This work introduces the branching ratio(BR) method for determining relative spectral responses,which are needed routinely in laser induced breakdown spectroscopy(LIBS). Neutral and singly ionized Ti lines in the 250...This work introduces the branching ratio(BR) method for determining relative spectral responses,which are needed routinely in laser induced breakdown spectroscopy(LIBS). Neutral and singly ionized Ti lines in the 250–498 nm spectral range are investigated by measuring laser-induced micro plasma near a Ti plate and used to calculate the relative spectral response of an entire LIBS detection system. The results are compared with those of the conventional relative spectral response calibration method using a tungsten halogen lamp, and certain lines available for the BR method are selected. The study supports the common manner of using BRs to calibrate the detection system in LIBS setups.展开更多
In order to reduce the fluctuation of LIBS detection spectrum of liquid sample,the full-spectrum sum method and the internal standardization method is adopted,using an equal-RSD normalization algorithm to calibrate th...In order to reduce the fluctuation of LIBS detection spectrum of liquid sample,the full-spectrum sum method and the internal standardization method is adopted,using an equal-RSD normalization algorithm to calibrate the detection spectrum.Experiment result shows that the full-spectrum sum method reduced the RSD of parallel samples of Cd and Cr to 9.4% and 11.06% from 28.32% and 31.93% respectively,yielded better overall calibration than the singleelement internal standardization approach,thereby suggesting that the former method is convenient and effective for online calibration of LIBS for detection of aqueous heavy metals.展开更多
A light field modulated imaging spectrometer (LFMIS) can acquire the spatial-spectral datacube of targets of interest or a scene in a single shot. The spectral information of a point target is imaged on the pixels c...A light field modulated imaging spectrometer (LFMIS) can acquire the spatial-spectral datacube of targets of interest or a scene in a single shot. The spectral information of a point target is imaged on the pixels covered by a microlens. The pixels receive spectral information from different spectral filters to the diffraction and misalignments of the optical components. In this paper, we present a linear spectral multiplexing model of the acquired target spectrum. A calibration method is proposed for calibrating the center wavelengths and bandwidths of channels of an LFMIS system based on the liner-variable filter (LVF) and for determining the spectral multiplexing matrix. In order to improve the accuracy of the restored spectral data, we introduce a reconstruction algorithm based on the total least square (TLS) approach. Simulation and experimental results confirm the performance of the spectrum reconstruction algorithm and validate the feasibility of the proposed calibrating scheme.展开更多
A simple and rapid analytical method for the simultaneous quantification of three commercial azo dyes—Tartrazine (TAR), Congo Red (CR), and Amido Black (AB) in water is presented. The simultaneous assessment of the i...A simple and rapid analytical method for the simultaneous quantification of three commercial azo dyes—Tartrazine (TAR), Congo Red (CR), and Amido Black (AB) in water is presented. The simultaneous assessment of the individual concentration of an organic dye in mixtures using a spectrophotometric method is a difficult procedure in analytical chemistry, due to spectral overlapping. This drawback can be overcome if a multivariate calibration method such as Partial Least Squares Regression (PLSR) is used. This study presents a calibration model based on absorption spectra in the 300 - 650 nm range for a set of 20 different mixtures of dyes, followed by the prediction of the concentrations of dyes in 6 validation mixtures, randomly selected, using the PLSR method. Estimated limits of detection (LOD) were 0.106, 0.047 and 0.079 mg/L for TAR, CR, and AB, respectively, and limits of quantification (LOQ) were 0.355, 0.157 and 0.265 mg/L for TAR, CR, and AB, respectively. Quantitative determination of the three azo dyes was performed following optimized adsorption experiments onto chitosan beads of mixtures of TAR, CR and AB. Adsorption isotherm and kinetic studies were carried out, proving that the proposed PLSR method is rapid, accurate and reliable.展开更多
