An ants-based on-demand routing algorithm (AORA) specialized for mobile ad hoc networks is proposed. AORA measures the network's traffic information including delivery time, route energy etc. by the continuous deli...An ants-based on-demand routing algorithm (AORA) specialized for mobile ad hoc networks is proposed. AORA measures the network's traffic information including delivery time, route energy etc. by the continuous delivery of data packets, then calculates the compositive parameter for each route which can be seen as the stigmity and uses it to choose the comparatively optimal route in real time. To adjust the weight of each traffic information, the algorithm can meet the different demand of the network's user. Multipath source self repair routing (MSSRR) algorithm and dynamic source routing (DSR) can be seen as the special samples of AORA. The routing overhead is not increased in this algorithm. By using simulation, it can be seen that the performance of AORA is better than that of DSR in all scenarios obviously, especially the delivery fraction is increased by more than 100 96.展开更多
To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,...To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.展开更多
Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts th...Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts the flow of data but also makes the network susceptible to failures in case the primary path is disrupted.In contrast,routing protocols that leverage multiple paths within the network offer a more resilient and efficient solution.Multipath routing,as a fundamental concept,surpasses the limitations of traditional shortest path first protocols.It not only redirects traffic to unused resources,effectively mitigating network congestion,but also ensures load balancing across the network.This optimization significantly improves network utilization and boosts the overall performance,making it a widely recognized efficient method for enhancing network reliability.To further strengthen network resilience against failures,we introduce a routing scheme known as Multiple Nodes with at least Two Choices(MNTC).This innovative approach aims to significantly enhance network availability by providing each node with at least two routing choices.By doing so,it not only reduces the dependency on a single path but also creates redundant paths that can be utilized in case of failures,thereby enhancing the overall resilience of the network.To ensure the optimal placement of nodes,we propose three incremental deployment algorithms.These algorithms carefully select the most suitable set of nodes for deployment,taking into account various factors such as node connectivity,traffic patterns,and network topology.By deployingMNTCon a carefully chosen set of nodes,we can significantly enhance network reliability without the need for a complete overhaul of the existing infrastructure.We have conducted extensive evaluations of MNTC in diverse topological spaces,demonstrating its effectiveness in maintaining high network availability with minimal path stretch.The results are impressive,showing that even when implemented on just 60%of nodes,our incremental deployment method significantly boosts network availability.This underscores the potential of MNTC in enhancing network resilience and performance,making it a viable solution for modern networks facing increasing demands and complexities.The algorithms OSPF,TBFH,DC and LFC perform fast rerouting based on strict conditions,while MNTC is not restricted by these conditions.In five real network topologies,the average network availability ofMNTCis improved by 14.68%,6.28%,4.76%and 2.84%,respectively,compared with OSPF,TBFH,DC and LFC.展开更多
Quantum key distribution(QKD)is a technology that can resist the threat of quantum computers to existing conventional cryptographic protocols.However,due to the stringent requirements of the quantum key generation env...Quantum key distribution(QKD)is a technology that can resist the threat of quantum computers to existing conventional cryptographic protocols.However,due to the stringent requirements of the quantum key generation environment,the generated quantum keys are considered valuable,and the slow key generation rate conflicts with the high-speed data transmission in traditional optical networks.In this paper,for the QKD network with a trusted relay,which is mainly based on point-to-point quantum keys and has complex changes in network resources,we aim to allocate resources reasonably for data packet distribution.Firstly,we formulate a linear programming constraint model for the key resource allocation(KRA)problem based on the time-slot scheduling.Secondly,we propose a new scheduling scheme based on the graded key security requirements(GKSR)and a new micro-log key storage algorithm for effective storage and management of key resources.Finally,we propose a key resource consumption(KRC)routing optimization algorithm to properly allocate time slots,routes,and key resources.Simulation results show that the proposed scheme significantly improves the key distribution success rate and key resource utilization rate,among others.展开更多
The huge increase in the communication network rate has made the application fields and scenarios for vehicular ad hoc networks more abundant and diversified and proposed more requirements for the efficiency and quali...The huge increase in the communication network rate has made the application fields and scenarios for vehicular ad hoc networks more abundant and diversified and proposed more requirements for the efficiency and quality of data transmission.To improve the limited communication distance and poor communication quality of the Internet of Vehicles(IoV),an optimal intelligent routing algorithm is proposed in this paper.Combined multiweight decision algorithm with the greedy perimeter stateless routing protocol,designed and evaluated standardized function for link stability.Linear additive weighting is used to optimize link stability and distance to improve the packet delivery rate of the IoV.The blockchain system is used as the storage structure for relay data,and the smart contract incentive algorithm based on machine learning is used to encourage relay vehicles to provide more communication bandwidth for data packet transmission.The proposed scheme is simulated and analyzed under different scenarios and different parameters.The experimental results demonstrate that the proposed scheme can effectively reduce the packet loss rate and improve system performance.展开更多
