The Hongqiling large nickel-copper-cobalt deposit(hereafter referred to as the Hongqiling deposit),a typical mafic-ultramafic copper-nickel deposit in China,boasts proven Ni(Ni)resources of approximately 22×10^(4...The Hongqiling large nickel-copper-cobalt deposit(hereafter referred to as the Hongqiling deposit),a typical mafic-ultramafic copper-nickel deposit in China,boasts proven Ni(Ni)resources of approximately 22×10^(4)t,associated copper resources of 2×10^(4)t,and associated cobalt(Co)resources of 0.5×10^(4)t,with Ni reserves ranking 10th among China's magmatic nickel deposits.Geotectonically,the Hongqiling deposit is situated in the superimposed zone between the Xing'an-Mongolian orogenic belt and the circum-Western Pacific's active continental margin belt.Its ore-bearing plutons occur within the metamorphic rocks of the Ordovician Hulan Group,with the emplacement of plutons and the locations of orebodies governed by the deep-seated Huifahe fault and its secondary NW-trending Fujia-Hejiagou-Beixinglong-Changsheng fault zone.In the deposit,the rock assemblages of ore-bearing plutons predominantly encompass gabbro-pyroxenite-olivine pyroxenite-pyroxene peridotite(pluton No.1)and norite-orthopyroxenite-harzburgite(pluton No.7),with ore-bearing lithofacies consisting primarily of olivine pyroxenite and pyroxenite facies.The Hongqiling deposit hosts stratoid,overhanging lentoid,veined,and pure-sulfide veined orebodies.Its ores principally contain metallic minerals including pyrrhotite,pentlandite,chalcopyrite,violarite,and pyrite.Despite unidentified magma sources of ore-bearing mafic-ultramafic rocks,it is roughly accepted that the magmatic evolution in the Hongqiling deposit primarily involved fractional crystallization and crustal contamination.The ore-forming materials were primarily derived from the upper mantle,mixed with minor crustal materials.The ore-bearing mafic-ultramafic rocks in the deposit,primarily emplaced during the Indosinian(208-239 Ma),were formed in an intense extension setting followed by the collisional orogeny between the North China Plate and the Songnen-Zhangguangcai Range Block during the Middle-Late Triassic.From the perspective of the metallogenic geological setting,surrounding rocks,ore-controlling structures,and rock assemblages,this study identified one favorable condition and seven significant indicators for prospecting for Hongqiling-type nickel deposits and developed a prospecting model of the Hongqiling deposit.These serve as valuable references for exploring similar nickel deposits in the region,as well as the deep parts and margins of the Hongqiling deposit.展开更多
The Songnen masiff is located to the east of the Central Asian Orogenic Belt. The existence and rather the scale and nature of the Precambrian crystalline basement is controversial. Based on recent study of zircon U-P...The Songnen masiff is located to the east of the Central Asian Orogenic Belt. The existence and rather the scale and nature of the Precambrian crystalline basement is controversial. Based on recent study of zircon U-Pb chronology, besides a minor number of Neoproterozoic strata, most of the so-called Precambrian metamorphic rock series, such as the Dongfengshan Group and the Zhangguangcailing Group, were formed in the Mesozoic and Paleozoic.展开更多
Multi-beam,sub-bottom and multichannel seismic data acquired from the western Nigerian continental margin are analysed and interpreted to examine the architectural characteristics of the lower parts of the submarine c...Multi-beam,sub-bottom and multichannel seismic data acquired from the western Nigerian continental margin are analysed and interpreted to examine the architectural characteristics of the lower parts of the submarine canyons on the margin.The presence of four canyons: Avon,Mahin,Benin,and Escravos,are confirmed from the multi-beam data map and identified as cutting across the shelf and slope areas,with morphological features ranging from axial channels,moderate to high sinuosity indices,scarps,terraces and nickpoints which are interpreted as resulting from erosional and depositional activities within and around the canyons.The Avon Canyon,in particular,is characterised by various branches and sub-branches with complex morphologies.The canyons are mostly U-shaped in these lower parts with occasional V-shapes down their courses.Their typical orientation is NE–SW.Sedimentary processes are proposed as being a major controlling factor in these canyons.Sediments appear to have been discharged directly into the canyons by rivers during the late Quaternary low sea level which allows river mouths to extend as far as the shelf edge.The current sediment supply is still primarily sourced from these rivers in the case of the Benin and Escravos Canyons,but indirectly in the case of the Avon and Mahin Canyons where the rivers discharge sediments into the lagoons and the lagoons bring the sediments on to the continental shelf before they are dispersed into the canyon heads.Ancient canyons that have long been buried underneath the Avon Canyon are identified in the multichannel seismic profile across the head of the Avon Canyon,while a number of normal faults around the walls of the Avon and Mahin Canyons are observed in the selected sub-bottom profiles.The occurrence of these faults,especially in the irregular portions of the canyon walls,suggests that they also have some effect on the canyon architecture.The formation of the canyons is attributed to the exposure of the upper marginal area to incisions from erosion during the sea level lowstand of the glacial period.The incisions are widened and lengthened by contouric currents,turbidity currents and slope failures resulting in the canyons.展开更多