By using speetrally stable targets, the empirical line (EL) method was tested to correct the multispectral IKONOS imagery acquired over Putuo Mountain, Zhejiang, China. A series of calibration targets, which were sp...By using speetrally stable targets, the empirical line (EL) method was tested to correct the multispectral IKONOS imagery acquired over Putuo Mountain, Zhejiang, China. A series of calibration targets, which were spectrally stable over time, were selected to establish the linear predicted equation. Subsequently, a series of spectrally stable validation targets were selected to assess the accuracy of the equations. And, validation targets, which were speetrally unstable over time, were used to test the feasibility of using the EL method to calibrate the archival remotely sensed data. Ground reflectance measurements for each target were made using an ASD FieldSpec spectroradiometer. A Trimble GeoXTTM GPS unit with sub-meter accuracy was used to estimate the target position accurately. Linear regression equations for four tKONOS bands were derived. The coefficients of determination for the blue, green, and red bands were all greater than 0.9800 and it was 0.9697 for the near infrared band. It was concluded that reasonable results could be obtained by using speetrally stable targets.展开更多
Digital sun sensor is one of the most important sensors used in the Attitude Determination System(ADS)of the satellite.Due to the harsh environmental conditions that exist in the space,various distortions may occur in...Digital sun sensor is one of the most important sensors used in the Attitude Determination System(ADS)of the satellite.Due to the harsh environmental conditions that exist in the space,various distortions may occur in the sun sensor optical system that lead to the reduced accuracy of this equipment.So,it is necessary to recalibrate the optical parameters of the aforementioned sensors.For this purpose,first a novel attitude independent error model is proposed for the SS-411 sun sensor that includes the central point of the CCD array,installation error,filter thickness and sensor misalignment.So,the mutual interfaces between the sensor parameters are considered in the developed model.In order to extract the sensor parameters,a nonlinear optimization technique called the Levenberg–Marquardt is applied to the developed model as a batch algorithm.In addition,the Extended Kalman Filter(EKF)and the Unscented Kalman Filter(UKF)have been utilized as sequential strategies.It will be shown that by considering a worst case of variation amount for sensor parameters,an accuracy improvement of about 17°is achieved by the developed calibration algorithms.Comparison between the developed algorithms represents that UKF has higher accuracy,shorter time convergence but higher computational load.展开更多
基金supported by the National Key Scientific Instrument and Equipment Development Projects of China (2014YQ120351)National Natural Science Foundation of China (11704372)Anhui Provincial Natural Science Foundation (1708085QF130)
文摘This work introduces the branching ratio(BR) method for determining relative spectral responses,which are needed routinely in laser induced breakdown spectroscopy(LIBS). Neutral and singly ionized Ti lines in the 250–498 nm spectral range are investigated by measuring laser-induced micro plasma near a Ti plate and used to calculate the relative spectral response of an entire LIBS detection system. The results are compared with those of the conventional relative spectral response calibration method using a tungsten halogen lamp, and certain lines available for the BR method are selected. The study supports the common manner of using BRs to calibrate the detection system in LIBS setups.
文摘In order to reduce the fluctuation of LIBS detection spectrum of liquid sample,the full-spectrum sum method and the internal standardization method is adopted,using an equal-RSD normalization algorithm to calibrate the detection spectrum.Experiment result shows that the full-spectrum sum method reduced the RSD of parallel samples of Cd and Cr to 9.4% and 11.06% from 28.32% and 31.93% respectively,yielded better overall calibration than the singleelement internal standardization approach,thereby suggesting that the former method is convenient and effective for online calibration of LIBS for detection of aqueous heavy metals.
