The global oil and gas industry has a long standing initiative to develop and use the most environment friendly solutions in the exploration and exploitation of oil and gas resources to prevent any damage or degradati...The global oil and gas industry has a long standing initiative to develop and use the most environment friendly solutions in the exploration and exploitation of oil and gas resources to prevent any damage or degradation of other marine and terrestrial resources. This is reflected by increasing research in academics, research institutes and organizations around the globe to develop better and more environment friendly base fluids, viscosifiers, fluid loss additives, emulsifiers, lubricants, etc. to protect the local, regional and global environments, eco-systems, habitats and also the OHS of workers and professionals working in the oil and gas industry. This paper describes the development, testing and evaluation of several novel additives to demonstrate their suitability for oil and gas field applications to avoid any negative impact to the surrounding environment. Experimental results indicate that the newly developed additives provide desirable, similar or better performance with respect to conventional additives used by the industry and thus demonstrate their suitability for application in aqueous and non-aqueous fluid design. The plant-based organic additive identified to use as an ecofriendly viscosifier for aqueous mud system can also control the fluid loss behavior of clay free system and thus can act as a bi-functional additive. Several waste vegetable oil-based eco-friendly additives have been developed for their application as spotting fluids, base oil and emulsifiers for invert emulsion oil based mud. These additives have similar or better technical performance than the equivalents and the eco-friendly nature of the mud additives demonstrates their ability to perform the functional tasks with better protection of the surrounding environments.展开更多
Continental shale oil is widely distributed in the Cretaceous Qingshankou Formation of the Songliao Basin in Northeast China.In the Qijia-Gulong sag and the Changling sag in the Songliao Basin,breakthroughs of shale o...Continental shale oil is widely distributed in the Cretaceous Qingshankou Formation of the Songliao Basin in Northeast China.In the Qijia-Gulong sag and the Changling sag in the Songliao Basin,breakthroughs of shale oil exploration and development have been made in the first and second members of the Qingshankou Formation,and several wells represented byWell GYYP1 have achieved high and stable shale oil production.However,some horizontal wells in shale oil development pilot test(Well groups A and D)were characterized by low shale oil production,high flowback rate and rapid production decline.Therefore,controlling factors of the shale oil production were investigated.The results show that shale oil enrichment area and optimal sweet spots are fundamental for high shale oil production,improving horizontal length and drilling ratio of sweet spots is a technical guarantee for enhancing shale oil production of single well,and artificial fracture network(incl.scale,complexity,and coupling with preexisting geological bodies)created by fracturing is a direct factor for controlling the shale oil production.For subsequent exploration and development of the shale oil,the heterogeneity of sweet spot distribution should be carefully considered,the shale oil enrichment areas and optimal sweet spots also need be optimized,and the wellbore trajectory control and fine geological modeling techniques should be figured out.Moreover,the fracturing techniques suitable for the shale with high clay mineral content and weak brittleness should be developed,and the personalized and differentiated staged fracturing also needs to be performed,to effectively enhance single-well shale oil production and estimated ultimate recovery.展开更多
文摘The global oil and gas industry has a long standing initiative to develop and use the most environment friendly solutions in the exploration and exploitation of oil and gas resources to prevent any damage or degradation of other marine and terrestrial resources. This is reflected by increasing research in academics, research institutes and organizations around the globe to develop better and more environment friendly base fluids, viscosifiers, fluid loss additives, emulsifiers, lubricants, etc. to protect the local, regional and global environments, eco-systems, habitats and also the OHS of workers and professionals working in the oil and gas industry. This paper describes the development, testing and evaluation of several novel additives to demonstrate their suitability for oil and gas field applications to avoid any negative impact to the surrounding environment. Experimental results indicate that the newly developed additives provide desirable, similar or better performance with respect to conventional additives used by the industry and thus demonstrate their suitability for application in aqueous and non-aqueous fluid design. The plant-based organic additive identified to use as an ecofriendly viscosifier for aqueous mud system can also control the fluid loss behavior of clay free system and thus can act as a bi-functional additive. Several waste vegetable oil-based eco-friendly additives have been developed for their application as spotting fluids, base oil and emulsifiers for invert emulsion oil based mud. These additives have similar or better technical performance than the equivalents and the eco-friendly nature of the mud additives demonstrates their ability to perform the functional tasks with better protection of the surrounding environments.
文摘Continental shale oil is widely distributed in the Cretaceous Qingshankou Formation of the Songliao Basin in Northeast China.In the Qijia-Gulong sag and the Changling sag in the Songliao Basin,breakthroughs of shale oil exploration and development have been made in the first and second members of the Qingshankou Formation,and several wells represented byWell GYYP1 have achieved high and stable shale oil production.However,some horizontal wells in shale oil development pilot test(Well groups A and D)were characterized by low shale oil production,high flowback rate and rapid production decline.Therefore,controlling factors of the shale oil production were investigated.The results show that shale oil enrichment area and optimal sweet spots are fundamental for high shale oil production,improving horizontal length and drilling ratio of sweet spots is a technical guarantee for enhancing shale oil production of single well,and artificial fracture network(incl.scale,complexity,and coupling with preexisting geological bodies)created by fracturing is a direct factor for controlling the shale oil production.For subsequent exploration and development of the shale oil,the heterogeneity of sweet spot distribution should be carefully considered,the shale oil enrichment areas and optimal sweet spots also need be optimized,and the wellbore trajectory control and fine geological modeling techniques should be figured out.Moreover,the fracturing techniques suitable for the shale with high clay mineral content and weak brittleness should be developed,and the personalized and differentiated staged fracturing also needs to be performed,to effectively enhance single-well shale oil production and estimated ultimate recovery.