There is a close relationship between occurrence of nonmetallic minerals and tectonic evolution of geosyncline, platform and diwa (geodepression) on the western margin of the Dongting diwa. Some results that (1) diwa ...There is a close relationship between occurrence of nonmetallic minerals and tectonic evolution of geosyncline, platform and diwa (geodepression) on the western margin of the Dongting diwa. Some results that (1) diwa tectonics is berfeficial for formation and preservation of nonmetallic minerals and (2) volcano-sedimentary altered ore deposits, saline deposits and organo-sedimentary ore deposits can be often found in diwa basins are gained.展开更多
Diatom data of 192 surface sediment samples from the marginal seas in the western Pacific together with modern summer and winter sea surface temperature and salinity data were analyzed.The results of canonical corresp...Diatom data of 192 surface sediment samples from the marginal seas in the western Pacific together with modern summer and winter sea surface temperature and salinity data were analyzed.The results of canonical correspondence analysis show that summer sea-surface salinity(SSS) is highly positively correlated with winter SSS and so is summer sea-surface temperature(SST) with winter SST.The correlations between SSSs and SSTs are less positively correlated,which may be due to interactions of regional current pattern and monsoon climate.The correlations between diatom species,sample sites and environmental variables concur with known diatom ecology and regional oceanographic characters.The results of forward selection of the environmental variables and associated Monte Carlo permutation tests of the statistical significance of each variable suggest that summer SSS and winter SST are the main environmental factors affecting the diatom distribution in the area and therefore preserved diatom data from down core could be used for reconstructions of summer SSS and winter SST in the region.展开更多
The Alleppey Platform is an important morphological feature located in the Kerala-Konkan basin off the southwest coast of India. In the present study, seismic reflection data available in the basin were used to unders...The Alleppey Platform is an important morphological feature located in the Kerala-Konkan basin off the southwest coast of India. In the present study, seismic reflection data available in the basin were used to understand the sedimentation history and also to carry out integrated gravity interpretation. Detailed seismic reflection data in the basin reveals that:(1) the Alleppey Platform is associated with a basement high in the west of its present-day geometry(as observed in the time-structure map of the Trap Top(K/T boundary)),(2) the platform subsequently started developing during the Eocene period and attained the present geometry by the Miocene and,(3) both the Alleppey platform and the Vishnu fracture zone have had significant impact on the sedimentation patterns(as shown by the time-structure and the isochron maps of the major sedimentary horizons in the region). The 3-D sediment gravity effect computed from the sedimentary layer geometry was used to construct the crustal Bouguer anomaly map of the region.The 3-D gravity inversion of crustal Bouguer anomaly exhibits a Moho depression below the western border of the platform and a minor rise towards the east which then deepens again below the Indian shield. The 2-D gravity modelling across the Alleppey platform reveals the geometry of crustal extension,in which there are patches of thin and thick crust. The Vishnu Fracture Zone appears as a crustal-scale feature at the western boundary of the Alleppey platform. Based on the gravity model and the seismic reflection data, we suggest that the basement high to the west of the present day Alleppey platform remained as a piece of continental block very close to the mainland with the intervening depression filling up with sediments during the rifting. In order to place the Alleppey platform in the overall perspective of tectonic evolution of the Kerala-Konkan basin, we propose its candidature as a continental fragment.展开更多
The western margin of Yangtze block and southwestern Sanjiang region absorbed much attention from geologists. It has been proved that there occurred a series of plate subduction, collision, assembly, rifting and break...The western margin of Yangtze block and southwestern Sanjiang region absorbed much attention from geologists. It has been proved that there occurred a series of plate subduction, collision, assembly, rifting and breakup processes between them since Palaeozoic and the tectonic evolutionary relationship between them is clear. But in Proterozoic this kind of links between them became unclear. Did they undergo the assembly and breakup processes of the Rodinia super continent? This paper will take a primary discussion on this question on the basis of basement component, structure characteristics and magmatic activities.1\ Basement features\;(1) In western margin of Yangtze block its basement is composed of crystalline basement and folded basement, a so\|called double\|layer structure. The crystalline basement is made up of Kangding group, Pudeng Formation and Dibadu Formation, among them Kangding group is a representative and composed mainly of migmatite, compositing gneiss, hornblende schist and granulitite. The isotopic age of crystalline basement is older than 1900Ma, so its geological time is late Archaean to early Proterozoic. The folded basement is composed of Dahongshan group, Hekou group, Kunyang group, Huili group and Yanbian group. Their rock associations are made up mainly of spilite\|keratophyre formation, carbonate formation, clastic rock and clastic rock formation with some basic volcanic rocks. The folded basement is assigned to be early and middle Proterozoic (1000~1700M a).展开更多
