0.05),and growth hormone(P<0.1).Moreover,the concentrations of acetate,isobutyrate,isovalerate,valerate,and total SCFAs in cecum of birds fed AOS were significantly higher than the control birds(P<0.05).Metagenomic analysis indicated that AOS modulated the chicken gut microbiota structure,function,and microbial interactions and promoted the growth of SCFAs-producing bacteria,for example,Dorea sp.002160985;SCFAs,especially acetate,were found positively correlated with the chicken growth performance and growth-related hormone signals(P<0.05).We further verified that AOS can be utilized by Dorea sp.to grow and to produce acetate in vitro.Conclusions We demonstrated that the enzymatically produced AOS effectively promoted broiler chicken growth performance by modulating the chicken gut microbiota structure and function.For the first time,we established the connections among AOS,chicken gut microbiota/SCFAs,growth hormone signals and chicken growth performance. 展开更多
关键词 ACETATE Alginate lyases Alginate oligosaccharides Dorea sp. Gut microbiota
下载PDF
Mannan oligosaccharides alleviate oxidative injury in the head kidney and spleen in grass carp(Ctenopharyngodon idella)via the Nrf2 signaling pathway after Aeromonas hydrophila infection 被引量:1
8
作者 Zhiyuan Lu Lin Feng +8 位作者 Weidan Jiang Pei Wu Yang Liu Jun Jiang Shengyao Kuang Ling Tang Shuwei Li Chengbo Zhong Xiaoqiu Zhou 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第4期1744-1758,共15页
Background Mannan oligosaccharides(MOS)are recommended as aquaculture additives owing to their excellent antioxidant properties.In the present study,we examined the effects of dietary MOS on the head kidney and spleen... Background Mannan oligosaccharides(MOS)are recommended as aquaculture additives owing to their excellent antioxidant properties.In the present study,we examined the effects of dietary MOS on the head kidney and spleen of grass carp(Ctenopharyngodon idella)with Aeromonas hydrophila infection.Methods A total of 540 grass carp were used for the study.They were administered six gradient dosages of the MOS diet(0,200,400,600,800,and 1,000 mg/kg)for 60 d.Subsequently,we performed a 14-day Aeromonas hydrophila challenge experiment.The antioxidant capacity of the head kidney and spleen were examined using spectrophotometry,DNA fragmentation,qRT-PCR,and Western blotting.Results After infection with Aeromonas hydrophila,400-600 mg/kg MOS supplementation decreased the levels of reactive oxygen species,protein carbonyl,and malonaldehyde and increased the levels of anti-superoxide anion,antihydroxyl radical,and glutathione in the head kidney and spleen of grass carp.The activities of copper-zinc superoxide dismutase,manganese superoxide dismutase,catalase,glutathione S-transferase,glutathione reductase,and glutathione peroxidase were also enhanced by supplementation with 400-600 mg/kg MOS.Furthermore,the expression of most antioxidant enzymes and their corresponding genes increased significantly with supplementation of 200-800 mg/kg MOS.mRNA and protein levels of nuclear factor erythroid 2-related factor 2 also increased following supplementation with 400-600 mg/kg MOS.In addition,supplementation with 400-600 mg/kg MOS reduced excessive apoptosis by inhibiting the death receptor pathway and mitochondrial pathway processes.Conclusions Based on the quadratic regression analysis of the above biomarkers(reactive oxygen species,malondialdehyde,and protein carbonyl)of oxidative damage in the head kidney and spleen of on-growing grass carp,the recommended MOS supplementation is 575.21,557.58,531.86,597.35,570.16,and 553.80 mg/kg,respectively.Collectively,MOS supplementation could alleviate oxidative injury in the head kidney and spleen of grass carp infected with Aeromonas hydrophila. 展开更多
关键词 ANTIOXIDANT Apoptosis Functional organs Grass carp Mannan oligosaccharides
下载PDF
Synergistic effects of alginate oligosaccharide and cyanidin-3-O-glucoside on the amelioration of intestinal barrier function in mice
