In this work,the possibility of adaptive algorithm in WIM(weight-in-motion)systems,in which fibre optic sensors are used,is shown.Appointment of dynamic weighing device consists in determining the weight and type of v...In this work,the possibility of adaptive algorithm in WIM(weight-in-motion)systems,in which fibre optic sensors are used,is shown.Appointment of dynamic weighing device consists in determining the weight and type of vehicle.In this work an algorithm for processing the input data and fiber optic sensor to create the database used in the algorithm is presented.The results of the algorithm for the identification of vehicles are given.The conclusions are made and options of increasing the accuracy of the identification algorithm are considered.展开更多
With the popularity of the automatic precipitation gauges in national weather stations,testing their performance and adjusting their measurements are top priorities. Additionally,because different climatic conditions ...With the popularity of the automatic precipitation gauges in national weather stations,testing their performance and adjusting their measurements are top priorities. Additionally,because different climatic conditions may have different effects on the performance of the precipitation gauges, it is also necessary to test the gauges in different areas. This study mainly analyzed precipitation measurements from the single-Altershielded TRwS204 automatic weighing gauge(TRwS_(SA)) relative to the adjusted manual measurements(reference precipitation) from the Chinese standard precipitation gauge in a doublefence wind shield(CSPG_(DF)) in the Hulu watershed in the Qilian Mountains, China. The measurements were compared over the period from August 2014 to July2017, and the transfer function derived from the work by Kochendorfer et al.(2017 a) for correcting windinduced losses was applied to the TRwS_(SA) measurements. The results show that the average loss of TRwS_(SA) measurements relative to the reference precipitation decreased from 0.55 mm(10.7%) to 0.51 mm(9.9%) for rainfall events, from 0.35 mm(8.5%)to 0.22 mm(5.3%) for sleet events, and from 0.49 mm(18.9%) to 0.33 mm(12.7%) for snowfall events after adjustment. The uncorrected large biases of TRwS_(SA) measurements are considered to be mainly caused by specific errors of TRwS_(SA), different gauge orifice area and random errors. These types of errors must be considered when comparing precipitation measurements for different gauge types, especially in the mountains.展开更多
The weighing system designed for large structure object is mainly composed of three parts. The part of hydraulic system is made up of hydraulic cylinders, high pressure hydraulic hoses and electric pumps; the part of ...The weighing system designed for large structure object is mainly composed of three parts. The part of hydraulic system is made up of hydraulic cylinders, high pressure hydraulic hoses and electric pumps; the part of computer controlling system comprises pressure sensors, displacement sensors, data acquisitions, RS 485 network and the computer controlling model; the part of loading system is composed of the fulcrum structure and the concrete girder. The measurement principle and composition of the weighing system are discussed in this paper. Credibility and security of the weighing system are fully considered during the design phase. The hydraulic system is controlled by pilot operated check valves in case of the sudden loss of system pressure. The states of all gauges and RS485 network are monitored by computer controlling system functioning in different modules. When the system is running incorrectly, it will be switched to manual mode and give alarm. The finite element method is employed to analyze fulcrum structure so that the system has enough intensity to be lifted. Hence the reliability of the whole system is enhanced.展开更多
Precipitation is one of the most important indicators of climate data,but there are many errors in precipitation measurements due to the influence of climatic conditions,especially those of solid precipitation in alpi...Precipitation is one of the most important indicators of climate data,but there are many errors in precipitation measurements due to the influence of climatic conditions,especially those of solid precipitation in alpine mountains and at high latitude areas.The measured amount of precipitation in those areas is frequently less than the actual amount of precipitation.To understand the impact of climatic conditions on precipitation measurements in the mountainous areas of Northwest China and the applicability of different gauges in alpine mountains,we established a cryospheric hydrometeorology observation(CHOICE)system in 2008 in the Qilian Mountains,which consists of six automated observation stations located between 2960 and 4800 m a.s.l.Total Rain weighing Sensor(TRwS)gauges tested in the World Meteorological Organization-Solid Precipitation Intercomparison Experiment(WMO-SPICE)were used at observation stations with the CHOICE system.To study the influence of climatic conditions on different types of precipitation measured by the TRwS gauges,we conducted an intercomparison experiment of precipitation at Hulu-1 station that was one of the stations in the CHOICE system.Moreover,we tested the application of transfer functions recommended by the WMO-SPICE at this station using the measurement data from a TRwS gauge from August 2016 