Content Addressable Memory (CAM) is a type of memory used for high-speed search applications. Due to parallel comparison feature, the CAM memory leads to large power consumption which is caused by frequent pre-charge ...Content Addressable Memory (CAM) is a type of memory used for high-speed search applications. Due to parallel comparison feature, the CAM memory leads to large power consumption which is caused by frequent pre-charge or discharge of match line. In this paper, CAM for automatic charge balancing with self-control mechanism is proposed to control the voltage swing of ML for reducing the power consumption of CAM. Another technique to reduce the power dissipation is to use MSML, it combines the master-slave architecture with charge minimization technique. Unlike the conventional design, only one match line (ML) is used, whereas in Master-Slave Match Line (MSML) one master ML and several slave MLs are used to reduce the power dissipation in CAM caused by match lines (MLs). Theoretically, the match line (ML) reduces the power consumption up to 50% which is independent of search and match case. The simulation results using Cadence tool of MSML show the reduced power consumption in CAM and modified CAM cell.展开更多
Blasting test research was conducted on iron ore specimens with variable line density charging structures.Computer tomography(CT),digital image processing,and three-dimensional model reconstruction techniques were use...Blasting test research was conducted on iron ore specimens with variable line density charging structures.Computer tomography(CT),digital image processing,and three-dimensional model reconstruction techniques were used to analyze the damage characteristics of iron ore specimens after blasting based on the calculated number of box dimensions.The results show that increasing the variable line density section charge uncoupling coefficient reduces the overall damage to the specimen by up to 1.73%,indicating that the overall damage size negatively correlates with the size of the variable line density section charge uncoupling coefficient.The damage characteristics of iron ore specimens from different layers(uncoupled charging section,transition section,coupled charging section)have some variability;when the uncoupling coefficient of the uncoupled charging section was reduced,the uncoupled section of the center of the damaged layer increased and then reduced.In contrast,the transition section shows a trend of increase,and the coupled section shows a minor difference,fully demonstrating the change in the variable line density section of the uncoupling coefficient of the specimen blasting damage effects.This study concludes that in the actual blasting project,choosing a reasonable variable line charge density structure can make the release of explosive blast energy more uniform to efficiently and thoroughly use explosive power to improve the iron ore crushing effect.展开更多
We propose a simple scheme to generate x-type four-charge entangled states by using SQUID-based charge qubits capacitively coupled to a transmission line resonator (TLR). The coupling between the superconducting qub...We propose a simple scheme to generate x-type four-charge entangled states by using SQUID-based charge qubits capacitively coupled to a transmission line resonator (TLR). The coupling between the superconducting qubit and the TLR can be effectively controlled by properly adjusting the control parameters of the charge qubit. The experimental feasibility of our scheme is also shown.展开更多
This paper introduces the principles, instrumentation, implementation, and industrial applications of an on- line thermal neutron prompt- gamma element analysis system (using a 252Cf neutron source, Am- Be neutron sou...This paper introduces the principles, instrumentation, implementation, and industrial applications of an on- line thermal neutron prompt- gamma element analysis system (using a 252Cf neutron source, Am- Be neutron source, or neutron generator). The energy resolution of the system at the H prompt- gamma full- energy photopeak (2.22325 MeV) is 3.6 keV. The concentration measurement error of A12O3, Fe2O3, CaO and SiO2 is ±0.3%,±0.1%.±0.4% and ±0.4%, respectively.The system has been tested on- site at both the Shandong and the Zhengzhou Aluminum Works. Our preliminary on- site measurements confirm that the stability, reliability, measurement range, and accuracy of the system can meet the requirements of the aluminum production process. Facilitation of this measurement at aluminum plants is expected to reduce plant costs by over 3 million dollars annually through reduced energy consumption, more rapid qualification of pulps being mixed during the production process, and in reduced labor costs.展开更多
Charge state distribution of 0.8MeV/u uranium ions after transmission through a thin carbon foil has been studied. It is observed that the charge state distribution is equilibrated after the uranium ions have passed t...Charge state distribution of 0.8MeV/u uranium ions after transmission through a thin carbon foil has been studied. It is observed that the charge state distribution is equilibrated after the uranium ions have passed through a 15μg/cm^2 carbon foil. The equilibrated average charge state is 33.72 and the charge equilibration time of uranium ions in carbon foil is less than 5.4fs.展开更多