9
作者 Jie Li Yuanjie Guo +6 位作者 Liyuan Ma Yixiang Liu Chao Zou Huiying Kuang Bing Han Yingliang Xiao Yanbo Wang 《Food Science and Human Wellness》 SCIE CSCD 2023年第6期2276-2285,共10页
Emerging evidence shows that dietary oligosaccharides are important prebiotics that can improve intestinal flora,while dietary polyphenols can act directly on intestinal cells.However,information about their synergist... Emerging evidence shows that dietary oligosaccharides are important prebiotics that can improve intestinal flora,while dietary polyphenols can act directly on intestinal cells.However,information about their synergistic effects on gut health is still limited.In this study,alginate oligosaccharide(AOS)and cyanidin-3-O-glucoside(C3G)were selected as a common marine plant oligosaccharide and terrestrial plant polyphenol,respectively,to study their effects on intestinal health.The results show that,in comparison to their individual applications,the combination of AOS and C3G(mass ratio,3:1)displayed a stronger ability to up-regulate the expression of tight junction proteins,while enhanced intestinal epithelial barrier was also observed and levels of mucin-2 andβ-defensins were simultaneously increased in the intestinal mucus.Interestingly,the secretion of immunoglobulin A and immune-related cytokines were approximately doubled by the AOS+C3G mixture.In addition,the AOS+C3G mixture was found to be more conducive to the positive transformation of intestinal flora,which stimulated the growth of beneficial bacteria Akkermansia,Lachnospiraceae and Feacalibaculum while inhibiting the growth of harmful bacteria Helicobacter and Turicibacter.The data generated herein thus suggests that dietary oligosaccharides and dietary polyphenols may be more beneficial to intestinal health when applied in combination than their individual effects alone. 展开更多
关键词 Alginate oligosaccharide Cyanidin-3-O-glucoside PREBIOTICS Intestinal barrier function Gut microbiota
下载PDF
Multiplex genome editing targeting soybean with ultra-low anti-nutritive oligosaccharides
10
作者 Wenxin Lin Huaqin Kuang +6 位作者 Mengyan Bai Xiaomeng Jiang Pengfei Zhou Yinghua Li Bo Chen Huarong Li Yuefeng Guan 《The Crop Journal》 SCIE CSCD 2023年第3期825-831,共7页
Soybean is the primary source of plant protein for humans.Owing to the indigestibility of the raffinose family of oligosaccharides(RFO),raffinose and stachyose are considered anti-nutritive factors in soybean seeds.Lo... Soybean is the primary source of plant protein for humans.Owing to the indigestibility of the raffinose family of oligosaccharides(RFO),raffinose and stachyose are considered anti-nutritive factors in soybean seeds.Low-RFO soybean cultivars are generated by mutagenesis of RFO biosynthesis genes,but the carbohydrate profiles invite further modification to lower RFOs.This study employed a pooled multiplex genome editing approach to target four seed-specifically expressed genes mediating RFO biosynthesis,encoding three raffinose synthases(RS2,RS3,and RS4)and one stachyose synthase.In T1progeny,rs2/rs3 and rs4/sts homozygous double mutants and a rs2/rs3/rs4/sts quadruple mutant(rfo-4m)were characterized.The rs2/rs3 mutant showed reduced raffinose and stachyose contents,but the rs4/sts mutant showed only reduced stachyose in seeds.The RFO contents in the rfo-4m mutant were almost eliminated.Metabolomic analysis showed that the mutation of four RFO biosynthesis genes led to a shift of metabolic profile in the seeds,including the accumulation of several oligosaccharides-related metabolites.These mutants could contribute to precision breeding of soybean cultivars for soy food production. 展开更多
关键词 SOYBEAN Genome editing Raffinose family of oligosaccharides RAFFINOSE STACHYOSE Precision breeding
下载PDF
Combinatorial Enzyme Approach to Convert Wheat Insoluble Arabinoxylan to Bioactive Oligosaccharides
11
作者 Dominic W. S. Wong Sarah Batt William H. Orts 《Advances in Enzyme Research》 CAS 2023年第1期1-10,共10页
