This article describes a new miniaturized omni-directional antenna with quasi-self-complementary structure for wireless communication applications. A novel ground structure composed of five rectangular plates is propo...This article describes a new miniaturized omni-directional antenna with quasi-self-complementary structure for wireless communication applications. A novel ground structure composed of five rectangular plates is proposed to enhance the impedance bandwidth and reduce the antenna size. The proposed antenna is comprised of two patches surrounded by the ground structure. Two metal patches of the antenna are located on two opposite sides of the dielectric substrate. The feed patch is used to excite the radiation patch. This unique design is realized by properly choosing the suitable feed patch shape, selecting similar slot shape on the radiation patch, and tuning their dimensions. The proposed antenna with an extremely small size of 6 mm × 9 mm has an operating impedance bandwidth ranging from 4.5 to 6.1 GHz for S<sub>11</sub> < -10 dB, which also covers the two IEEE 802.11a wireless local area network bands (5.15 - 5.35 GHz and 5.725 - 5.825 GHz). In addition to be very small in size, the antenna exhibits omni-directional radiation patterns in the entire operating bandwidth and low cross polarization. The distortionless time domain performance of the antenna is confirmed by investigation of the phase response and group delay. The obtained results in both frequency and time domain show that the proposed antenna is suitable for use in wireless communication systems.展开更多
This paper presents a new Omni-Directional Tilt Sensor (ODTS), which consists of the LED light, transparent cone-shaped closed container, mercury, camera, embedded systems and so on. The volume of the mercury in the c...This paper presents a new Omni-Directional Tilt Sensor (ODTS), which consists of the LED light, transparent cone-shaped closed container, mercury, camera, embedded systems and so on. The volume of the mercury in the container is equal to half of the container’s. When the detected surface is horizontal, the shape of mercury in the image captured by the camera is a black disc since the mercury is lightproof. When the detected surface tilts, the mercury flows and the mercury surface always maintains horizontally due to the gravity force of the earth. At this time, some area of the transparent cone-shaped closed container is not shaded by mercury and the border of the mercury’s shape in the captured image is a half circle and a half ellipse. Thus there is a translucent crescent-shaped area in the image. With analyzing this area by the specific algorithm based on machine vision, the tilt angle and directional angle can be obtained. The experimental results show that the ODTS proposed has some advantages, such as simple maintenance, high precision, wide range, low cost, real-time, reliability and high visualization.展开更多
This paper describes specific constraints of vision systems that are dedicated to be embedded in mobile robots. If PC-based hardware architecture is convenient in this field because of its versatility, flexibility, pe...This paper describes specific constraints of vision systems that are dedicated to be embedded in mobile robots. If PC-based hardware architecture is convenient in this field because of its versatility, flexibility, performance, and cost, current real-time operating systems are not completely adapted to long processing with varying duration, and it is often necessary to oversize the system to guarantee fail-safe functioning. Also, interactions with other robotic tasks having more priority are difficult to handle. To answer this problem, we have developed a dynamically reconfigurable vision processing system, based on the innovative features of Cleopatre real-time applicative layer concerning scheduling and fault tolerance. This framework allows to define emergency and optional tasks to ensure a minimal quality of service for the other subsystems of the robot, while allowing to adapt dynamically vision processing chain to an exceptional overlasting vision process or processor overload. Thus, it allows a better cohabitation of several subsystems in a single hardware, and to develop less expensive but safe systems, as they will be designed for the regular case and not rare exceptional ones. Finally, it brings a new way to think and develop vision systems, with pairs of complementary operators.展开更多
Multi-sensor vision system plays an important role in the 3D measurement of large objects.However,due to the widely distribution of sensors,the problem of lacking common fields of view(FOV) arises frequently,which m...Multi-sensor vision system plays an important role in the 3D measurement of large objects.However,due to the widely distribution of sensors,the problem of lacking common fields of view(FOV) arises frequently,which makes the global calibration of the vision system quite difficult.The primary existing solution relies on large-scale surveying equipments,which is ponderous and inconvenient for field calibrations.In this paper,a global calibration method of multi-sensor vision system is proposed and investigated.The proposed method utilizes pairs of skew laser lines,which are generated by a group of laser pointers,as the calibration objects.Each pair of skew laser lines provides a unique coordinate system in space which can be reconstructed in certain vision sensor's coordinates by using a planar pattern.Then the geometries of sensors are computed under rigid transformation constrains by taking coordinates of each skew lines pair as the intermediary.The method is applied on both visual cameras with synthetic data and a real two-camera vision system;results show the validity and good performance.The prime contribution of this paper is taking skew laser lines as the global calibration objects,which makes the method simple and flexible.The method need no expensive equipments and can be used in large-scale calibration.展开更多