The western continental margin of India is one of the highly productive regions in the global ocean.Primary productivity is induced by upwelling and convective mixing during the southwest and northeast monsoons respec...The western continental margin of India is one of the highly productive regions in the global ocean.Primary productivity is induced by upwelling and convective mixing during the southwest and northeast monsoons respectively.Realizing the importance of high primary productivity,a sediment core was collected below the current oxygen minimum zone(OMZ) from the southwestern continental margin of India.This was dated by AMS radiocarbon and as many as 60 paleoclimate/paceoceanographic proxies,such as particle size,biogenic components,major,trace and rare earth elements(REEs) which were measured for the first time to determine sources of sediment,biogeochemical processes operating in the water column and their variations since the last glacial cycle.R-mode factor analysis of comprehensive data indicates that the dominant regulator of paleoproductivity is the southwest monsoon wind induced upwelling.Other paleoproductivity related factors identified are the marine biogenic component and biogenic detritus(as an exported component from the water column added to the bottom sediment).All paleoproductivity components increased significantly during the marine isotope stage-1(MIS-1)compared to those accumulated from MIS-4 to MIS-2.The second group of factors identified are the terrigenous sediments with heavy minerals like zircon and ilmenite.The terrigenous sediment,in particular,increased during MIS-2 when the sea-level was lower;however,the heavy mineral component fluctuated over time implying pulsed inputs of sediment.The diagenetic fraction and reducing component are the third group of factors identified which varied with time with increased accumulation during the MIS transitions.The primary productivity along the southwestern continental margin of India seems to have been controlled principally by the upwelling during the southwest monsoon season that was weaker from MIS-4 to MIS-2,as relative to that during the MIS-1.In contrast,increased glacial productivity noticed in sediments deposited below the current oxygen minimum zone(OMZ) along the north of the study area that can be linked to entrainment of nutrients through the intensified convective mixing of surface water during the northeast monsoon.The sequestration of greenhouse gases by the western continental margin of India was higher during glacial than interglacial cycles.展开更多
There is a belt of metamorphic core complexes in the western margin of the Yangtze craton . The geological setting of the belt is similar to that of the Cordilleran metamorphic core complexes . A typical one in this b...There is a belt of metamorphic core complexes in the western margin of the Yangtze craton . The geological setting of the belt is similar to that of the Cordilleran metamorphic core complexes . A typical one in this belt is the Jianglang metamorphic core complex , which has a configuration consisting of three layers : a core complex consisting of Mesoproterozoic schist sequence . a ductile middle slab consisting of Paleozoic meta- sedimentary -basalt characterized by the development of ' folding layer' and an upper cover consisting of Xikang Group which has suffered both buckling and flattening . A detachment fault developed along the contact boundary between the cover and basement causes the omission of Upper Sinian and Cambrian at the base of cover . A lot of normal ductile shear zones developed in the cover causes the thinning of it . All the features show that the early extension results in the thinning of crust , but the formation of the dome and exposure of basement rocks may be the results of superimposing of the E-W directed contraction and the following southward thrusting during Indosinian to Yanshanian orogeny . Syntectonic plutonism and pervasive thermo - metamor-phism in the cover suggest that the thermal uplift also causes the uplift of the MCC .展开更多
Paleoproterozoic subduction strongly occurred in the western margin of Yangtze plate. The basalticandesite volcanics of Ailaoshan Group and Dibadu Formation had been formed during paleo QinghaiTibet oceanic plate s...Paleoproterozoic subduction strongly occurred in the western margin of Yangtze plate. The basalticandesite volcanics of Ailaoshan Group and Dibadu Formation had been formed during paleo QinghaiTibet oceanic plate subduction under the paleoYangtze plate. Their trace element geochemistry suggests that their forming environments are continentalmarginarc and back arcbasin respectively. Consequently, the Paleoproterozoic subduction system in the western margin of Yangtze plate was established. Ailaoshan Group and Dibadu Formation came from an enriched mantle source that was contaminated by crustal sediments carried by subducted slab, and formed the Paleoroterozoic metamorphic basement of western margin of Yangtze plate. Ailaoshan Group is actually western boundary of Yangtze plate.展开更多