This paper uses the bibliometric analysis software CiteSpace to examine the current status and evolution of cold-chain logistics vehicle routing problems(CCVRP).7381 relevant articles published in the Web of Science c...This paper uses the bibliometric analysis software CiteSpace to examine the current status and evolution of cold-chain logistics vehicle routing problems(CCVRP).7381 relevant articles published in the Web of Science core collection from 2008 to 2024 were analyzed,an in-depth understanding of the publication trends and category distribution were gained.Subsequently,CiteSpace was used to create a scientific knowledge graph and perform visualization analysis.The analysis includes collaboration among authors,countries,and institutions;co-citation analysis of authors,journals,and references;citation burst detection of keywords;and co-citation cluster analysis of references.Based on a deep understanding of current research hotspots,an in-depth discussion of existing research was conducted from three perspectives:optimization objectives,distribution scenarios,and solution algorithms.The results show that CCVRP involves complex factors such as temperature requirements,time window constraints,and multi-objective optimization.These intricate constraints are causing research to become increasingly interdisciplinary and comprehensive.The evolution of hot topics shows that the research directions span multiple fields,from algorithm design to logistics management.This review helps researchers better understand the history,current status,and future development directions of CCVRP research,and provides valuable references and inspiration for academia and practice.展开更多
Considering the effects of increased economic globalization and global warming,developing methods for reducing shipping costs and greenhouse gas emissions in ocean transportation has become crucial.Owing to its key ro...Considering the effects of increased economic globalization and global warming,developing methods for reducing shipping costs and greenhouse gas emissions in ocean transportation has become crucial.Owing to its key role in modern navigation technology,ship weather routing is the research focus of several scholars in this field.This study presents a hybrid genetic algorithm for the design of an optimal ship route for safe transoceanic navigation under complicated sea conditions.On the basis of the basic genetic algorithm,simulated annealing algorithm is introduced to enhance its local search ability and avoid premature convergence,with the ship’s voyage time and fuel consumption as optimization goals.Then,a mathematical model of ship weather routing is developed based on the grid system.A measure of fitness calibration is proposed,which can change the selection pressure of the algorithm as the population evolves.In addition,a hybrid crossover operator is proposed to enhance the ability to find the optimal solution and accelerate the convergence speed of the algorithm.Finally,a multi-population technique is applied to improve the robustness of the algorithm using different evolutionary strategies.展开更多
The improvement of the quality and efficiency of vehicle wireless network data transmission is always a key concern in the Internet of Vehicles(IoV).Routing transmission solved the limitation of transmission distance ...The improvement of the quality and efficiency of vehicle wireless network data transmission is always a key concern in the Internet of Vehicles(IoV).Routing transmission solved the limitation of transmission distance to a certain extent.Traditional routing algorithm cannot adapt to complex traffic environment,resulting in low transmission efficiency.In order to improve the transmission success rate and quality of vehicle network routing transmission,make the routing algorithm more suitable for complex traffic environment,and reduce transmission power consumption to improve energy efficiency,a comprehensive optimized routing transmission algorithm is proposed.Based on the routing transmission algorithm,an optimization algorithmbased on road condition,vehicle status and network performance is proposed to improve the success rate of routing transmission in the IoV.Relative distance difference and density are used as decision-making indicators to measure Road Side Unit(RSU)assisted transmission.And the Ambient backscatter communication(AmBC)technology and energy collection are used to reduce the energy consumption of routing relay transmission.An energy collection optimization algorithm is proposed to optimize the energy efficiency of AmBC and improve the energy efficiency of transmission.Simulation results show that the proposed routing optimization algorithm can effectively improve the success rate of packet transmission in vehicular ad hoc networks(VANETs),and theAmBC optimization algorithmcan effectively reduce energy consumption in the transmission process.The proposed optimization algorithm achieves comprehensive optimization of routing transmission performance and energy efficiency.展开更多
Quantum transmission experiments have shown that the success-ful transmission rate of entangled quanta in optical fibers decreases expo-nentially.Although current quantum networks deploy quantum relays to establish lo...Quantum transmission experiments have shown that the success-ful transmission rate of entangled quanta in optical fibers decreases expo-nentially.Although current quantum networks deploy quantum relays to establish long-distance connections,the increase in transmission distance and entanglement switching costs still need to be considered when selecting the next hop.However,most of the existing quantum network models prefer to consider the parameters of the physical layer,which ignore the influence factors of the network layer.In this paper,we propose a meshy quantum network model based on quantum teleportation,which considers both net-work layer and physical layer parameters.The proposed model can reflect the realistic transmission characteristics and morphological characteristics of the quantum relay network.Then,we study the network throughput of different routing algorithms with the same given parameters when multiple source-destination pairs are interconnected simultaneously.To solve the chal-lenges of routing competition caused by the simultaneous transmission,we present greedy memory-occupied algorithm Q-GMOA and random memory-occupied algorithm Q-RMOA.The proposed meshy quantum network model and the memory-occupied routing algorithms can improve the utilization rate of resources and the transmission performance of the quantum network.And the evaluation results indicate that the proposed methods embrace a higher transmission rate than the previous methods with repeater occupation.展开更多