Based on the characteristics of line structured light sensor, a speedy method for the calibration was established. With the coplanar reference target, the spacial pose between camera and optical plane can be calibrate...Based on the characteristics of line structured light sensor, a speedy method for the calibration was established. With the coplanar reference target, the spacial pose between camera and optical plane can be calibrated by using of the camera’s projective center and the light’s information in the camera’s image surface. Without striction to the movement of the coplanar reference target and assistant adjustment equipment, this calibration method can be implemented. This method has been used and decreased the cost of calibration equipment, simplified the calibration procedure, improved calibration efficiency. Using experiment, the sensor can attain relative accuracy about 0.5%, which indicates the rationality and effectivity of this method.展开更多
To assess functional outcomes of optical low vision aids(LVAs) for pediatric visual impairment due to central nervous system(CNS) tumors. A prospective case study was conducted on 15 children with history of CNS tumor...To assess functional outcomes of optical low vision aids(LVAs) for pediatric visual impairment due to central nervous system(CNS) tumors. A prospective case study was conducted on 15 children with history of CNS tumors with mean age of 10.47±1.85 y. Lighthouse distance, near visual acuity tests, cycloplegic refraction, reading speed measurement and visual field examination were done. Prescription of far and near LVAs followed by training sessions. LVPrasad-functional vision questionnaire was done to evaluate performance. Visual impairment was moderate(13.3%), severe(73.3%), profound(6.7%) and near blindness in 6.7%. Telescopes prescribed in 33.4%, video magnifier in 46.7%. Questionnaire scores were significantly improved for distant rather than near tasks(P≤0.05) after training. LVAs rehabilitation is an effective method of improving vision in pediatric visual defects secondary to CNS tumors.展开更多
This paper proposes the solution of tasks set required for autonomous robotic group behavior optimization during the mission on a distributed area in a cluttered hazardous terrain.The navigation scheme uses the benefi...This paper proposes the solution of tasks set required for autonomous robotic group behavior optimization during the mission on a distributed area in a cluttered hazardous terrain.The navigation scheme uses the benefits of the original real-time technical vision system(TVS)based on a dynamic triangulation principle.The method uses TVS output data with fuzzy logic rules processing for resolution stabilization.Based on previous researches,the dynamic communication network model is modified to implement the propagation of information with a feedback method for more stable data exchange inside the robotic group.According to the comparative analysis of approximation methods,in this paper authors are proposing to use two-steps post-processing path planning aiming to get a smooth and energy-saving trajectory.The article provides a wide range of studies and computational experiment results for different scenarios for evaluation of common cloud point influence on robotic motion planning.展开更多
The fast paced nature of robotic soccer necessitates real time sensing coupled with quick behaving and decision making. In the field with real robots, it is important to well perceive the location of ball, team robots...The fast paced nature of robotic soccer necessitates real time sensing coupled with quick behaving and decision making. In the field with real robots, it is important to well perceive the location of ball, team robots and opponent robots through the vision system in real time. In this paper the architecture of global vision system of our small size robotic team and the process of object recognition is described. According to the study on color distribution in different color space and quantitative investigation, a method which uses H (Hue) thresholds as the major thresholds to feature exact and recognize object in real time is presented.展开更多