The western fault zone of the South China Sea is a strike-slip fault system and consists of four typical strike-slip faults. It is the western border of the South China Sea. The formation of the system is due to the e...The western fault zone of the South China Sea is a strike-slip fault system and consists of four typical strike-slip faults. It is the western border of the South China Sea. The formation of the system is due to the extrusion of Indo - China Peninsula caused by the collision of India with Tibet and the spreading of the South China Sea in Cenozoic. There are five episodes of tectonic movement along this fault zone, which plays an important role in the Cenozoic evolution of the South China Sea. By the physical modeling experiments, it can be seen the strike-slip fault undergoes the sinistral and dextral movement due to the relative movement velocity change between the South China Sea block and the Indo - China block. The fault zone controls the evolution of the pull basins locating in the west of the South China Sea.展开更多
There exist intermediate to intermediate-acid shoshonitic rocks dated at 26.3- 36.7Ma in the Early Tertiary extensional basins along the NE flank of the Dali-Jianchuan section of the Honghe-Ailaoshan left-lateral stri...There exist intermediate to intermediate-acid shoshonitic rocks dated at 26.3- 36.7Ma in the Early Tertiary extensional basins along the NE flank of the Dali-Jianchuan section of the Honghe-Ailaoshan left-lateral strike-slip ductile shear zone, where some high- and medium-high grade metamorphosed mafic enclaves have been found. According to the P-T conditions and mineral assemblage characteristics, the enclaves are grouped into three types: type-Ⅰ, garnet diopsidite, formed at lower crust or in the transitional section between the mantle and the crust with the metamorphic condition P=(10.47-11.51)×108 Pa and T=771-932℃; type-Ⅱ, garnet- and diopside-bearing amphibolite, formed at the depth of middle to lower crust with the metamorphic condition: P=(6-10) ×108 Pa and T=780-830℃; type-Ⅲ, metamorphosed gabbro, formed at relatively higher levels than the above 2 types with lower metamorphic condition. Type-Ⅰand type-Ⅱenclaves had experienced a decompressional retrograde metamorphism caused by tectonic elevation associated with the metasomatism of SiO 2, Na 2O-rich fluid phase with the new equilibrated temperature at T=761-778℃. Geochemical evidence indicates that both deep-derived mafic enclaves and host rocks have similar EM Ⅱ properties, which are related to the involvement of subducted materials. The sustaining subduction, compression and strike-slip ductile shearing between the India plate and the Yangtze craton are the main constraints on the subcontinental mantle properties, interaction between crust and mantle, and the formation and evolution of alkali-rich magma.展开更多
The Mesoproterozoic sedimentary strata on the western margin of the Yangtze massif are a clastic-carbonate rock association intercalated with a small amount of tuff and basalt and deposited in a relatively stable envi...The Mesoproterozoic sedimentary strata on the western margin of the Yangtze massif are a clastic-carbonate rock association intercalated with a small amount of tuff and basalt and deposited in a relatively stable environment. They are termed as the Kunyang Group, the Huili Group, and the Dongchuan Group respectively in different regions. We performed zircon U-Pb da- ting of the tuff from the groups. The results, coupled with the detrital zircon U-Pb ages of clastic rocks from the Kunyang Group and the Dongchuan Group, indicate that the sedimentation ages of the Kunyang Group and the Huili Group range from 1050 to 1000 Ma and that the Kunyang Group and the Huili Group belong to a sedimentary association with contemporaneous heterotopic facies. The detrital zircon ages and Hf isotope compositions reveal that the clastic materials in the Kunyang Group and the Huili Group are derived primarily from the Cathaysia massif. Zircons of the tuff in the Dongchuan Group yields an age of ca. 1.5 Ga and all the zircon ages of clastics in the Dongchuan Group are older than 1.5 Ga, indicating that the sedimentation of the Dongchuan Group occurred during the late Mesoproterozoic Changcheng Period. Age spectra of the detrital zircons in- dicate that the clastic materials of the Dongchuan Group are derived primarily from the ancient basement of the Yangtze mas- sif. A systematic Hf isotope determination of various types of zircons in the above three stratigraphic units shows that there is a rapid elevation in the initial Hf value of zircon at -1.5 and 1.0 Ga. Previous studies on the sedimentary characteristics of the Kunyang Group and the Huili Group show that both were deposited in a foreland basin. Combining our data with previous studies, we suggest that the Kunyang Group and the Huili Group are foreland basin sedimentary successions formed along the southern side of the Yangtze massif after an amalgamation between the Yangtze massif and the Cathaysia massif during the Grenvillian. The assembly of the Yangtze massif and the Cathaysia massif developed gradually from the west to the east and was finally completed in the eastern segment of the Yangtze massif at 0.9 Ga, representing the last stage of the Rodinia super- continent assembly, Hf isotope compositions in zircon indicate that the supercontinent cycle has an intimate relation with crus- tal growth.展开更多
The connexion zone between the Yunkai Uplift and Qinzhou Depression is one of the im-portant tectonic problems in South China. It includes (i) Bobai-Cenxi deep fracture, (ii)terrane margin and (iii) synsedimentary fau...The connexion zone between the Yunkai Uplift and Qinzhou Depression is one of the im-portant tectonic problems in South China. It includes (i) Bobai-Cenxi deep fracture, (ii)terrane margin and (iii) synsedimentary fault and is believed to be formed in the展开更多
