Low frequency infrasonic waves are emitted during the formation and movement of debris flows, which are detectable in a radius of several kilometers, thereby to serve as the precondition for their remote monitoring.Ho...Low frequency infrasonic waves are emitted during the formation and movement of debris flows, which are detectable in a radius of several kilometers, thereby to serve as the precondition for their remote monitoring.However, false message often arises from the simple mechanics of alarms under the ambient noise interference.To improve the accuracy of infrasound monitoring for early-warning against debris flows, it is necessary to analyze the monitor information to identify in them the infrasonic signals characteristic of debris flows.Therefore, a large amount of debris flow infrasound and ambient noises have been collected from different sources for analysis to sum up their frequency spectra, sound pressures, waveforms, time duration and other correlated characteristics so as to specify the key characteristic parameters for different sound sources in completing the development of the recognition system of debris flow infrasonic signals for identifying their possible existence in the monitor signals.The recognition performance of the system has been verified by simulating tests and long-term in-situ monitoring of debris flows in Jiangjia Gully,Dongchuan, China to be of high accuracy and applicability.The recognition system can provide the local government and residents with accurate precautionary information about debris flows in preparation for disaster mitigation and minimizing the loss of life and property.展开更多
Although predecessors have made great contributions to the semantic segmentation of 3D indoor scenes,there still exist some challenges in the debris recognition of terrain data.Compared with hundreds of thousands of i...Although predecessors have made great contributions to the semantic segmentation of 3D indoor scenes,there still exist some challenges in the debris recognition of terrain data.Compared with hundreds of thousands of indoor point clouds,the amount of terrain point cloud is up to millions.Apart from that,terrain point cloud data obtained from remote sensing is measured in meters,but the indoor scene is measured in centimeters.In this case,the terrain debris obtained from remote sensing mapping only have dozens of points,which means that sufficient training information cannot be obtained only through the convolution of points.In this paper,we build multi-attribute descriptors containing geometric information and color information to better describe the information in low-precision terrain debris.Therefore,our process is aimed at the multi-attribute descriptors of each point rather than the point.On this basis,an unsupervised classification algorithm is proposed to divide the point cloud into several terrain areas,and regard each area as a graph vertex named super point to form the graph structure,thus effectively reducing the number of the terrain point cloud from millions to hundreds.Then we proposed a graph convolution network by employing PointNet for graph embedding and recurrent gated graph convolutional network for classification.Our experiments show that the terrain point cloud can reduce the amount of data from millions to hundreds through the super point graph based on multi-attribute descriptor and our accuracy reached 91.74%and the IoU reached 94.08%,both of which were significantly better than the current methods such as SEGCloud(Acc:88.63%,IoU:89.29%)and PointCNN(Acc:86.35,IoU:87.26).展开更多
A method and results of identification of wear debris using their morphological features are presented. The color images of wear debris were used as initial data. Each particle was characterized by a set of numerical ...A method and results of identification of wear debris using their morphological features are presented. The color images of wear debris were used as initial data. Each particle was characterized by a set of numerical parameters combined by its shape, color and surface texture features through a computer vision system. Those features were used as input vector of artificial neural network for wear debris identification. A radius basis function (RBF) network based model suitable for wear debris recognition was established, and its algorithm was presented in detail. Compared with traditional recognition methods, the RBF network model is faster in convergence, and higher in accuracy.展开更多
基金supported by the National Science and Technology Support Program(2011BAK12B00)the International Cooperation Project of the Department of Science and Technology of Sichuan Province(2009HH0005)the Project of the Department of Science and Technology of Sichuan Province(2015JY0235)
文摘Low frequency infrasonic waves are emitted during the formation and movement of debris flows, which are detectable in a radius of several kilometers, thereby to serve as the precondition for their remote monitoring.However, false message often arises from the simple mechanics of alarms under the ambient noise interference.To improve the accuracy of infrasound monitoring for early-warning against debris flows, it is necessary to analyze the monitor information to identify in them the infrasonic signals characteristic of debris flows.Therefore, a large amount of debris flow infrasound and ambient noises have been collected from different sources for analysis to sum up their frequency spectra, sound pressures, waveforms, time duration and other correlated characteristics so as to specify the key characteristic parameters for different sound sources in completing the development of the recognition system of debris flow infrasonic signals for identifying their possible existence in the monitor signals.The recognition performance of the system has been verified by simulating tests and long-term in-situ monitoring of debris flows in Jiangjia Gully,Dongchuan, China to be of high accuracy and applicability.The recognition system can provide the local government and residents with accurate precautionary information about debris flows in preparation for disaster mitigation and minimizing the loss of life and property.
基金This research was funded by grant from the Key Research and Development Program of Shaanxi Province(2018NY-127,2019ZDLNY07-02-01,2020NY-205)National Undergraduate Training Program for Innovation and entrepreneurship plan(S201910712240,X201910712080).
文摘Although predecessors have made great contributions to the semantic segmentation of 3D indoor scenes,there still exist some challenges in the debris recognition of terrain data.Compared with hundreds of thousands of indoor point clouds,the amount of terrain point cloud is up to millions.Apart from that,terrain point cloud data obtained from remote sensing is measured in meters,but the indoor scene is measured in centimeters.In this case,the terrain debris obtained from remote sensing mapping only have dozens of points,which means that sufficient training information cannot be obtained only through the convolution of points.In this paper,we build multi-attribute descriptors containing geometric information and color information to better describe the information in low-precision terrain debris.Therefore,our process is aimed at the multi-attribute descriptors of each point rather than the point.On this basis,an unsupervised classification algorithm is proposed to divide the point cloud into several terrain areas,and regard each area as a graph vertex named super point to form the graph structure,thus effectively reducing the number of the terrain point cloud from millions to hundreds.Then we proposed a graph convolution network by employing PointNet for graph embedding and recurrent gated graph convolutional network for classification.Our experiments show that the terrain point cloud can reduce the amount of data from millions to hundreds through the super point graph based on multi-attribute descriptor and our accuracy reached 91.74%and the IoU reached 94.08%,both of which were significantly better than the current methods such as SEGCloud(Acc:88.63%,IoU:89.29%)and PointCNN(Acc:86.35,IoU:87.26).
文摘A method and results of identification of wear debris using their morphological features are presented. The color images of wear debris were used as initial data. Each particle was characterized by a set of numerical parameters combined by its shape, color and surface texture features through a computer vision system. Those features were used as input vector of artificial neural network for wear debris identification. A radius basis function (RBF) network based model suitable for wear debris recognition was established, and its algorithm was presented in detail. Compared with traditional recognition methods, the RBF network model is faster in convergence, and higher in accuracy.