Building fences to manage the cattle grazing can be very expensive;cost inefficient. These do not provide dynamic control over the area in which the cattle are grazing. Existing virtual fencing techniques for the cont...Building fences to manage the cattle grazing can be very expensive;cost inefficient. These do not provide dynamic control over the area in which the cattle are grazing. Existing virtual fencing techniques for the control of herds of cattle, based on polygon coordinate definition of boundaries is limited in the area of land mass coverage and dynamism. This work seeks to develop a more robust and an improved monocular vision based boundary avoidance for non-invasive stray control system for cattle, with a view to increase land mass coverage in virtual fencing techniques and dynamism. The monocular vision based depth estimation will be modeled using concept of global Fourier Transform (FT) and local Wavelet Transform (WT) of image structure of scenes (boundaries). The magnitude of the global Fourier Transform gives the dominant orientations and textual patterns of the image;while the local Wavelet Transform gives the dominant spectral features of the image and their spatial distribution. Each scene picture or image is defined by features v, which contain the set of global (FT) and local (WT) statistics of the image. Scenes or boundaries distances are given by estimating the depth D by means of the image features v. Sound cues of intensity equivalent to the magnitude of the depth D are applied to the animal ears as stimuli. This brings about the desired control as animals tend to move away from uncomfortable sounds.展开更多
EyeScreen is a vision-based interaction system which provides a natural gesture interface for humancomputer interaction (HCI) by tracking human fingers and recognizing gestures. Multi-view video images are captured ...EyeScreen is a vision-based interaction system which provides a natural gesture interface for humancomputer interaction (HCI) by tracking human fingers and recognizing gestures. Multi-view video images are captured by two cameras facing a computer screen, which can be used to detect clicking actions of a fingertip and improve the recognition rate. The system enables users to directly interact with rendered objects on the screen. Robustness of the system has been verified by extensive experiments with different user scenarios. EyeScreen can be used in many applications such as intelligent interaction and digital entertainment.展开更多
Cold Workability limits of Brass were studied as a function of friction, aspect ratio and specimen geometry. Five standard shapes of the axis symmetric specimens of cylindrical with aspect ratios 1.0 and 1.5, ring, ta...Cold Workability limits of Brass were studied as a function of friction, aspect ratio and specimen geometry. Five standard shapes of the axis symmetric specimens of cylindrical with aspect ratios 1.0 and 1.5, ring, tapered and flanged were selected for the present investigation. Specimens were deformed in compression between two flat platens to predict the metal flow at room temperature. The longitudinal and oblique cracks were obtained as the two major modes of surface fractures. Cylindrical and ring specimen shows the oblique surface crack while the tapered and flanged shows the longitudinal crack. Machine Vision system using PC based video recording with a CCD camera was used to analyze the deformation of 4 X 4 mm square grid marked at mid plane of the specimen. The strain paths obtained from different specimens exhibited nonlinearity from the beginning to the end of the strain path. The circumferential stress component Os increasingly becomes tensile with continued deformation. On the other hand the axial stress Oz , increased in the very initial stages of deformation but started becoming less compressive immediately as barreling develops. The nature of hydrostatic stress on the rim of the flanged specimen was found to be tensile. Finite element software ANSYS has been applied for the analysis of the upset forming process. When the stress values obtained from finite element analysis were compared to the measurements of grids using Machine Vision system it was found that they were in close proximity.展开更多
Pixel-parallel PE and SIMD architectures are widely used in high-speed image processing to enhance computing power. With fully exploiting the data level parallelism of low- and middle-level image processing, SIMD arch...Pixel-parallel PE and SIMD architectures are widely used in high-speed image processing to enhance computing power. With fully exploiting the data level parallelism of low- and middle-level image processing, SIMD architecture is able to finish great amount of computation with much less instruction cycle thus satisfy the high-speed system requirement. The main computation parts in those SIMD image processing hardware is known as PE (processing element) and it is responsible for transferring, storing and processing the image data. This paper describes a high-speed vision system with superscalar PE to enhance system performance and its dedicated parallel computing language specifically devel-oped for this vision system. The vision system can achieve motion detection at more than 2000fps and face detection at more than 100 fps which overwhelms some general serial CPUs in the same applications.展开更多