Combinatorial enzyme technology was applied for the conversion of wheat insoluble arabinoxylan to oligosaccharide structural variants. The digestive products were fractionated by Bio-Gel P4 column and screened for bio... Combinatorial enzyme technology was applied for the conversion of wheat insoluble arabinoxylan to oligosaccharide structural variants. The digestive products were fractionated by Bio-Gel P4 column and screened for bioactivity. One fraction pool was observed to exhibit antimicrobial property resulting in the suppression of cell growth of the test organism ATCC 8739 E. coli. It has a MIC value of 1.5% (w/v, 35°C, 20 hr) and could be useful as a new source of prebiotics or preservatives. The present results further confirm the science and useful application of combinatorial enzyme approach. 展开更多
关键词 Combinatorial Enzyme Approach Wheat Insoluble Arabinoxylan Bioactive oligosaccharides
下载PDF
Effects of in ovo delivered xylo-and mannan-oligosaccharides on growth performance,intestinal immunity,cecal short-chain fatty acids,and cecal microbiota of broilers 被引量:3
12
作者 Amit Kumar Singh Utsav Prakash Tiwari +1 位作者 Birendra Mishra Rajesh Jha 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2022年第4期1099-1114,共16页
Background:This study investigated a novel in ovo feeding strategy to determine the prebiotic effects of xylo-and mannan-oligosaccharides(XOS and MOS)differing in the degree of polymerization.A total of 192 fertilized... Background:This study investigated a novel in ovo feeding strategy to determine the prebiotic effects of xylo-and mannan-oligosaccharides(XOS and MOS)differing in the degree of polymerization.A total of 192 fertilized eggs were divided into 6 treatment groups:i)normal saline control(NSC),ii)xylotriose(XOS3),iii)xylotetraose(XOS4),iv)mannotriose(MOS3),v)mannotetraose(MOS4),and vi)no injection control(NIC),each containing 4 replicate trays with 8 eggs per replicate.On d 17 of incubation,3 mg of oligosaccharides(except for controls)dissolved in 0.5 mL of 0.85%normal saline were injected into the amnion of Cobb 500 broilers eggs.After hatch,the chicks were raised for 28 d under standard husbandry practices and were fed a commercial broilers diet ad libitum,and samples were collected periodically.Results:The hatchability,growth performance,and relative weights of breast,drumstick,liver,and proventriculus were not different among the treatments(P>0.05).The XOS3 injection increased the total short-chain fatty acid production at d 28 compared with both control groups(P<0.05).The villus height to crypt depth ratio was significantly higher in the XOS4 group than both controls on the hatch day(P<0.01)but were not different among any treatments on d 7 and 28(P>0.05).On the hatch day,the expression level of the CD3 gene(a T cell marker)was increased by XOS3,while the IL-10 gene(a marker of anti-inflammatory cytokine)was reduced by MOS4(P<0.05)compared with both controls.Compared with both controls,XOS3 exhibited a trend of reduction for IL-10(P=0.074).No cytokines or lymphocyte markers were affected by the treatments on d 7(P>0.05),except XOS4 increased IL-4 compared with NSC(P<0.05).The broilers in the MOS4 group had higher operational taxonomic units(OTUs)and had more differentially abundant taxa,including order Lactobacillales and family Leuconostocaceae(P<0.05)than both controls on d 28.The predictive functional profiling indicated that the linoleic acid metabolism pathway was enriched in the cecal microbiota of the XOS3 group compared with both controls(P<0.05).Conclusion:The effects of these XOS and MOS on ileal mucosa and immunity are transient,but the effects on fermentation and cecal microbiota are prolonged,and further research is warranted to determine their use as a gut health promoter in poultry. 展开更多
关键词 BROILERS Gut health Immunity in ovo Mannanoligosaccharides MICROBIOTA oligosaccharideS PREBIOTICS XYLOoligosaccharideS
下载PDF