基金funded by projects of the China Geological Survey(Nos.DD20242070,DD20230763,DD20221695,DD20190379,and DD20160346)。
文摘The Hongqiling large nickel-copper-cobalt deposit(hereafter referred to as the Hongqiling deposit),a typical mafic-ultramafic copper-nickel deposit in China,boasts proven Ni(Ni)resources of approximately 22×10^(4)t,associated copper resources of 2×10^(4)t,and associated cobalt(Co)resources of 0.5×10^(4)t,with Ni reserves ranking 10th among China's magmatic nickel deposits.Geotectonically,the Hongqiling deposit is situated in the superimposed zone between the Xing'an-Mongolian orogenic belt and the circum-Western Pacific's active continental margin belt.Its ore-bearing plutons occur within the metamorphic rocks of the Ordovician Hulan Group,with the emplacement of plutons and the locations of orebodies governed by the deep-seated Huifahe fault and its secondary NW-trending Fujia-Hejiagou-Beixinglong-Changsheng fault zone.In the deposit,the rock assemblages of ore-bearing plutons predominantly encompass gabbro-pyroxenite-olivine pyroxenite-pyroxene peridotite(pluton No.1)and norite-orthopyroxenite-harzburgite(pluton No.7),with ore-bearing lithofacies consisting primarily of olivine pyroxenite and pyroxenite facies.The Hongqiling deposit hosts stratoid,overhanging lentoid,veined,and pure-sulfide veined orebodies.Its ores principally contain metallic minerals including pyrrhotite,pentlandite,chalcopyrite,violarite,and pyrite.Despite unidentified magma sources of ore-bearing mafic-ultramafic rocks,it is roughly accepted that the magmatic evolution in the Hongqiling deposit primarily involved fractional crystallization and crustal contamination.The ore-forming materials were primarily derived from the upper mantle,mixed with minor crustal materials.The ore-bearing mafic-ultramafic rocks in the deposit,primarily emplaced during the Indosinian(208-239 Ma),were formed in an intense extension setting followed by the collisional orogeny between the North China Plate and the Songnen-Zhangguangcai Range Block during the Middle-Late Triassic.From the perspective of the metallogenic geological setting,surrounding rocks,ore-controlling structures,and rock assemblages,this study identified one favorable condition and seven significant indicators for prospecting for Hongqiling-type nickel deposits and developed a prospecting model of the Hongqiling deposit.These serve as valuable references for exploring similar nickel deposits in the region,as well as the deep parts and margins of the Hongqiling deposit.
基金supported by the China Geological Survey (grant No.12120113053900,DD20160048-04,DD20160343-08,DD20160343-09)
文摘The Songnen masiff is located to the east of the Central Asian Orogenic Belt. The existence and rather the scale and nature of the Precambrian crystalline basement is controversial. Based on recent study of zircon U-Pb chronology, besides a minor number of Neoproterozoic strata, most of the so-called Precambrian metamorphic rock series, such as the Dongfengshan Group and the Zhangguangcailing Group, were formed in the Mesozoic and Paleozoic.
基金The National Key R&D Program of China under contract NO.2017YFC1405504the National Natural Science Foundation of China under contract No.41470648+1 种基金the Public Science and Technology Research Funds Projects of Ocean under contract No.201205003the National Program on Global Change and Air-Sea Interaction,SOA under contract No.631 GASI-GEOGE-01
文摘Multi-beam,sub-bottom and multichannel seismic data acquired from the western Nigerian continental margin are analysed and interpreted to examine the architectural characteristics of the lower parts of the submarine canyons on the margin.The presence of four canyons: Avon,Mahin,Benin,and Escravos,are confirmed from the multi-beam data map and identified as cutting across the shelf and slope areas,with morphological features ranging from axial channels,moderate to high sinuosity indices,scarps,terraces and nickpoints which are interpreted as resulting from erosional and depositional activities within and around the canyons.The Avon Canyon,in particular,is characterised by various branches and sub-branches with complex morphologies.The canyons are mostly U-shaped in these lower parts with occasional V-shapes down their courses.Their typical orientation is NE–SW.Sedimentary processes are proposed as being a major controlling factor in these canyons.Sediments appear to have been discharged directly into the canyons by rivers during the late Quaternary low sea level which allows river mouths to extend as far as the shelf edge.The current sediment supply is still primarily sourced from these rivers in the case of the Benin and Escravos Canyons,but indirectly in the case of the Avon and Mahin Canyons where the rivers discharge sediments into the lagoons and the lagoons bring the sediments on to the continental shelf before they are dispersed into the canyon heads.Ancient canyons that have long been buried underneath the Avon Canyon are identified in the multichannel seismic profile across the head of the Avon Canyon,while a number of normal faults around the walls of the Avon and Mahin Canyons are observed in the selected sub-bottom profiles.The occurrence of these faults,especially in the irregular portions of the canyon walls,suggests that they also have some effect on the canyon architecture.The formation of the canyons is attributed to the exposure of the upper marginal area to incisions from erosion during the sea level lowstand of the glacial period.The incisions are widened and lengthened by contouric currents,turbidity currents and slope failures resulting in the canyons.