Irrigation was developed in ancient China.The management of water resources has existed since ancient times when the embryonic form of water right system was established.From perspectives of environmental law,the wate...Irrigation was developed in ancient China.The management of water resources has existed since ancient times when the embryonic form of water right system was established.From perspectives of environmental law,the water rights system in ancient China,especially the water rights system after Ming Dynasty,gave no explicit concept to water rights,but the participatory management of water users was included in implementation.Such management had the same connotation with the modern concept of water rights and thereby it has an instructional significance to perfect the water rights system of in modern China.展开更多
Lane detection is a fundamental aspect of most current advanced driver assistance systems(ADASs). A large number of existing results focus on the study of vision-based lane detection methods due to the extensive knowl...Lane detection is a fundamental aspect of most current advanced driver assistance systems(ADASs). A large number of existing results focus on the study of vision-based lane detection methods due to the extensive knowledge background and the low-cost of camera devices. In this paper, previous visionbased lane detection studies are reviewed in terms of three aspects, which are lane detection algorithms, integration, and evaluation methods. Next, considering the inevitable limitations that exist in the camera-based lane detection system, the system integration methodologies for constructing more robust detection systems are reviewed and analyzed. The integration methods are further divided into three levels, namely, algorithm, system,and sensor. Algorithm level combines different lane detection algorithms while system level integrates other object detection systems to comprehensively detect lane positions. Sensor level uses multi-modal sensors to build a robust lane recognition system. In view of the complexity of evaluating the detection system, and the lack of common evaluation procedure and uniform metrics in past studies, the existing evaluation methods and metrics are analyzed and classified to propose a better evaluation of the lane detection system. Next, a comparison of representative studies is performed. Finally, a discussion on the limitations of current lane detection systems and the future developing trends toward an Artificial Society, Computational experiment-based parallel lane detection framework is proposed.展开更多
A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation ...A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.展开更多
For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ...For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ultra-close spacecraft formation flying. Onboard GPS and VISNAV system are adopted and a federal Kalman filter architecture is used for the total navigation system design. Simulation results indicate that the integrated system can provide a total improvement of relative navigation and attitude estimation performance in accuracy and fault-tolerance.展开更多
Using the new technologies such as information technology, communication technology and electronic control technology, vehicle collision warning system(CWS) can acquire road condition, adjacent vehicle march conditi...Using the new technologies such as information technology, communication technology and electronic control technology, vehicle collision warning system(CWS) can acquire road condition, adjacent vehicle march condition as well as its dynamics performance continuously, then it can forecast the oncoming potential collision and give a warning. Based on the analysis of driver's driving behavior, algorithm's warning norms are determined. Based on warning norms adopting machine vision method, the cooperation collision warning algorithm(CWA) model with multi-input and multi-output is established which is used in supporting vehicle CWS. The CWA is tested using the actual data and the result shows that this algorithm can identify and carry out warning for vehicle collision efficiently, which has important meaning for improving the vehicle travel safety.展开更多
文摘This article describes a new miniaturized omni-directional antenna with quasi-self-complementary structure for wireless communication applications. A novel ground structure composed of five rectangular plates is proposed to enhance the impedance bandwidth and reduce the antenna size. The proposed antenna is comprised of two patches surrounded by the ground structure. Two metal patches of the antenna are located on two opposite sides of the dielectric substrate. The feed patch is used to excite the radiation patch. This unique design is realized by properly choosing the suitable feed patch shape, selecting similar slot shape on the radiation patch, and tuning their dimensions. The proposed antenna with an extremely small size of 6 mm × 9 mm has an operating impedance bandwidth ranging from 4.5 to 6.1 GHz for S<sub>11</sub> < -10 dB, which also covers the two IEEE 802.11a wireless local area network bands (5.15 - 5.35 GHz and 5.725 - 5.825 GHz). In addition to be very small in size, the antenna exhibits omni-directional radiation patterns in the entire operating bandwidth and low cross polarization. The distortionless time domain performance of the antenna is confirmed by investigation of the phase response and group delay. The obtained results in both frequency and time domain show that the proposed antenna is suitable for use in wireless communication systems.