The corona current pulses generated by corona discharge are the sources of the radio interference from transmission lines and the detailed characteristics of the corona current pulses from conductor should be investig...The corona current pulses generated by corona discharge are the sources of the radio interference from transmission lines and the detailed characteristics of the corona current pulses from conductor should be investigated in order to reveal their generation mechanism.In this paper,the line-to-plane electrodes are designed to measure and analyze the characteristics of corona current pulses from positive corona discharges.The influences of inter-electrode gap and line diameters on the detail characteristics of corona current pulses,such as pulse amplitude,rise time,duration time and repetition frequency,are carefully analyzed.The obtained results show that the pulse amplitude and the repetition frequency increase with the diameter of line electrode when the electric fields on the surface of line electrodes are same.With the increase of inter-electrode gap,the pulse amplitude and the repetition frequency first decrease and then turn to be stable,while the rise time first increases and finally turns to be stable.The distributions of electric field and space charges under the line electrodes are calculated,and the influences of inter-electrode gap and line electrode diameter on the experimental results are qualitatively explained.展开更多
This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on de-SQUID charge qubits through the control of their coupling to a 1D transmission lin...This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on de-SQUID charge qubits through the control of their coupling to a 1D transmission line resonator (TLR). The TLR behaves effectively as a quantum data-bus mode of a harmonic oscillator, which has several practical advantages including strong coupling strength, reproducibility, immunity to 1/f noise, and suppressed spontaneous emission. In this protocol, the data-bus does not need to stay adiabatically in its ground state, which results in not only fast quantum operation, hut also high-fidelity quantum information processing. Also, it elaborates the transfer process with the 1D transmission line.展开更多
A coordinated physicomathematical model for the propagation of a soliton-like electromagnetic pulse in a heterogeneous medium is developed in the presence of strong discontinuities in the electromagnetic field. The mo...A coordinated physicomathematical model for the propagation of a soliton-like electromagnetic pulse in a heterogeneous medium is developed in the presence of strong discontinuities in the electromagnetic field. The model is based on the reduction of Maxwell’s equations to the well-studied wave equation. When the electromagnetic pulse was specified, its amplitude modulation was taken into account, as was the nonstationary broadening of the spectral line. Conditions for matching the momentum for the first initial boundary-value problem are obtained. The time dispersion of the electrical induction is taken into account in terms of the function of signal conditioning which takes account of the broadening of its spectral line and integration over the continuous spectrum. With this approach, it is not necessary to neglect spatial derivatives, and also to use spatial nonlocal relations to take account of the effect of surface charge, surface current, and spatial dispersion of electrical induction at the interfaces of adjacent media.展开更多
The widely adoption of Electric Vehicle (EV) has been identified as a major challenge for future development of smart grids. The ever increasing electric vehicle charging further increases the energy demand. This pape...The widely adoption of Electric Vehicle (EV) has been identified as a major challenge for future development of smart grids. The ever increasing electric vehicle charging further increases the energy demand. This paper reports the development of an Advanced Metering Infrastructure (AMI) as an effective tool to reshape the load profile of EV charging by adopting appropriate demand side management strategy. This paper presents a total solution for EV charging service platform (EVAMI) based on power line and internet communication. It must be stressed that the development of Third Party Customer Service Platform in this investigation facilitates a single bill to be issued to EV owners. Hence, EV owners understand their energy usage and thus may perform energy saving activity efficiently. Experiment and evaluation of the proposed system show that the throughput achieved is about 5 Mbps at 10 ms end to end delay in Power line Communication. By introducing two dimensional dynamic pricing and charging schedule, the proposed EVAMI successfully reduces 36% peak consumption and increases the “off peak” consumption by 54%. Therefore the EVAMI does not only reduce the peak consumption but also relocates the energy demand effectively.展开更多
The partial charge-simulation method is presented for calculating the capacitances of rectangularshielded lines with offset inner conductors.The capacitances calculated by using this method are in goodagreement with t...The partial charge-simulation method is presented for calculating the capacitances of rectangularshielded lines with offset inner conductors.The capacitances calculated by using this method are in goodagreement with those of other available methods.This method can improve the accuracy by increasing theterm number N of series.展开更多
文摘Content Addressable Memory (CAM) is a type of memory used for high-speed search applications. Due to parallel comparison feature, the CAM memory leads to large power consumption which is caused by frequent pre-charge or discharge of match line. In this paper, CAM for automatic charge balancing with self-control mechanism is proposed to control the voltage swing of ML for reducing the power consumption of CAM. Another technique to reduce the power dissipation is to use MSML, it combines the master-slave architecture with charge minimization technique. Unlike the conventional design, only one match line (ML) is used, whereas in Master-Slave Match Line (MSML) one master ML and several slave MLs are used to reduce the power dissipation in CAM caused by match lines (MLs). Theoretically, the match line (ML) reduces the power consumption up to 50% which is independent of search and match case. The simulation results using Cadence tool of MSML show the reduced power consumption in CAM and modified CAM cell.