基金Project supported by the National Natural Science Foundation of China(Grant No.61307020)Beijing Natural Science Foundation(Grant No.4172038)the Qingdao Opto-electronic United Foundation,China
文摘A light field modulated imaging spectrometer (LFMIS) can acquire the spatial-spectral datacube of targets of interest or a scene in a single shot. The spectral information of a point target is imaged on the pixels covered by a microlens. The pixels receive spectral information from different spectral filters to the diffraction and misalignments of the optical components. In this paper, we present a linear spectral multiplexing model of the acquired target spectrum. A calibration method is proposed for calibrating the center wavelengths and bandwidths of channels of an LFMIS system based on the liner-variable filter (LVF) and for determining the spectral multiplexing matrix. In order to improve the accuracy of the restored spectral data, we introduce a reconstruction algorithm based on the total least square (TLS) approach. Simulation and experimental results confirm the performance of the spectrum reconstruction algorithm and validate the feasibility of the proposed calibrating scheme.
文摘A simple and rapid analytical method for the simultaneous quantification of three commercial azo dyes—Tartrazine (TAR), Congo Red (CR), and Amido Black (AB) in water is presented. The simultaneous assessment of the individual concentration of an organic dye in mixtures using a spectrophotometric method is a difficult procedure in analytical chemistry, due to spectral overlapping. This drawback can be overcome if a multivariate calibration method such as Partial Least Squares Regression (PLSR) is used. This study presents a calibration model based on absorption spectra in the 300 - 650 nm range for a set of 20 different mixtures of dyes, followed by the prediction of the concentrations of dyes in 6 validation mixtures, randomly selected, using the PLSR method. Estimated limits of detection (LOD) were 0.106, 0.047 and 0.079 mg/L for TAR, CR, and AB, respectively, and limits of quantification (LOQ) were 0.355, 0.157 and 0.265 mg/L for TAR, CR, and AB, respectively. Quantitative determination of the three azo dyes was performed following optimized adsorption experiments onto chitosan beads of mixtures of TAR, CR and AB. Adsorption isotherm and kinetic studies were carried out, proving that the proposed PLSR method is rapid, accurate and reliable.
基金Project supported by the National Natural Science Foundation of China (No.40171065)the National High Technology Research and Development Program of China (Nos.2002AA130010-2-7 and 2003AA131020-04-06).
文摘By using speetrally stable targets, the empirical line (EL) method was tested to correct the multispectral IKONOS imagery acquired over Putuo Mountain, Zhejiang, China. A series of calibration targets, which were spectrally stable over time, were selected to establish the linear predicted equation. Subsequently, a series of spectrally stable validation targets were selected to assess the accuracy of the equations. And, validation targets, which were speetrally unstable over time, were used to test the feasibility of using the EL method to calibrate the archival remotely sensed data. Ground reflectance measurements for each target were made using an ASD FieldSpec spectroradiometer. A Trimble GeoXTTM GPS unit with sub-meter accuracy was used to estimate the target position accurately. Linear regression equations for four tKONOS bands were derived. The coefficients of determination for the blue, green, and red bands were all greater than 0.9800 and it was 0.9697 for the near infrared band. It was concluded that reasonable results could be obtained by using speetrally stable targets.
文摘Digital sun sensor is one of the most important sensors used in the Attitude Determination System(ADS)of the satellite.Due to the harsh environmental conditions that exist in the space,various distortions may occur in the sun sensor optical system that lead to the reduced accuracy of this equipment.So,it is necessary to recalibrate the optical parameters of the aforementioned sensors.For this purpose,first a novel attitude independent error model is proposed for the SS-411 sun sensor that includes the central point of the CCD array,installation error,filter thickness and sensor misalignment.So,the mutual interfaces between the sensor parameters are considered in the developed model.In order to extract the sensor parameters,a nonlinear optimization technique called the Levenberg–Marquardt is applied to the developed model as a batch algorithm.In addition,the Extended Kalman Filter(EKF)and the Unscented Kalman Filter(UKF)have been utilized as sequential strategies.It will be shown that by considering a worst case of variation amount for sensor parameters,an accuracy improvement of about 17°is achieved by the developed calibration algorithms.Comparison between the developed algorithms represents that UKF has higher accuracy,shorter time convergence but higher computational load.