Elicitation on Artemisinin Biosynthesis in Artemisia annua Hairy Roots by the Oligosaccharide Extract from the Endophytic Colletotrichum sp. B501 被引量:12
13
作者 王剑文 夏仲豪 谭仁祥 《Acta Botanica Sinica》 CSCD 2002年第10期1233-1238,共6页
The oligosaccharide elicitor from the mycelial wall of an endophytic Colletotrichum sp. B501 promoted the production of artemisinin in Artemisia annua L. hairy root culture. When hairy roots of 22-day-old cultures (la... The oligosaccharide elicitor from the mycelial wall of an endophytic Colletotrichum sp. B501 promoted the production of artemisinin in Artemisia annua L. hairy root culture. When hairy roots of 22-day-old cultures (later growth phase) were exposed to the elicitor (20 mg/L) for 4 d, the maximum content of artemisinin reached 1.15 mg/g, a 64.29% increment over the control. The electron X-ray microanalysis disclosed the rapid accumulation of Ca 2+ in the elicited cortical cells of hairy root. The electronic microscope observation revealed the high electron density area in vacuole of elicited cells. During the first day of elicitation the peroxidase activity of hairy roots was improved sharply. Some cellular morphological changes including cell shrinkage, condensation of cytoplasm and nuclear fragmentation, coincident with the appearance of DNA ladders, were observed after the third day of elicitation. It was suggested that the oligosaccharide elicitor triggered the programmed cell death, which may provide the substance or chemical signal for artemisinin biosynthesis. 展开更多
关键词 Artemisia annua Colletotrichum sp. B501 a fungal endophyte oligosaccharide elicitor ARTEMISININ eliciting response
下载PDF
Cell Apoptosis Induced by Oligosaccharide in Suspension Cultures of Taxus chinensis 被引量:2
14
作者 李春 元英进 +3 位作者 马忠海 胡宗定 孙安慈 胡昌序 《Acta Botanica Sinica》 CSCD 2002年第5期598-602,共5页
Taxol production of Taxus chinensis (Pilger) Rehd. var. mairei (Lemee et Lévl.) Cheng et L. K. Fu induced by oligosaccharide from Fusarium oxysporum f. vasinfectum (Atkinson) Snyder et Hansen was ... Taxol production of Taxus chinensis (Pilger) Rehd. var. mairei (Lemee et Lévl.) Cheng et L. K. Fu induced by oligosaccharide from Fusarium oxysporum f. vasinfectum (Atkinson) Snyder et Hansen was studied in suspension cultures, and it was found that oligosaccharide triggered cell apoptosis. Under transmission electron microscope the following morphological changes were observed: cell shrinkage, condensation of cytoplasm, nuclear fragmentation, and the increase of high electron density bodies in vacuole in great quantity. In oligosaccharide_treated cells, agarose gel electrophoresis revealed that DNA was digested into oligonucleosomal fragments that were times of 200 bp appearing as DNA ladders. Control cells were in normal physiological state, they were intact, abundant in organelle and with integral nucleus DNA, and the rate of taxol biosynthesis in these cells was very low. After the oligosaccharide to the culture system, the defense system of cells was elicited and the secondary metabolism was strengthened, i.e. phenolics were accumulated in the medium, the activity of polyphenol oxidase (PPO) was increased quickly and secondary wall of cells was thickened. The activity of L _phenylalanine ammonia lyase (PAL), the critical enzyme of the phenylpropanoid pathway, was increased promptly 1 h after elicitation. The rate of taxol production was improved sharply and the maximal taxol concentration at 72 h was six times that of control. Appearance of cell apoptosis was accompanied with the highest concentration of taxol in suspension cultures. 展开更多
关键词 fungal oligosaccharide Taxus chinensis APOPTOSIS secondary metabolism TAXOL
下载PDF
Induced Disease Resistance of Antarctic Bacteria B-3 Extracellular Oligosaccharide on Cucumber 被引量:2
15
作者 李江 谭姣姣 何培青 《Plant Diseases and Pests》 CAS 2010年第5期26-29,33,共5页