to December 2020 and computed new coefficients for the same transfer functions that were more appropriate for the dataset from Hulu-1 station.The new coefficients were used to correct the precipitation measurements of other stations in the CHOICE system.Results showed that the new parameters fitted to the local dataset had better correction results than the original parameters.The environmental conditions of Hulu-1 station were very different from those of observation stations that provided datasets to create the transfer functions.Thus,root-mean-square error(RMSE)of solid and mixed precipitation corrected by the original parameters increased significantly by the averages of 0.135(353%)and 0.072 mm(111%),respectively.RMSE values of liquid,solid and mixed precipitation measurements corrected by the new parameters decreased by 6%,20% and 13%,respectively.In addition,the new parameters were suitable for correcting precipitation at other five stations in the CHOICE system.The relative precipitation(RP)increment of different types of precipitation increased with rising altitude.The average RP increment value of snowfall at six stations was the highest,reaching 7%,while that of rainfall was the lowest,covering 3%.Our results confirmed that the new parameters could be used to correct precipitation measurements of the CHOICE system.展开更多
In the injection of pulverized coal into a blast furnace, there are some factors which affect the readout of electronic weighing system. Through analyzing the measuring errors, it is found that the main reasons are p...In the injection of pulverized coal into a blast furnace, there are some factors which affect the readout of electronic weighing system. Through analyzing the measuring errors, it is found that the main reasons are pressure fluctuations of storage tank and puffing tank. According to the interaction of pressures, a neural network based method combined with fuzzy logic is adopted to enhance the precision. Experimental results show this method is satisfactory.展开更多
Some new construction methods of the optimum chemical balance weighing designs and pairwise efficiency and variance balanced designs are proposed, which are based on the incidence matrices of the known symmetric balan...Some new construction methods of the optimum chemical balance weighing designs and pairwise efficiency and variance balanced designs are proposed, which are based on the incidence matrices of the known symmetric balanced incomplete block designs. Also the conditions under which the constructed chemical balance weighing designs become A-optimal are also been given.展开更多
Methods of constructing the optimum chemical balance weighing designs from symmetric balanced incomplete block designs are proposed with illustration. As a by-product pairwise efficiency and variance balanced designs ...Methods of constructing the optimum chemical balance weighing designs from symmetric balanced incomplete block designs are proposed with illustration. As a by-product pairwise efficiency and variance balanced designs are also obtained.展开更多
Sample preparation by fusion for XRF analysis is all about knowing the exact weights of the sample and the flux (sample-to-flux ratio). The whole analytical chain, including the weighing step in sample preparation pri...Sample preparation by fusion for XRF analysis is all about knowing the exact weights of the sample and the flux (sample-to-flux ratio). The whole analytical chain, including the weighing step in sample preparation prior to fusion, is of crucial importance to get precise and accurate x-ray fluorescence (XRF) results. Consequently, the weighing method will affect the quality of the analytical results given by the spectrometer. In this study, the effects of different weighing methods on the precision (RSD) of the obtained XRF results are compared to determine the best weighing method for sample preparation by fusion in terms of comparable precisions in the XRF results.展开更多
Dynanfic forces are the main factor that influences the axle weight measurement accuracy of moving vehicle. Empirical mode decomposition (EMD) is presented to separate the dynamic forces contained in the axle weight...Dynanfic forces are the main factor that influences the axle weight measurement accuracy of moving vehicle. Empirical mode decomposition (EMD) is presented to separate the dynamic forces contained in the axle weight signal. The concept and algorithm of EMD are introduced. The characteristic of the axle weight signal is analyzed. The method of judging pseudo intrinsic mode function (pseudo-IMF) is presented to improve the weighing accuracy. Numerical simulation and field experiments are conducted to evaluate the performance of EMD. The result shows effectiveness of the proposed method. Maximum weighing errors of the front axle, the rear axle and the gross weight at the speed of 15 km/h or lower are 2.22%, 6.26% and 4.11% respectively.展开更多