文摘This paper presents a new Omni-Directional Tilt Sensor (ODTS), which consists of the LED light, transparent cone-shaped closed container, mercury, camera, embedded systems and so on. The volume of the mercury in the container is equal to half of the container’s. When the detected surface is horizontal, the shape of mercury in the image captured by the camera is a black disc since the mercury is lightproof. When the detected surface tilts, the mercury flows and the mercury surface always maintains horizontally due to the gravity force of the earth. At this time, some area of the transparent cone-shaped closed container is not shaded by mercury and the border of the mercury’s shape in the captured image is a half circle and a half ellipse. Thus there is a translucent crescent-shaped area in the image. With analyzing this area by the specific algorithm based on machine vision, the tilt angle and directional angle can be obtained. The experimental results show that the ODTS proposed has some advantages, such as simple maintenance, high precision, wide range, low cost, real-time, reliability and high visualization.
基金This work was supported by the French research office(No.01 K 0742)under the Cléopatre project.
文摘This paper describes specific constraints of vision systems that are dedicated to be embedded in mobile robots. If PC-based hardware architecture is convenient in this field because of its versatility, flexibility, performance, and cost, current real-time operating systems are not completely adapted to long processing with varying duration, and it is often necessary to oversize the system to guarantee fail-safe functioning. Also, interactions with other robotic tasks having more priority are difficult to handle. To answer this problem, we have developed a dynamically reconfigurable vision processing system, based on the innovative features of Cleopatre real-time applicative layer concerning scheduling and fault tolerance. This framework allows to define emergency and optional tasks to ensure a minimal quality of service for the other subsystems of the robot, while allowing to adapt dynamically vision processing chain to an exceptional overlasting vision process or processor overload. Thus, it allows a better cohabitation of several subsystems in a single hardware, and to develop less expensive but safe systems, as they will be designed for the regular case and not rare exceptional ones. Finally, it brings a new way to think and develop vision systems, with pairs of complementary operators.
基金supported by National Natural Science Foundation of China (Grant No. 60804060)Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200800061003)
文摘Multi-sensor vision system plays an important role in the 3D measurement of large objects.However,due to the widely distribution of sensors,the problem of lacking common fields of view(FOV) arises frequently,which makes the global calibration of the vision system quite difficult.The primary existing solution relies on large-scale surveying equipments,which is ponderous and inconvenient for field calibrations.In this paper,a global calibration method of multi-sensor vision system is proposed and investigated.The proposed method utilizes pairs of skew laser lines,which are generated by a group of laser pointers,as the calibration objects.Each pair of skew laser lines provides a unique coordinate system in space which can be reconstructed in certain vision sensor's coordinates by using a planar pattern.Then the geometries of sensors are computed under rigid transformation constrains by taking coordinates of each skew lines pair as the intermediary.The method is applied on both visual cameras with synthetic data and a real two-camera vision system;results show the validity and good performance.The prime contribution of this paper is taking skew laser lines as the global calibration objects,which makes the method simple and flexible.The method need no expensive equipments and can be used in large-scale calibration.
文摘Based on the characteristics of line structured light sensor, a speedy method for the calibration was established. With the coplanar reference target, the spacial pose between camera and optical plane can be calibrated by using of the camera’s projective center and the light’s information in the camera’s image surface. Without striction to the movement of the coplanar reference target and assistant adjustment equipment, this calibration method can be implemented. This method has been used and decreased the cost of calibration equipment, simplified the calibration procedure, improved calibration efficiency. Using experiment, the sensor can attain relative accuracy about 0.5%, which indicates the rationality and effectivity of this method.