[Objective] The induced disease resistance of Antarctic bacteria B-3 extracellular oligosaccharide on cucumber was studied.[Method] Taking the cucumber seedlings as experimental materials,the molecular weight,monosacc... [Objective] The induced disease resistance of Antarctic bacteria B-3 extracellular oligosaccharide on cucumber was studied.[Method] Taking the cucumber seedlings as experimental materials,the molecular weight,monosaccharide composition of Antarctic bacteria B-3 extracellular oligosaccharide were studied,its induced effect on the defense enzyme in cucumber leaves and the induced resistance against powdery mildew were also investigated.[Result] Through gel permeation chromatography,the molecular weight of B-3 oligosaccharides was determined to be 2 112 Da;B-3 oligosaccharides was composed by two monosaccharides including of mannose and glucose.The activities of chinitase,β-1,3-glucanse,phenylanine,ammonialyse(PAL),superoxide dismutase(SOD),and peroxidase(POD)in cucumber seedlings all increased compared with control when 0.3%,0.5% and 0.8% B-3 extracellular oligosaccharide were sprayed on the seedlings of cucumber for different times,respectively,which had the similar induction effect with 0.5% chitosan;at the same time,0.5% oligosaccharides could significantly reduce the disease index of cucumber powdery mildew,the control effect reached 24.49%.[Conclusion] B-3 oligosaccharides is expected to be developed as a new type of resistance elicitor. 展开更多
关键词 B-3 oligosaccharideS Component analysis Induction Defense enzyme
下载PDF
Promotive Effects of Alginate-Derived Oligosaccharides on the Inducing Drought Resistance of Tomato 被引量:16
16
作者 LIU Ruizhi JIANG Xiaolu +4 位作者 GUAN Huashi LI Xiaoxia DU Yishuai WANG Peng MOU Haijin 《Journal of Ocean University of China》 SCIE CAS 2009年第3期303-311,共9页
In order to determine the role of alginate-derived oligosaccharides (ADO) in drought stress resistance of tomato (Ly-copersicon esculentum Miller) seedlings, the leaves were exposed to different concentrations of ADO ... In order to determine the role of alginate-derived oligosaccharides (ADO) in drought stress resistance of tomato (Ly-copersicon esculentum Miller) seedlings, the leaves were exposed to different concentrations of ADO (0.05%, 0.10%, 0.20%, 0.30% and 0.50%) after drought stress was simulated by exposing the roots to 0.6 molL-1 PEG-6000 solution for 6 h. Changes in biomass, electrolyte leakage and malondialdehyde (MDA), free proline, total soluble sugars (TSS) and abscisic acid (ABA), the enzyme activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and phenylalanine ammonia-lyase (PAL) were measured to investigate the effects of ADO treatment. The results showed that the treatment with an ADO concentration of 0.20% exhibited the highest performance of drought stress resistance in the tomato seedlings by decreasing the electrolyte leakage and the concentration of MDA, increasing the contents of free proline, TSS and ABA, and increasing the activities of CAT, SOD, POD and PAL after treatment with ADO. It is suggested that changes in electrolyte leakage, MDA, osmotic solutes, ABA, anti-oxidative enzyme and PAL activities were responsible for the increased drought stress resistance in tomato seedlings. To our best knowledge, this is the first report of the effect of ADO treatment on enhancing the drought stress resistance of tomato seedlings. 展开更多
关键词 alginate-derived oligosaccharide drought stress tomato seedlings osmotic solutes anti-oxidative enzymes PAL
下载PDF
Alginate oligosaccharide-induced intestinal morphology, barrier function and epithelium apoptosis modifications have beneficial effects on the growth performance of weaned pigs 被引量:13
17
作者 Jin Wan Jiao Zhang +6 位作者 Daiwen Chen Bing Yu Xiangbing Mao Ping Zheng Jie Yu Junqiu Luo Jun He 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2018年第4期937-948,共12页