文摘There is a close relationship between occurrence of nonmetallic minerals and tectonic evolution of geosyncline, platform and diwa (geodepression) on the western margin of the Dongting diwa. Some results that (1) diwa tectonics is berfeficial for formation and preservation of nonmetallic minerals and (2) volcano-sedimentary altered ore deposits, saline deposits and organo-sedimentary ore deposits can be often found in diwa basins are gained.
基金Supported by the support by the NSFC (No 40676027)the Fund for Creative Research Groups of China (No 40721004)the 111 Project (No B08022)
文摘Diatom data of 192 surface sediment samples from the marginal seas in the western Pacific together with modern summer and winter sea surface temperature and salinity data were analyzed.The results of canonical correspondence analysis show that summer sea-surface salinity(SSS) is highly positively correlated with winter SSS and so is summer sea-surface temperature(SST) with winter SST.The correlations between SSSs and SSTs are less positively correlated,which may be due to interactions of regional current pattern and monsoon climate.The correlations between diatom species,sample sites and environmental variables concur with known diatom ecology and regional oceanographic characters.The results of forward selection of the environmental variables and associated Monte Carlo permutation tests of the statistical significance of each variable suggest that summer SSS and winter SST are the main environmental factors affecting the diatom distribution in the area and therefore preserved diatom data from down core could be used for reconstructions of summer SSS and winter SST in the region.
文摘The Alleppey Platform is an important morphological feature located in the Kerala-Konkan basin off the southwest coast of India. In the present study, seismic reflection data available in the basin were used to understand the sedimentation history and also to carry out integrated gravity interpretation. Detailed seismic reflection data in the basin reveals that:(1) the Alleppey Platform is associated with a basement high in the west of its present-day geometry(as observed in the time-structure map of the Trap Top(K/T boundary)),(2) the platform subsequently started developing during the Eocene period and attained the present geometry by the Miocene and,(3) both the Alleppey platform and the Vishnu fracture zone have had significant impact on the sedimentation patterns(as shown by the time-structure and the isochron maps of the major sedimentary horizons in the region). The 3-D sediment gravity effect computed from the sedimentary layer geometry was used to construct the crustal Bouguer anomaly map of the region.The 3-D gravity inversion of crustal Bouguer anomaly exhibits a Moho depression below the western border of the platform and a minor rise towards the east which then deepens again below the Indian shield. The 2-D gravity modelling across the Alleppey platform reveals the geometry of crustal extension,in which there are patches of thin and thick crust. The Vishnu Fracture Zone appears as a crustal-scale feature at the western boundary of the Alleppey platform. Based on the gravity model and the seismic reflection data, we suggest that the basement high to the west of the present day Alleppey platform remained as a piece of continental block very close to the mainland with the intervening depression filling up with sediments during the rifting. In order to place the Alleppey platform in the overall perspective of tectonic evolution of the Kerala-Konkan basin, we propose its candidature as a continental fragment.
文摘The western margin of Yangtze block and southwestern Sanjiang region absorbed much attention from geologists. It has been proved that there occurred a series of plate subduction, collision, assembly, rifting and breakup processes between them since Palaeozoic and the tectonic evolutionary relationship between them is clear. But in Proterozoic this kind of links between them became unclear. Did they undergo the assembly and breakup processes of the Rodinia super continent? This paper will take a primary discussion on this question on the basis of basement component, structure characteristics and magmatic activities.1\ Basement features\;(1) In western margin of Yangtze block its basement is composed of crystalline basement and folded basement, a so\|called double\|layer structure. The crystalline basement is made up of Kangding group, Pudeng Formation and Dibadu Formation, among them Kangding group is a representative and composed mainly of migmatite, compositing gneiss, hornblende schist and granulitite. The isotopic age of crystalline basement is older than 1900Ma, so its geological time is late Archaean to early Proterozoic. The folded basement is composed of Dahongshan group, Hekou group, Kunyang group, Huili group and Yanbian group. Their rock associations are made up mainly of spilite\|keratophyre formation, carbonate formation, clastic rock and clastic rock formation with some basic volcanic rocks. The folded basement is assigned to be early and middle Proterozoic (1000~1700M a).