基金Financial support for this work is provided by National Natural Science Foundation of China:52074301 and Supported by Key projects of National Natural Science Foundation of China:51934001.
文摘Blasting test research was conducted on iron ore specimens with variable line density charging structures.Computer tomography(CT),digital image processing,and three-dimensional model reconstruction techniques were used to analyze the damage characteristics of iron ore specimens after blasting based on the calculated number of box dimensions.The results show that increasing the variable line density section charge uncoupling coefficient reduces the overall damage to the specimen by up to 1.73%,indicating that the overall damage size negatively correlates with the size of the variable line density section charge uncoupling coefficient.The damage characteristics of iron ore specimens from different layers(uncoupled charging section,transition section,coupled charging section)have some variability;when the uncoupling coefficient of the uncoupled charging section was reduced,the uncoupled section of the center of the damaged layer increased and then reduced.In contrast,the transition section shows a trend of increase,and the coupled section shows a minor difference,fully demonstrating the change in the variable line density section of the uncoupling coefficient of the specimen blasting damage effects.This study concludes that in the actual blasting project,choosing a reasonable variable line charge density structure can make the release of explosive blast energy more uniform to efficiently and thoroughly use explosive power to improve the iron ore crushing effect.
基金supported by the National Natural Science Foundations of China (Grant Nos. 10947017/A05 and 11074190)the Science Foundation of the Key Laboratory of Novel Thin Film Solar Cells, China (Grant No. KF200912)the Graduates' Innovative Scientific Research Project of Zhejiang Province, China (Grant No. 2011831)
文摘We propose a simple scheme to generate x-type four-charge entangled states by using SQUID-based charge qubits capacitively coupled to a transmission line resonator (TLR). The coupling between the superconducting qubit and the TLR can be effectively controlled by properly adjusting the control parameters of the charge qubit. The experimental feasibility of our scheme is also shown.
文摘This paper introduces the principles, instrumentation, implementation, and industrial applications of an on- line thermal neutron prompt- gamma element analysis system (using a 252Cf neutron source, Am- Be neutron source, or neutron generator). The energy resolution of the system at the H prompt- gamma full- energy photopeak (2.22325 MeV) is 3.6 keV. The concentration measurement error of A12O3, Fe2O3, CaO and SiO2 is ±0.3%,±0.1%.±0.4% and ±0.4%, respectively.The system has been tested on- site at both the Shandong and the Zhengzhou Aluminum Works. Our preliminary on- site measurements confirm that the stability, reliability, measurement range, and accuracy of the system can meet the requirements of the aluminum production process. Facilitation of this measurement at aluminum plants is expected to reduce plant costs by over 3 million dollars annually through reduced energy consumption, more rapid qualification of pulps being mixed during the production process, and in reduced labor costs.