There is a contradiction between high processing complexity and limited processing resources when turbo codes are used on the on-board processing(OBP)satellite platform.To solve this problem,this paper proposes a part...There is a contradiction between high processing complexity and limited processing resources when turbo codes are used on the on-board processing(OBP)satellite platform.To solve this problem,this paper proposes a partial iterative decode method for on-board application,in which satellite only carries out limited number of iteration according to the on-board processing resource limitation and the throughput capacity requirements.In this method,the soft information of parity bits,which is not obtained individually in conventional turbo decoder,is encoded and forwarded along with those of information bits.To save downlink transmit power,the soft information is limited and normalized before forwarding.The iteration number and limiter parameters are optimized with the help of EXIT chart and numerical analysis,respectively.Simulation results show that the proposed method can effectively decrease the complexity of onboard processing while achieve most of the decoding gain..展开更多
In our study, entropy weight coefficients, based on Shannon entropy, were determined for an attribute recognition model to model the quality of groundwater sources. The model follows the theory previously proposed by ...In our study, entropy weight coefficients, based on Shannon entropy, were determined for an attribute recognition model to model the quality of groundwater sources. The model follows the theory previously proposed by Chen Q S. In the model, firstly, the author establishes the attribute space matrix and determines the weight based on Shannon entropy theory; secondly, calculates attribute measure; thirdly, evaluates that with confidence criterion and score criterion; finally, an application example is given. The results show that the water quality of the groundwater sources for the city comes up to the grade II or III standard. There is no pollution that obviously exceeds the standard and the water can meet people’s needs .The results from an evaluation of this model are in basic agreement with the observed situation and with a set pair analysis (SPA) model.展开更多
In the present paper, a physical model is proposed for reducing the problem of the drag reduction of an attached bow shock around the nose of a high-speed vehicle with on-board discharge, to the problem of a balance b...In the present paper, a physical model is proposed for reducing the problem of the drag reduction of an attached bow shock around the nose of a high-speed vehicle with on-board discharge, to the problem of a balance between the magnetic pressure and gas pressure of plane shock of a partially ionized gas consisting of the environmental gas around the nose of the vehicle and the on-board discharge-produced plasma. The relation between the shock strength and the discharge-induced magnetic pressure is studied by means of a set of one-fluid, hydromagnetic equations reformed for the present purpose, where the discharge-induced magnetic field consists of the electron current (produced by the discharge)-induced magnetic field and the partially ionized gas flow-induced one. A formula for the relation between the above parameters is derived. It shows that the discharge-induced magnetic pressure can minimize the shock strength, successfully explaining the two recent experimental observations on attached bow shock mitigation and elimination in a supersonic flow during on-board discharge [Phys. Plasmas 9 (2002) 721 and Phys. Plasmas 7 (2000) 1345]. In addition, the formula implies that the shock elimination leaves room for a layer of higher-density plasma rampart moving around the nose of the vehicle, being favourable to the plasma radar cloaking of the vehicle. The reason for it is expounded.展开更多
A problem of peak power in DC-electrified railway systems is mainly caused by train power demand during acceleration.If this power is reduced,substation peak power will be significantly decreased.This paper presents a...A problem of peak power in DC-electrified railway systems is mainly caused by train power demand during acceleration.If this power is reduced,substation peak power will be significantly decreased.This paper presents a study on optimal energy saving in DC-electrified railway with on-board energy storage system(OBESS) by using peak demand cutting strategy under different trip time controls.The proposed strategy uses OBESS to store recovered braking energy and find an appropriated time to deliver the stored energy back to the power network in such a way that peak power of every substations is reduced.Bangkok Mass Transit System(BTS)-Silom Line in Thailand is used to test and verify the proposed strategy.The results show that substation peak power is reduced by63.49% and net energy consumption is reduced by 15.56%using coasting and deceleration trip time control.展开更多
Modern satellite communication systems require on-board processing(OBP)for performance improvements,and SRAM-FPGAs are an attractive option for OBP implementation.However,SRAM-FPGAs are sensitive to radiation effects,...Modern satellite communication systems require on-board processing(OBP)for performance improvements,and SRAM-FPGAs are an attractive option for OBP implementation.However,SRAM-FPGAs are sensitive to radiation effects,among which single event upsets(SEUs)are important as they can lead to data corruption and system failure.This paper studies the fault tolerance capability of a SRAM-FPGA implemented Viterbi decoder to SEUs on the user memory.Analysis and fault injection experiments are conducted to verify that over 97%of the SEUs on user memory would not lead to output errors.To achieve a better reliability,selective protection schemes are then proposed to further improve the reliability of the decoder to SEUs on user memory with very small overhead.Although the results are obtained for a specific FPGA implementation,the developed reliability estimation model and the general conclusions still hold for other implementations.展开更多