文摘To assess functional outcomes of optical low vision aids(LVAs) for pediatric visual impairment due to central nervous system(CNS) tumors. A prospective case study was conducted on 15 children with history of CNS tumors with mean age of 10.47±1.85 y. Lighthouse distance, near visual acuity tests, cycloplegic refraction, reading speed measurement and visual field examination were done. Prescription of far and near LVAs followed by training sessions. LVPrasad-functional vision questionnaire was done to evaluate performance. Visual impairment was moderate(13.3%), severe(73.3%), profound(6.7%) and near blindness in 6.7%. Telescopes prescribed in 33.4%, video magnifier in 46.7%. Questionnaire scores were significantly improved for distant rather than near tasks(P≤0.05) after training. LVAs rehabilitation is an effective method of improving vision in pediatric visual defects secondary to CNS tumors.
文摘This paper proposes the solution of tasks set required for autonomous robotic group behavior optimization during the mission on a distributed area in a cluttered hazardous terrain.The navigation scheme uses the benefits of the original real-time technical vision system(TVS)based on a dynamic triangulation principle.The method uses TVS output data with fuzzy logic rules processing for resolution stabilization.Based on previous researches,the dynamic communication network model is modified to implement the propagation of information with a feedback method for more stable data exchange inside the robotic group.According to the comparative analysis of approximation methods,in this paper authors are proposing to use two-steps post-processing path planning aiming to get a smooth and energy-saving trajectory.The article provides a wide range of studies and computational experiment results for different scenarios for evaluation of common cloud point influence on robotic motion planning.
文摘The fast paced nature of robotic soccer necessitates real time sensing coupled with quick behaving and decision making. In the field with real robots, it is important to well perceive the location of ball, team robots and opponent robots through the vision system in real time. In this paper the architecture of global vision system of our small size robotic team and the process of object recognition is described. According to the study on color distribution in different color space and quantitative investigation, a method which uses H (Hue) thresholds as the major thresholds to feature exact and recognize object in real time is presented.
文摘Building fences to manage the cattle grazing can be very expensive;cost inefficient. These do not provide dynamic control over the area in which the cattle are grazing. Existing virtual fencing techniques for the control of herds of cattle, based on polygon coordinate definition of boundaries is limited in the area of land mass coverage and dynamism. This work seeks to develop a more robust and an improved monocular vision based boundary avoidance for non-invasive stray control system for cattle, with a view to increase land mass coverage in virtual fencing techniques and dynamism. The monocular vision based depth estimation will be modeled using concept of global Fourier Transform (FT) and local Wavelet Transform (WT) of image structure of scenes (boundaries). The magnitude of the global Fourier Transform gives the dominant orientations and textual patterns of the image;while the local Wavelet Transform gives the dominant spectral features of the image and their spatial distribution. Each scene picture or image is defined by features v, which contain the set of global (FT) and local (WT) statistics of the image. Scenes or boundaries distances are given by estimating the depth D by means of the image features v. Sound cues of intensity equivalent to the magnitude of the depth D are applied to the animal ears as stimuli. This brings about the desired control as animals tend to move away from uncomfortable sounds.
基金Sponsored by the National Natural Science Foundation of China(60473049)the National Hi-Tech R&D programof China(2006AA01Z120)
文摘EyeScreen is a vision-based interaction system which provides a natural gesture interface for humancomputer interaction (HCI) by tracking human fingers and recognizing gestures. Multi-view video images are captured by two cameras facing a computer screen, which can be used to detect clicking actions of a fingertip and improve the recognition rate. The system enables users to directly interact with rendered objects on the screen. Robustness of the system has been verified by extensive experiments with different user scenarios. EyeScreen can be used in many applications such as intelligent interaction and digital entertainment.