基金Project supported by the National Natural Science Foundation of China (Grant No 10405025)
文摘Charge state distribution of 0.8MeV/u uranium ions after transmission through a thin carbon foil has been studied. It is observed that the charge state distribution is equilibrated after the uranium ions have passed through a 15μg/cm^2 carbon foil. The equilibrated average charge state is 33.72 and the charge equilibration time of uranium ions in carbon foil is less than 5.4fs.
基金supported by National Natural Science Foundation of China under Grant No.51707066by the Fundamental Research Funds for the Central Universities under Grant No.2017 MS004 and No.XCA17003-04
文摘The corona current pulses generated by corona discharge are the sources of the radio interference from transmission lines and the detailed characteristics of the corona current pulses from conductor should be investigated in order to reveal their generation mechanism.In this paper,the line-to-plane electrodes are designed to measure and analyze the characteristics of corona current pulses from positive corona discharges.The influences of inter-electrode gap and line diameters on the detail characteristics of corona current pulses,such as pulse amplitude,rise time,duration time and repetition frequency,are carefully analyzed.The obtained results show that the pulse amplitude and the repetition frequency increase with the diameter of line electrode when the electric fields on the surface of line electrodes are same.With the increase of inter-electrode gap,the pulse amplitude and the repetition frequency first decrease and then turn to be stable,while the rise time first increases and finally turns to be stable.The distributions of electric field and space charges under the line electrodes are calculated,and the influences of inter-electrode gap and line electrode diameter on the experimental results are qualitatively explained.
基金supported by Hunan Provincial Natural Science Foundation of China (Grant No 06JJ50014)the Key Project Foundation of the Education Commission of Hunan Province of China (Grant No 06A055)
文摘This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on de-SQUID charge qubits through the control of their coupling to a 1D transmission line resonator (TLR). The TLR behaves effectively as a quantum data-bus mode of a harmonic oscillator, which has several practical advantages including strong coupling strength, reproducibility, immunity to 1/f noise, and suppressed spontaneous emission. In this protocol, the data-bus does not need to stay adiabatically in its ground state, which results in not only fast quantum operation, hut also high-fidelity quantum information processing. Also, it elaborates the transfer process with the 1D transmission line.
文摘A coordinated physicomathematical model for the propagation of a soliton-like electromagnetic pulse in a heterogeneous medium is developed in the presence of strong discontinuities in the electromagnetic field. The model is based on the reduction of Maxwell’s equations to the well-studied wave equation. When the electromagnetic pulse was specified, its amplitude modulation was taken into account, as was the nonstationary broadening of the spectral line. Conditions for matching the momentum for the first initial boundary-value problem are obtained. The time dispersion of the electrical induction is taken into account in terms of the function of signal conditioning which takes account of the broadening of its spectral line and integration over the continuous spectrum. With this approach, it is not necessary to neglect spatial derivatives, and also to use spatial nonlocal relations to take account of the effect of surface charge, surface current, and spatial dispersion of electrical induction at the interfaces of adjacent media.
文摘The widely adoption of Electric Vehicle (EV) has been identified as a major challenge for future development of smart grids. The ever increasing electric vehicle charging further increases the energy demand. This paper reports the development of an Advanced Metering Infrastructure (AMI) as an effective tool to reshape the load profile of EV charging by adopting appropriate demand side management strategy. This paper presents a total solution for EV charging service platform (EVAMI) based on power line and internet communication. It must be stressed that the development of Third Party Customer Service Platform in this investigation facilitates a single bill to be issued to EV owners. Hence, EV owners understand their energy usage and thus may perform energy saving activity efficiently. Experiment and evaluation of the proposed system show that the throughput achieved is about 5 Mbps at 10 ms end to end delay in Power line Communication. By introducing two dimensional dynamic pricing and charging schedule, the proposed EVAMI successfully reduces 36% peak consumption and increases the “off peak” consumption by 54%. Therefore the EVAMI does not only reduce the peak consumption but also relocates the energy demand effectively.
文摘The partial charge-simulation method is presented for calculating the capacitances of rectangularshielded lines with offset inner conductors.The capacitances calculated by using this method are in goodagreement with those of other available methods.This method can improve the accuracy by increasing theterm number N of series.