基金National Centre for Antarctic and Ocean Research(NCAOR) for continuous support and encouragementthe MoES(MoES/36/OOIS/Siber/07) for funding a GEOTRACES project
文摘The western continental margin of India is one of the highly productive regions in the global ocean.Primary productivity is induced by upwelling and convective mixing during the southwest and northeast monsoons respectively.Realizing the importance of high primary productivity,a sediment core was collected below the current oxygen minimum zone(OMZ) from the southwestern continental margin of India.This was dated by AMS radiocarbon and as many as 60 paleoclimate/paceoceanographic proxies,such as particle size,biogenic components,major,trace and rare earth elements(REEs) which were measured for the first time to determine sources of sediment,biogeochemical processes operating in the water column and their variations since the last glacial cycle.R-mode factor analysis of comprehensive data indicates that the dominant regulator of paleoproductivity is the southwest monsoon wind induced upwelling.Other paleoproductivity related factors identified are the marine biogenic component and biogenic detritus(as an exported component from the water column added to the bottom sediment).All paleoproductivity components increased significantly during the marine isotope stage-1(MIS-1)compared to those accumulated from MIS-4 to MIS-2.The second group of factors identified are the terrigenous sediments with heavy minerals like zircon and ilmenite.The terrigenous sediment,in particular,increased during MIS-2 when the sea-level was lower;however,the heavy mineral component fluctuated over time implying pulsed inputs of sediment.The diagenetic fraction and reducing component are the third group of factors identified which varied with time with increased accumulation during the MIS transitions.The primary productivity along the southwestern continental margin of India seems to have been controlled principally by the upwelling during the southwest monsoon season that was weaker from MIS-4 to MIS-2,as relative to that during the MIS-1.In contrast,increased glacial productivity noticed in sediments deposited below the current oxygen minimum zone(OMZ) along the north of the study area that can be linked to entrainment of nutrients through the intensified convective mixing of surface water during the northeast monsoon.The sequestration of greenhouse gases by the western continental margin of India was higher during glacial than interglacial cycles.
基金The study is supported by the key project of science and technology of the Ministry of Geology and Mineral Resources (NO .85-01-005-1 )
文摘There is a belt of metamorphic core complexes in the western margin of the Yangtze craton . The geological setting of the belt is similar to that of the Cordilleran metamorphic core complexes . A typical one in this belt is the Jianglang metamorphic core complex , which has a configuration consisting of three layers : a core complex consisting of Mesoproterozoic schist sequence . a ductile middle slab consisting of Paleozoic meta- sedimentary -basalt characterized by the development of ' folding layer' and an upper cover consisting of Xikang Group which has suffered both buckling and flattening . A detachment fault developed along the contact boundary between the cover and basement causes the omission of Upper Sinian and Cambrian at the base of cover . A lot of normal ductile shear zones developed in the cover causes the thinning of it . All the features show that the early extension results in the thinning of crust , but the formation of the dome and exposure of basement rocks may be the results of superimposing of the E-W directed contraction and the following southward thrusting during Indosinian to Yanshanian orogeny . Syntectonic plutonism and pervasive thermo - metamor-phism in the cover suggest that the thermal uplift also causes the uplift of the MCC .
文摘Paleoproterozoic subduction strongly occurred in the western margin of Yangtze plate. The basalticandesite volcanics of Ailaoshan Group and Dibadu Formation had been formed during paleo QinghaiTibet oceanic plate subduction under the paleoYangtze plate. Their trace element geochemistry suggests that their forming environments are continentalmarginarc and back arcbasin respectively. Consequently, the Paleoproterozoic subduction system in the western margin of Yangtze plate was established. Ailaoshan Group and Dibadu Formation came from an enriched mantle source that was contaminated by crustal sediments carried by subducted slab, and formed the Paleoroterozoic metamorphic basement of western margin of Yangtze plate. Ailaoshan Group is actually western boundary of Yangtze plate.
基金Acknowledgements This research was supported by the National Natural Science Foundation of China under contract Nos 40476026 and 40406012, the National Natural Science Foundation of Guangdong Province under contract No. 04001309, and the Key Laboratory of Marginal Sea Geology Foundation of South China Sea Institute of 0ceanology, Chinese Academy of Sciences under contract No. MSGL0510. We are grateful to Yan Pin and Liu Hailing for their generous help in providing seismic profiles.