文摘Cold Workability limits of Brass were studied as a function of friction, aspect ratio and specimen geometry. Five standard shapes of the axis symmetric specimens of cylindrical with aspect ratios 1.0 and 1.5, ring, tapered and flanged were selected for the present investigation. Specimens were deformed in compression between two flat platens to predict the metal flow at room temperature. The longitudinal and oblique cracks were obtained as the two major modes of surface fractures. Cylindrical and ring specimen shows the oblique surface crack while the tapered and flanged shows the longitudinal crack. Machine Vision system using PC based video recording with a CCD camera was used to analyze the deformation of 4 X 4 mm square grid marked at mid plane of the specimen. The strain paths obtained from different specimens exhibited nonlinearity from the beginning to the end of the strain path. The circumferential stress component Os increasingly becomes tensile with continued deformation. On the other hand the axial stress Oz , increased in the very initial stages of deformation but started becoming less compressive immediately as barreling develops. The nature of hydrostatic stress on the rim of the flanged specimen was found to be tensile. Finite element software ANSYS has been applied for the analysis of the upset forming process. When the stress values obtained from finite element analysis were compared to the measurements of grids using Machine Vision system it was found that they were in close proximity.
文摘Pixel-parallel PE and SIMD architectures are widely used in high-speed image processing to enhance computing power. With fully exploiting the data level parallelism of low- and middle-level image processing, SIMD architecture is able to finish great amount of computation with much less instruction cycle thus satisfy the high-speed system requirement. The main computation parts in those SIMD image processing hardware is known as PE (processing element) and it is responsible for transferring, storing and processing the image data. This paper describes a high-speed vision system with superscalar PE to enhance system performance and its dedicated parallel computing language specifically devel-oped for this vision system. The vision system can achieve motion detection at more than 2000fps and face detection at more than 100 fps which overwhelms some general serial CPUs in the same applications.
文摘Irrigation was developed in ancient China.The management of water resources has existed since ancient times when the embryonic form of water right system was established.From perspectives of environmental law,the water rights system in ancient China,especially the water rights system after Ming Dynasty,gave no explicit concept to water rights,but the participatory management of water users was included in implementation.Such management had the same connotation with the modern concept of water rights and thereby it has an instructional significance to perfect the water rights system of in modern China.
文摘Lane detection is a fundamental aspect of most current advanced driver assistance systems(ADASs). A large number of existing results focus on the study of vision-based lane detection methods due to the extensive knowledge background and the low-cost of camera devices. In this paper, previous visionbased lane detection studies are reviewed in terms of three aspects, which are lane detection algorithms, integration, and evaluation methods. Next, considering the inevitable limitations that exist in the camera-based lane detection system, the system integration methodologies for constructing more robust detection systems are reviewed and analyzed. The integration methods are further divided into three levels, namely, algorithm, system,and sensor. Algorithm level combines different lane detection algorithms while system level integrates other object detection systems to comprehensively detect lane positions. Sensor level uses multi-modal sensors to build a robust lane recognition system. In view of the complexity of evaluating the detection system, and the lack of common evaluation procedure and uniform metrics in past studies, the existing evaluation methods and metrics are analyzed and classified to propose a better evaluation of the lane detection system. Next, a comparison of representative studies is performed. Finally, a discussion on the limitations of current lane detection systems and the future developing trends toward an Artificial Society, Computational experiment-based parallel lane detection framework is proposed.
基金This project was supported by the National Natural Science Foundation (No. 69875010).
文摘A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.
文摘For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ultra-close spacecraft formation flying. Onboard GPS and VISNAV system are adopted and a federal Kalman filter architecture is used for the total navigation system design. Simulation results indicate that the integrated system can provide a total improvement of relative navigation and attitude estimation performance in accuracy and fault-tolerance.
基金Sponsored by the Special Development Foundation of High School’s Doctor Subject of China (20030006007)
文摘Using the new technologies such as information technology, communication technology and electronic control technology, vehicle collision warning system(CWS) can acquire road condition, adjacent vehicle march condition as well as its dynamics performance continuously, then it can forecast the oncoming potential collision and give a warning. Based on the analysis of driver's driving behavior, algorithm's warning norms are determined. Based on warning norms adopting machine vision method, the cooperation collision warning algorithm(CWA) model with multi-input and multi-output is established which is used in supporting vehicle CWS. The CWA is tested using the actual data and the result shows that this algorithm can identify and carry out warning for vehicle collision efficiently, which has important meaning for improving the vehicle travel safety.