In the complex multicore chip system,network on-chip(NoC)is viewed as a kind of system interconnection that can substitute the traditional interconnect networks,which will improve the system performance and communicat...In the complex multicore chip system,network on-chip(NoC)is viewed as a kind of system interconnection that can substitute the traditional interconnect networks,which will improve the system performance and communication efficiency.With regard to the complex and large scale NoC,simple and efficient routing nodes are the critical factors to achieve low-cost and low-congestion communication performance.This paper proposes an unbuffered switch architecture and makes detailed analysis of the mechanism of buffer in the switch architecture.According to the simulation results,the S-mesh using the unbuffered switch architecture is better in terms of the optimal performance in message latency than some typical NoC architectures,such as 2D-mesh,Fat-tree,Butterfly,Octagon and so on.The synthesis results of design compiler indicate that the unbuffered switch has obvious advantages of achieving cost and operating speed for the chips.展开更多
An on-chip debug circuit based on Joint Test Action Group(JTAG)interface for L-digital signal processor(L-DSP)is proposed,which has debug functions such as storage resource access,central processing unit(CPU)pipeline ...An on-chip debug circuit based on Joint Test Action Group(JTAG)interface for L-digital signal processor(L-DSP)is proposed,which has debug functions such as storage resource access,central processing unit(CPU)pipeline control,hardware breakpoint/observation point,and parameter statistics.Compared with traditional debug mode,the proposed debug circuit completes direct transmission of data between peripherals and memory by adding data test-direct memory access(DT-DMA)module,which improves debug efficiency greatly.The proposed circuit was designed in a 0.18μm complementary metal-oxide-semiconductor(CMOS)process with an area of 167234.76μm~2 and a power consumption of 8.89 mW.And the proposed debug circuit and L-DSP were verified under a field programmable gate array(FPGA).Experimental results show that the proposed circuit has complete debug functions and the rate of DT-DMA for transferring debug data is three times faster than the CPU.展开更多
The current network-on-chip (NoC) topology cannot predict subsequent switch node status promptly. Switch nodes have to perform various functions such as routing decision, data forwarding, packet buffering, congestio...The current network-on-chip (NoC) topology cannot predict subsequent switch node status promptly. Switch nodes have to perform various functions such as routing decision, data forwarding, packet buffering, congestion control and properties of an NoC system. Therefore, these make switch architecture far more complex. This article puts forward a separating on-chip network architecture based on Mesh (S-Mesh), S-Mesh is an on-chip network that separates routing decision flow from the switches. It consists of two types of networks: datapath network (DN) and control network (CN). The CN establishes data paths for data transferring in DN. Meanwhile, the CN also transfers instructions between different resources. This property makes switch architecture simple, and eliminates conflicts in network interface units between the resource and switch. Compared with 2D-Mesh, Toms Mesh, Fat-tree and Butterfly, the average packet latency in S-Mesh is the shortest when the packet length is more than 53 B. Compared with 2D-Mesh, the areas savings of S-Mesh is about 3%-7/% and the power dissipation is decreased by approximate 2%.展开更多
基金Supported by the National High Technology Research and Development Program of China(No.2009AA01Z105)the Ministry of EducationIntel Special Foundation for Information Technology(No.MOE-INTEL-08-05)the Postdoctoral Science Foundation of China(No.20080440942,200902432)
文摘In the complex multicore chip system,network on-chip(NoC)is viewed as a kind of system interconnection that can substitute the traditional interconnect networks,which will improve the system performance and communication efficiency.With regard to the complex and large scale NoC,simple and efficient routing nodes are the critical factors to achieve low-cost and low-congestion communication performance.This paper proposes an unbuffered switch architecture and makes detailed analysis of the mechanism of buffer in the switch architecture.According to the simulation results,the S-mesh using the unbuffered switch architecture is better in terms of the optimal performance in message latency than some typical NoC architectures,such as 2D-mesh,Fat-tree,Butterfly,Octagon and so on.The synthesis results of design compiler indicate that the unbuffered switch has obvious advantages of achieving cost and operating speed for the chips.
基金supported by the China-Montenegro 3rd Science&Technology Exchange and Cooperation Project(3-7)the Open Research Fund of Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering(202005)the Double First-Class Scientific Research International Cooperation Expansion Project of Changsha University of Science&Technology(2019ic18)。
文摘An on-chip debug circuit based on Joint Test Action Group(JTAG)interface for L-digital signal processor(L-DSP)is proposed,which has debug functions such as storage resource access,central processing unit(CPU)pipeline control,hardware breakpoint/observation point,and parameter statistics.Compared with traditional debug mode,the proposed debug circuit completes direct transmission of data between peripherals and memory by adding data test-direct memory access(DT-DMA)module,which improves debug efficiency greatly.The proposed circuit was designed in a 0.18μm complementary metal-oxide-semiconductor(CMOS)process with an area of 167234.76μm~2 and a power consumption of 8.89 mW.And the proposed debug circuit and L-DSP were verified under a field programmable gate array(FPGA).Experimental results show that the proposed circuit has complete debug functions and the rate of DT-DMA for transferring debug data is three times faster than the CPU.
基金sponsored by the Hi-Tech Research and Development Program of China (2009AA01Z105)the Research Foundation of the Ministry of Education of China, and the Intel Information Technique (MOE-INTEL-08-05)
文摘The current network-on-chip (NoC) topology cannot predict subsequent switch node status promptly. Switch nodes have to perform various functions such as routing decision, data forwarding, packet buffering, congestion control and properties of an NoC system. Therefore, these make switch architecture far more complex. This article puts forward a separating on-chip network architecture based on Mesh (S-Mesh), S-Mesh is an on-chip network that separates routing decision flow from the switches. It consists of two types of networks: datapath network (DN) and control network (CN). The CN establishes data paths for data transferring in DN. Meanwhile, the CN also transfers instructions between different resources. This property makes switch architecture simple, and eliminates conflicts in network interface units between the resource and switch. Compared with 2D-Mesh, Toms Mesh, Fat-tree and Butterfly, the average packet latency in S-Mesh is the shortest when the packet length is more than 53 B. Compared with 2D-Mesh, the areas savings of S-Mesh is about 3%-7/% and the power dissipation is decreased by approximate 2%.