The harsh space radiation environment compromises the reliability of an on-board switching fabric by leading to cross-point and switching element(SE)faults.Different from traditional faulttolerant switching fabrics on...The harsh space radiation environment compromises the reliability of an on-board switching fabric by leading to cross-point and switching element(SE)faults.Different from traditional faulttolerant switching fabrics only taking crosspoint faults into account,a novel Input and Output Parallel Clos network,referred to as the(p_1,p_2)-IOPClos,is proposed to tolerate both cross-point and SE faults.In the(p_1,p_2)-IOPClos,there are p_1 and p_2 expanded parallel switching planes in the input and output stages,respectively.The multiple input/output switching planes are interconnected through the middle stage to provide multiple paths in each stage by which the network throughput can be increased remarkably.Furthermore,the network reliability of the(p_1,p_2)-IOPClos under the above both kinds of faults is analyzed.The corresponding implementation cost is also presented along with the network size.Both theoretical analysis and numerical results indicate that the(p_1,p_2)-IOPClos outperforms traditional Clos-type networks at reliability,while has less implementation cost than the multi-plane Clos network.展开更多
This paper focuses on the time efficiency for machine vision and intelligent photogrammetry, especially high accuracy on-board real-time cloud detection method. With the development of technology, the data acquisition...This paper focuses on the time efficiency for machine vision and intelligent photogrammetry, especially high accuracy on-board real-time cloud detection method. With the development of technology, the data acquisition ability is growing continuously and the volume of raw data is increasing explosively. Meanwhile, because of the higher requirement of data accuracy, the computation load is also becoming heavier. This situation makes time efficiency extremely important. Moreover, the cloud cover rate of optical satellite imagery is up to approximately 50%, which is seriously restricting the applications of on-board intelligent photogrammetry services. To meet the on-board cloud detection requirements and offer valid input data to subsequent processing, this paper presents a stream-computing of high accuracy on-board real-time cloud detection solution which follows the “bottom-up” understanding strategy of machine vision and uses multiple embedded GPU with significant potential to be applied on-board. Without external memory, the data parallel pipeline system based on multiple processing modules of this solution could afford the “stream-in, processing, stream-out” real-time stream computing. In experiments, images of GF-2 satellite are used to validate the accuracy and performance of this approach, and the experimental results show that this solution could not only bring up cloud detection accuracy, but also match the on-board real-time processing requirements.展开更多
Rapid and precise location of the faults of on-board equipment of train control system is a significant factor to ensure reliable train operation.Text data of the fault tracking table of on-board equipment are taken a...Rapid and precise location of the faults of on-board equipment of train control system is a significant factor to ensure reliable train operation.Text data of the fault tracking table of on-board equipment are taken as samples,and an on-board equipment fault diagnosis model is designed based on the combination of convolutional neural network(CNN)and particle swarm optimization-support vector machines(PSO-SVM).Due to the characteristics of high dimensionality and sparseness of fault text data,CNN is used to achieve feature extraction.In order to decrease the influence of the imbalance of the fault sample data category on the classification accuracy,the PSO-SVM algorithm is introduced.The fully connected classification part of CNN is replaced by PSO-SVM,the extracted features are classified precisely,and the intelligent diagnosis of on-board equipment fault is implemented.According to the test analysis of the fault text data of on-board equipment recorded by a railway bureau and comparison with other models,the experimental results indicate that this model can obviously upgrade the evaluation indexes and can be used as an effective model for fault diagnosis for on-board equipment.展开更多
A general weighted second order elliptic equation involving critical growth is considered on bounded smooth. domain in n-dimension space. There is the singular point for the weighted coefficients in the domain. With g...A general weighted second order elliptic equation involving critical growth is considered on bounded smooth. domain in n-dimension space. There is the singular point for the weighted coefficients in the domain. With generalized blow up method, some results are obtained for asymptotic behavior of positive solutions. This problem includes Laplacian operators as special cases.展开更多
基金granted by RDSF funding,project“Fibre Optic Sensor Applications for Automatic Measurement of the Weight of Vehicles in Motion:Research and Development(2010-2012)”,No.2010/0280/2DP/2.1.1.1.0/10/APIA/VIAA/094,19.12.2010.