Background: Alginate oligosaccharide(AOS), produced from alginate by alginate lyase-mediated depolymerisation, is a potential substitute for antibiotics and possesses growth-enhancing effects. Nevertheless, the mechan... Background: Alginate oligosaccharide(AOS), produced from alginate by alginate lyase-mediated depolymerisation, is a potential substitute for antibiotics and possesses growth-enhancing effects. Nevertheless, the mechanisms by which AOS regulates porcine growth remain to be elucidated. Therefore, we investigated the AOS-mediated changes in the growth performance of weaned pigs by determining the intestinal morphology, barrier function,as well as epithelium apoptosis.Methods: Twenty-four weaned pigs were distributed into two groups(n = 12) and received either a basal diet(control group) or the same diet supplemented with 100 mg/kg AOS. On d 15, D-xylose(0.1 g/kg body weight)was orally administrated to eight randomly selected pigs per treatment, and their serum and intestinal mucosa samples were collected 1 h later.Results: Our results showed that inclusion of AOS in the diet for 2 wk increased(P < 0.05) the average daily body weight gain in weaned pigs. Notably, AOS supplementation ameliorated the intestinal morphology and barrier function, as suggested by the enhanced(P < 0.05) intestinal villus height, secretory immunoglobulin A content and goblet cell counts. Compared to the control group, AOS ingestion both decreased(P < 0.05) the total apoptotic percentage and increased(P < 0.05) the proportion of S phase in the intestinal epithelial cells. Furthermore, AOS not only up-regulated(P < 0.05) the B-cell lymphoma-2(BCL2) transcriptional level but also down-regulated(P < 0.05) the B-cell lymphoma-2-associated X protein(BAX), cysteinyl aspartate-specific proteinase-3(caspase-3) and caspase-9 transcriptional levels in the small intestine.Conclusions: In summary, this study provides evidence that supplemental AOS beneficially affects the growth performance of weaned pigs, which may result from the improved intestinal morphology and barrier function,as well as the inhibited enterocyte death, through reducing apoptosis via mitochondria-dependent apoptosis. 展开更多
关键词 Alginate oligosaccharide Barrier function Cell apoptosis Intestinal morphology Weaned pigs
下载PDF
Alginate oligosaccharides preparation, biological activities and their application in livestock and poultry 被引量:12
18
作者 LIU Ming LIU Lei +2 位作者 ZHANG Hong-fu YI Bao Nadia EVERAERT 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第1期24-34,共11页
Alginate oligosaccharides(AOS), belonging to the class of functional marine oligosaccharides, are low-molecular polymers linked by β-1,4-mannuronic acid(M) and α-1,4-guluronic acid(G), which could be classically obt... Alginate oligosaccharides(AOS), belonging to the class of functional marine oligosaccharides, are low-molecular polymers linked by β-1,4-mannuronic acid(M) and α-1,4-guluronic acid(G), which could be classically obtained by enzymatic hydrolysis of alginate. With low viscosity and good water solubility, as well as anti-oxidant, immune regulation, anti-bacterial and antiinflammatory activities, AOS have been widely used in medical science and functional food, green agriculture and other fields. As new bio-feed additives, AOS have broad potential applications in animal husbandry. In this review, the sources of alginate, chemical structure and preparation methods of AOS, and their biological activities and application in livestock and poultry are summarized. We expect this review could contribute to lay a foundation of application and further research for AOS in livestock and poultry. 展开更多
关键词 alginate oligosaccharides PREPARATION ANTI-OXIDANT IMMUNE livestock and poultry
下载PDF
Alginate oligosaccharide improves resistance to postharvest decay and quality in kiwifruit(Actinidia deliciosa cv. Bruno) 被引量:9
19
作者 Ruiling Zhuo Boqiang Li Shiping Tian 《Horticultural Plant Journal》 SCIE CSCD 2022年第1期44-52,共9页