文摘The western fault zone of the South China Sea is a strike-slip fault system and consists of four typical strike-slip faults. It is the western border of the South China Sea. The formation of the system is due to the extrusion of Indo - China Peninsula caused by the collision of India with Tibet and the spreading of the South China Sea in Cenozoic. There are five episodes of tectonic movement along this fault zone, which plays an important role in the Cenozoic evolution of the South China Sea. By the physical modeling experiments, it can be seen the strike-slip fault undergoes the sinistral and dextral movement due to the relative movement velocity change between the South China Sea block and the Indo - China block. The fault zone controls the evolution of the pull basins locating in the west of the South China Sea.
文摘There exist intermediate to intermediate-acid shoshonitic rocks dated at 26.3- 36.7Ma in the Early Tertiary extensional basins along the NE flank of the Dali-Jianchuan section of the Honghe-Ailaoshan left-lateral strike-slip ductile shear zone, where some high- and medium-high grade metamorphosed mafic enclaves have been found. According to the P-T conditions and mineral assemblage characteristics, the enclaves are grouped into three types: type-Ⅰ, garnet diopsidite, formed at lower crust or in the transitional section between the mantle and the crust with the metamorphic condition P=(10.47-11.51)×108 Pa and T=771-932℃; type-Ⅱ, garnet- and diopside-bearing amphibolite, formed at the depth of middle to lower crust with the metamorphic condition: P=(6-10) ×108 Pa and T=780-830℃; type-Ⅲ, metamorphosed gabbro, formed at relatively higher levels than the above 2 types with lower metamorphic condition. Type-Ⅰand type-Ⅱenclaves had experienced a decompressional retrograde metamorphism caused by tectonic elevation associated with the metasomatism of SiO 2, Na 2O-rich fluid phase with the new equilibrated temperature at T=761-778℃. Geochemical evidence indicates that both deep-derived mafic enclaves and host rocks have similar EM Ⅱ properties, which are related to the involvement of subducted materials. The sustaining subduction, compression and strike-slip ductile shearing between the India plate and the Yangtze craton are the main constraints on the subcontinental mantle properties, interaction between crust and mantle, and the formation and evolution of alkali-rich magma.
基金supported by Chinese Geological Survey Projects (Grant Nos. 1212011121097, 1212011120130)
文摘The Mesoproterozoic sedimentary strata on the western margin of the Yangtze massif are a clastic-carbonate rock association intercalated with a small amount of tuff and basalt and deposited in a relatively stable environment. They are termed as the Kunyang Group, the Huili Group, and the Dongchuan Group respectively in different regions. We performed zircon U-Pb da- ting of the tuff from the groups. The results, coupled with the detrital zircon U-Pb ages of clastic rocks from the Kunyang Group and the Dongchuan Group, indicate that the sedimentation ages of the Kunyang Group and the Huili Group range from 1050 to 1000 Ma and that the Kunyang Group and the Huili Group belong to a sedimentary association with contemporaneous heterotopic facies. The detrital zircon ages and Hf isotope compositions reveal that the clastic materials in the Kunyang Group and the Huili Group are derived primarily from the Cathaysia massif. Zircons of the tuff in the Dongchuan Group yields an age of ca. 1.5 Ga and all the zircon ages of clastics in the Dongchuan Group are older than 1.5 Ga, indicating that the sedimentation of the Dongchuan Group occurred during the late Mesoproterozoic Changcheng Period. Age spectra of the detrital zircons in- dicate that the clastic materials of the Dongchuan Group are derived primarily from the ancient basement of the Yangtze mas- sif. A systematic Hf isotope determination of various types of zircons in the above three stratigraphic units shows that there is a rapid elevation in the initial Hf value of zircon at -1.5 and 1.0 Ga. Previous studies on the sedimentary characteristics of the Kunyang Group and the Huili Group show that both were deposited in a foreland basin. Combining our data with previous studies, we suggest that the Kunyang Group and the Huili Group are foreland basin sedimentary successions formed along the southern side of the Yangtze massif after an amalgamation between the Yangtze massif and the Cathaysia massif during the Grenvillian. The assembly of the Yangtze massif and the Cathaysia massif developed gradually from the west to the east and was finally completed in the eastern segment of the Yangtze massif at 0.9 Ga, representing the last stage of the Rodinia super- continent assembly, Hf isotope compositions in zircon indicate that the supercontinent cycle has an intimate relation with crus- tal growth.
文摘The connexion zone between the Yunkai Uplift and Qinzhou Depression is one of the im-portant tectonic problems in South China. It includes (i) Bobai-Cenxi deep fracture, (ii)terrane margin and (iii) synsedimentary fault and is believed to be formed in the