文摘In this work,the possibility of adaptive algorithm in WIM(weight-in-motion)systems,in which fibre optic sensors are used,is shown.Appointment of dynamic weighing device consists in determining the weight and type of vehicle.In this work an algorithm for processing the input data and fiber optic sensor to create the database used in the algorithm is presented.The results of the algorithm for the identification of vehicles are given.The conclusions are made and options of increasing the accuracy of the identification algorithm are considered.
基金supported primarily by the National Basic Research Program of China (2013CBA01806)the National Natural Sciences Foundation of China (41671029, 41690141, 41401040 and 41501040)
文摘With the popularity of the automatic precipitation gauges in national weather stations,testing their performance and adjusting their measurements are top priorities. Additionally,because different climatic conditions may have different effects on the performance of the precipitation gauges, it is also necessary to test the gauges in different areas. This study mainly analyzed precipitation measurements from the single-Altershielded TRwS204 automatic weighing gauge(TRwS_(SA)) relative to the adjusted manual measurements(reference precipitation) from the Chinese standard precipitation gauge in a doublefence wind shield(CSPG_(DF)) in the Hulu watershed in the Qilian Mountains, China. The measurements were compared over the period from August 2014 to July2017, and the transfer function derived from the work by Kochendorfer et al.(2017 a) for correcting windinduced losses was applied to the TRwS_(SA) measurements. The results show that the average loss of TRwS_(SA) measurements relative to the reference precipitation decreased from 0.55 mm(10.7%) to 0.51 mm(9.9%) for rainfall events, from 0.35 mm(8.5%)to 0.22 mm(5.3%) for sleet events, and from 0.49 mm(18.9%) to 0.33 mm(12.7%) for snowfall events after adjustment. The uncorrected large biases of TRwS_(SA) measurements are considered to be mainly caused by specific errors of TRwS_(SA), different gauge orifice area and random errors. These types of errors must be considered when comparing precipitation measurements for different gauge types, especially in the mountains.
文摘The weighing system designed for large structure object is mainly composed of three parts. The part of hydraulic system is made up of hydraulic cylinders, high pressure hydraulic hoses and electric pumps; the part of computer controlling system comprises pressure sensors, displacement sensors, data acquisitions, RS 485 network and the computer controlling model; the part of loading system is composed of the fulcrum structure and the concrete girder. The measurement principle and composition of the weighing system are discussed in this paper. Credibility and security of the weighing system are fully considered during the design phase. The hydraulic system is controlled by pilot operated check valves in case of the sudden loss of system pressure. The states of all gauges and RS485 network are monitored by computer controlling system functioning in different modules. When the system is running incorrectly, it will be switched to manual mode and give alarm. The finite element method is employed to analyze fulcrum structure so that the system has enough intensity to be lifted. Hence the reliability of the whole system is enhanced.
基金funded by the National Natural Sciences Foundation of China(42171145,41690141,41971041,42101120)the Joint Research Project of Three-River Headwaters National Park,Chinese Academy of Sciences and Qinghai Province,China(LHZX-2020-11).