Kiwifruit is an extremely perishable fruit;postharvest disease and senescence during storage can reduce the fruit quality,resulting in economic loss.Considerable research effort has focused on identifying safe and cos... Kiwifruit is an extremely perishable fruit;postharvest disease and senescence during storage can reduce the fruit quality,resulting in economic loss.Considerable research effort has focused on identifying safe and cost-effective ways to preserve fresh kiwifruit.To this end,the present study investigated the effects of alginate oligosaccharide(AOS)soaking treatment on postharvest quality and disease in the‘Bruno’variety of kiwifruit.The involved physiological mechanisms were further explored.The results showed that AOS did not inhibit the growth of Botrytis cinerea in vitro,the causal agent of gray mold in kiwifruit,but reduced the incidence of gray mold and diameter of lesions of kiwifruit during storage.Kiwifruit treated with 50 mg·L-1 AOS showed a higher degree of firmness and lower soluble solid content than control fruit treated with distilled water.Moreover,AOS treatment inhibited the activity of polygalacturonase and pectinesterase,while enhancing the activity of polyphenoloxidase,l-phenylalanine ammonia lyase andβ-1,3-glucanase related to pathogen defense,and also improved total antioxidant capacity determined by the DPPH,FRAP,and ABTS methods in kiwifruit.These results indicate that 50 mg·L-1 AOS can confer disease resistance in kiwifruit during storage. 展开更多
关键词 Alginate oligosaccharide KIWIFRUIT Botrytis cinerea Antioxidant capacity Disease resistance
下载PDF
Gut Bacterial and Lactobacilli Communities of Weaning Piglets in Response to Mannan Oligosaccharide and Sugar Beet Pulp In vitro Fermentation 被引量:6
20
作者 HANG Su-qin ZHU Wei-yun 《Journal of Integrative Agriculture》 SCIE CSCD 2012年第1期122-133,共12页
Microbiota in the gastrointestinal tract (GIT) of piglets during weaning transition can experience a sharp change which could result in growth reduction and diarrhea of weaned piglets. Dietary manipulations can play... Microbiota in the gastrointestinal tract (GIT) of piglets during weaning transition can experience a sharp change which could result in growth reduction and diarrhea of weaned piglets. Dietary manipulations can play an important role in attenuating such changes caused by weaning stress. Therefore, ileal and colonic contents of weaned piglets were used as inocula, mannan oligosaccharide (MOS) or sugar beet pulp (SBP) was supplied as single energy sources to investigate effects of MOS or SBP on the shifts of gastro-intestinal microflora and lactobacilli populations. The universal bacteria- and lactobacilli-specific PCR/denaturing gradient gel electrophoresis (DGGE), cloning and sequencing techniques were used. DGGE profiles of the universal bacteria showed that great changes were found in the position, numbers and intensity of dominant bands after fermentation. The similarity of bacterial community between ileum and colon was increased to 85-97% by MOS or SBP treatment after fermentation from the similarity with 20% before fermentation. MOS treatment significantly increased the bacterial diversity and band number in both ileal and colonic fermentation (P〈0.05). SBP treatment significantly increased the bacterial diversity and band number in colon (P〈0.05). It implies that some species were enriched by the addition of MOS or SBP to increase the similarity and diversity of bacterial community in weaned piglets. Five specific bands appearing in MOS or SBP treatment group after fermentation were cloned and sequenced, the changes of species related to Prevotella and Ruminococcus were observed. Two bands related to uncultured bacterium with 98% similarity were detected by MOS or SBP treatment. However, there were no effects on the similarity, diversity index and lactobacilli species revealed by MOS or SBP treatment. These results imply that MOS or SBP could have beneficial effects on the weaning piglets by stablizing microbiota in the GIT microflora. 展开更多
关键词 mannan oligosaccharide (MOS) sugar beet pulp (SBP) bacterial communities LACTOBACILLI weaning piglets
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部