文摘Precipitation is one of the most important indicators of climate data,but there are many errors in precipitation measurements due to the influence of climatic conditions,especially those of solid precipitation in alpine mountains and at high latitude areas.The measured amount of precipitation in those areas is frequently less than the actual amount of precipitation.To understand the impact of climatic conditions on precipitation measurements in the mountainous areas of Northwest China and the applicability of different gauges in alpine mountains,we established a cryospheric hydrometeorology observation(CHOICE)system in 2008 in the Qilian Mountains,which consists of six automated observation stations located between 2960 and 4800 m a.s.l.Total Rain weighing Sensor(TRwS)gauges tested in the World Meteorological Organization-Solid Precipitation Intercomparison Experiment(WMO-SPICE)were used at observation stations with the CHOICE system.To study the influence of climatic conditions on different types of precipitation measured by the TRwS gauges,we conducted an intercomparison experiment of precipitation at Hulu-1 station that was one of the stations in the CHOICE system.Moreover,we tested the application of transfer functions recommended by the WMO-SPICE at this station using the measurement data from a TRwS gauge from August 2016 to December 2020 and computed new coefficients for the same transfer functions that were more appropriate for the dataset from Hulu-1 station.The new coefficients were used to correct the precipitation measurements of other stations in the CHOICE system.Results showed that the new parameters fitted to the local dataset had better correction results than the original parameters.The environmental conditions of Hulu-1 station were very different from those of observation stations that provided datasets to create the transfer functions.Thus,root-mean-square error(RMSE)of solid and mixed precipitation corrected by the original parameters increased significantly by the averages of 0.135(353%)and 0.072 mm(111%),respectively.RMSE values of liquid,solid and mixed precipitation measurements corrected by the new parameters decreased by 6%,20% and 13%,respectively.In addition,the new parameters were suitable for correcting precipitation at other five stations in the CHOICE system.The relative precipitation(RP)increment of different types of precipitation increased with rising altitude.The average RP increment value of snowfall at six stations was the highest,reaching 7%,while that of rainfall was the lowest,covering 3%.Our results confirmed that the new parameters could be used to correct precipitation measurements of the CHOICE system.
文摘In the injection of pulverized coal into a blast furnace, there are some factors which affect the readout of electronic weighing system. Through analyzing the measuring errors, it is found that the main reasons are pressure fluctuations of storage tank and puffing tank. According to the interaction of pressures, a neural network based method combined with fuzzy logic is adopted to enhance the precision. Experimental results show this method is satisfactory.
文摘Some new construction methods of the optimum chemical balance weighing designs and pairwise efficiency and variance balanced designs are proposed, which are based on the incidence matrices of the known symmetric balanced incomplete block designs. Also the conditions under which the constructed chemical balance weighing designs become A-optimal are also been given.
文摘Methods of constructing the optimum chemical balance weighing designs from symmetric balanced incomplete block designs are proposed with illustration. As a by-product pairwise efficiency and variance balanced designs are also obtained.
文摘Sample preparation by fusion for XRF analysis is all about knowing the exact weights of the sample and the flux (sample-to-flux ratio). The whole analytical chain, including the weighing step in sample preparation prior to fusion, is of crucial importance to get precise and accurate x-ray fluorescence (XRF) results. Consequently, the weighing method will affect the quality of the analytical results given by the spectrometer. In this study, the effects of different weighing methods on the precision (RSD) of the obtained XRF results are compared to determine the best weighing method for sample preparation by fusion in terms of comparable precisions in the XRF results.
基金Project supported by the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No.035115003).Acknowledgment The authors would like to thank Shanghai Yamato Scale Co., Ltd. for providing the experiment site and truck.
文摘Dynanfic forces are the main factor that influences the axle weight measurement accuracy of moving vehicle. Empirical mode decomposition (EMD) is presented to separate the dynamic forces contained in the axle weight signal. The concept and algorithm of EMD are introduced. The characteristic of the axle weight signal is analyzed. The method of judging pseudo intrinsic mode function (pseudo-IMF) is presented to improve the weighing accuracy. Numerical simulation and field experiments are conducted to evaluate the performance of EMD. The result shows effectiveness of the proposed method. Maximum weighing errors of the front axle, the rear axle and the gross weight at the speed of 15 km/h or lower are 2.22%, 6.26% and 4.11% respectively.
基金supported by National High Technology Research and Development Program(863 Program,2012AA01A502)National Natural Science Foundation of China (41206031)National Basic Research Program(2012CB316000)
文摘There is a contradiction between high processing complexity and limited processing resources when turbo codes are used on the on-board processing(OBP)satellite platform.To solve this problem,this paper proposes a partial iterative decode method for on-board application,in which satellite only carries out limited number of iteration according to the on-board processing resource limitation and the throughput capacity requirements.In this method,the soft information of parity bits,which is not obtained individually in conventional turbo decoder,is encoded and forwarded along with those of information bits.To save downlink transmit power,the soft information is limited and normalized before forwarding.The iteration number and limiter parameters are optimized with the help of EXIT chart and numerical analysis,respectively.Simulation results show that the proposed method can effectively decrease the complexity of onboard processing while achieve most of the decoding gain..
文摘In our study, entropy weight coefficients, based on Shannon entropy, were determined for an attribute recognition model to model the quality of groundwater sources. The model follows the theory previously proposed by Chen Q S. In the model, firstly, the author establishes the attribute space matrix and determines the weight based on Shannon entropy theory; secondly, calculates attribute measure; thirdly, evaluates that with confidence criterion and score criterion; finally, an application example is given. The results show that the water quality of the groundwater sources for the city comes up to the grade II or III standard. There is no pollution that obviously exceeds the standard and the water can meet people’s needs .The results from an evaluation of this model are in basic agreement with the observed situation and with a set pair analysis (SPA) model.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 40390150 and 10005001).
文摘In the present paper, a physical model is proposed for reducing the problem of the drag reduction of an attached bow shock around the nose of a high-speed vehicle with on-board discharge, to the problem of a balance between the magnetic pressure and gas pressure of plane shock of a partially ionized gas consisting of the environmental gas around the nose of the vehicle and the on-board discharge-produced plasma. The relation between the shock strength and the discharge-induced magnetic pressure is studied by means of a set of one-fluid, hydromagnetic equations reformed for the present purpose, where the discharge-induced magnetic field consists of the electron current (produced by the discharge)-induced magnetic field and the partially ionized gas flow-induced one. A formula for the relation between the above parameters is derived. It shows that the discharge-induced magnetic pressure can minimize the shock strength, successfully explaining the two recent experimental observations on attached bow shock mitigation and elimination in a supersonic flow during on-board discharge [Phys. Plasmas 9 (2002) 721 and Phys. Plasmas 7 (2000) 1345]. In addition, the formula implies that the shock elimination leaves room for a layer of higher-density plasma rampart moving around the nose of the vehicle, being favourable to the plasma radar cloaking of the vehicle. The reason for it is expounded.
文摘A problem of peak power in DC-electrified railway systems is mainly caused by train power demand during acceleration.If this power is reduced,substation peak power will be significantly decreased.This paper presents a study on optimal energy saving in DC-electrified railway with on-board energy storage system(OBESS) by using peak demand cutting strategy under different trip time controls.The proposed strategy uses OBESS to store recovered braking energy and find an appropriated time to deliver the stored energy back to the power network in such a way that peak power of every substations is reduced.Bangkok Mass Transit System(BTS)-Silom Line in Thailand is used to test and verify the proposed strategy.The results show that substation peak power is reduced by63.49% and net energy consumption is reduced by 15.56%using coasting and deceleration trip time control.
基金supported in part by the National Key R&D Program(Grant No.2017YFE0121300)in part by the National Natural Science Foundation of China (Grant No. 61501321)+1 种基金in part by Tianjin science and technology program (Grant No. 17ZXRGGX00160)the support of the TEXEO project TEC201680339R funded by the Spanish Ministry of Economy and Competitivity
文摘Modern satellite communication systems require on-board processing(OBP)for performance improvements,and SRAM-FPGAs are an attractive option for OBP implementation.However,SRAM-FPGAs are sensitive to radiation effects,among which single event upsets(SEUs)are important as they can lead to data corruption and system failure.This paper studies the fault tolerance capability of a SRAM-FPGA implemented Viterbi decoder to SEUs on the user memory.Analysis and fault injection experiments are conducted to verify that over 97%of the SEUs on user memory would not lead to output errors.To achieve a better reliability,selective protection schemes are then proposed to further improve the reliability of the decoder to SEUs on user memory with very small overhead.Although the results are obtained for a specific FPGA implementation,the developed reliability estimation model and the general conclusions still hold for other implementations.
基金supported by the National Natural Science Foundation of China(91338108,91438206)
文摘The harsh space radiation environment compromises the reliability of an on-board switching fabric by leading to cross-point and switching element(SE)faults.Different from traditional faulttolerant switching fabrics only taking crosspoint faults into account,a novel Input and Output Parallel Clos network,referred to as the(p_1,p_2)-IOPClos,is proposed to tolerate both cross-point and SE faults.In the(p_1,p_2)-IOPClos,there are p_1 and p_2 expanded parallel switching planes in the input and output stages,respectively.The multiple input/output switching planes are interconnected through the middle stage to provide multiple paths in each stage by which the network throughput can be increased remarkably.Furthermore,the network reliability of the(p_1,p_2)-IOPClos under the above both kinds of faults is analyzed.The corresponding implementation cost is also presented along with the network size.Both theoretical analysis and numerical results indicate that the(p_1,p_2)-IOPClos outperforms traditional Clos-type networks at reliability,while has less implementation cost than the multi-plane Clos network.
基金The National Natural Science Foundation of China (91438203,91638301,91438111,41601476).
文摘This paper focuses on the time efficiency for machine vision and intelligent photogrammetry, especially high accuracy on-board real-time cloud detection method. With the development of technology, the data acquisition ability is growing continuously and the volume of raw data is increasing explosively. Meanwhile, because of the higher requirement of data accuracy, the computation load is also becoming heavier. This situation makes time efficiency extremely important. Moreover, the cloud cover rate of optical satellite imagery is up to approximately 50%, which is seriously restricting the applications of on-board intelligent photogrammetry services. To meet the on-board cloud detection requirements and offer valid input data to subsequent processing, this paper presents a stream-computing of high accuracy on-board real-time cloud detection solution which follows the “bottom-up” understanding strategy of machine vision and uses multiple embedded GPU with significant potential to be applied on-board. Without external memory, the data parallel pipeline system based on multiple processing modules of this solution could afford the “stream-in, processing, stream-out” real-time stream computing. In experiments, images of GF-2 satellite are used to validate the accuracy and performance of this approach, and the experimental results show that this solution could not only bring up cloud detection accuracy, but also match the on-board real-time processing requirements.
基金Gansu Province Higher Education Innovation Fund Project(No.2020B-104)“Innovation Star”Project for Outstanding Postgraduates of Gansu Province(No.2021CXZX-606)。
文摘Rapid and precise location of the faults of on-board equipment of train control system is a significant factor to ensure reliable train operation.Text data of the fault tracking table of on-board equipment are taken as samples,and an on-board equipment fault diagnosis model is designed based on the combination of convolutional neural network(CNN)and particle swarm optimization-support vector machines(PSO-SVM).Due to the characteristics of high dimensionality and sparseness of fault text data,CNN is used to achieve feature extraction.In order to decrease the influence of the imbalance of the fault sample data category on the classification accuracy,the PSO-SVM algorithm is introduced.The fully connected classification part of CNN is replaced by PSO-SVM,the extracted features are classified precisely,and the intelligent diagnosis of on-board equipment fault is implemented.According to the test analysis of the fault text data of on-board equipment recorded by a railway bureau and comparison with other models,the experimental results indicate that this model can obviously upgrade the evaluation indexes and can be used as an effective model for fault diagnosis for on-board equipment.
文摘A general weighted second order elliptic equation involving critical growth is considered on bounded smooth. domain in n-dimension space. There is the singular point for the weighted coefficients in the domain. With generalized blow up method, some results are obtained for asymptotic behavior of positive solutions. This problem includes Laplacian operators as special cases.