Wireless Sensor Networks(WSN)has evolved into a key technology for ubiquitous living and the domain of interest has remained active in research owing to its extensive range of applications.In spite of this,it is chall...Wireless Sensor Networks(WSN)has evolved into a key technology for ubiquitous living and the domain of interest has remained active in research owing to its extensive range of applications.In spite of this,it is challenging to design energy-efficient WSN.The routing approaches are leveraged to reduce the utilization of energy and prolonging the lifespan of network.In order to solve the restricted energy problem,it is essential to reduce the energy utilization of data,transmitted from the routing protocol and improve network development.In this background,the current study proposes a novel Differential Evolution with Arithmetic Optimization Algorithm Enabled Multi-hop Routing Protocol(DEAOA-MHRP)for WSN.The aim of the proposed DEAOA-MHRP model is select the optimal routes to reach the destination in WSN.To accomplish this,DEAOA-MHRP model initially integrates the concepts of Different Evolution(DE)and Arithmetic Optimization Algorithms(AOA)to improve convergence rate and solution quality.Besides,the inclusion of DE in traditional AOA helps in overcoming local optima problems.In addition,the proposed DEAOA-MRP technique derives a fitness function comprising two input variables such as residual energy and distance.In order to ensure the energy efficient performance of DEAOA-MHRP model,a detailed comparative study was conducted and the results established its superior performance over recent approaches.展开更多
The main objective of this paper is to propose a new hybrid algorithm for solving the Bi objective green vehicle routing problem (BGVRP) from the BicriterionAnt metaheuristic. The methodology used is subdivided as fol...The main objective of this paper is to propose a new hybrid algorithm for solving the Bi objective green vehicle routing problem (BGVRP) from the BicriterionAnt metaheuristic. The methodology used is subdivided as follows: first, we introduce data from the GVRP or instances from the literature. Second, we use the first cluster route second technique using the k-means algorithm, then we apply the BicriterionAntAPE (BicriterionAnt Adjacent Pairwise Exchange) algorithm to each cluster obtained. And finally, we make a comparative analysis of the results obtained by the case study as well as instances from the literature with some existing metaheuristics NSGA, SPEA, BicriterionAnt in order to see the performance of the new hybrid algorithm. The results show that the routes which minimize the total distance traveled by the vehicles are different from those which minimize the CO<sub>2</sub> pollution, which can be understood by the fact that the objectives are conflicting. In this study, we also find that the optimal route reduces product CO<sub>2</sub> by almost 7.2% compared to the worst route.展开更多
To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With th...To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With this protocol, the resource reservation table of each node will record the bandwidth requirements of data flows, which access itself, its neighbor nodes and hidden nodes, and every node calculates the remaining available bandwidth by deducting the bandwidth reserved in the resource reservation table from the total available bandwidth of the node. Moreover, the BCMR searches in a distributed manner for the paths with the shortest delay conditioned by the bandwidth constraint. Simulation results demonstrate the good performance of BCMR in terms of packet delivery reliability and the delay. BCMR can meet the requirements of real time communication and can be used in the multicast applications with low mobility in wireless ad hoc networks.展开更多
[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectual...[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectualization. [Method] Based on the application characteristics of Wireless Sensor Network (WSN), the intelligent greenhouse monitoring system was designed. And for the incompleteness strategy of load balancing in the Low-Energy Adaptive Clustering Hierarchy (LEACH), a Real- time Threshold Routing Algorithm (RTRA) was proposed. [Result] The performance of network lifetime and network delay of RTRA were tested in MATLAB and found that, within the same testing environment, RTRA can save nodes energy consumption, prolong network lifetime, and had better real-time performance than LEACH. The al- gorithm satisfies the crops' requirements on real-time and energy efficiency in the greenhouse system. [Conclusion] For the good performance on real-time, the de- signed intelligent greenhouse real-time monitoring system laid the foundation for the research and development of agricultural informatization and intellectualization.展开更多
Tourism route planning is widely applied in the smart tourism field.The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails,sharp peaks and disconnected regions ...Tourism route planning is widely applied in the smart tourism field.The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails,sharp peaks and disconnected regions problems,which leads to uneven distribution and weak diversity of optimization solutions of tourism routes.Inspired by these limitations,we propose a multi-objective evolutionary algorithm for tourism route recommendation(MOTRR)with two-stage and Pareto layering based on decomposition.The method decomposes the multiobjective problem into several subproblems,and improves the distribution of solutions through a two-stage method.The crowding degree mechanism between extreme and intermediate populations is used in the two-stage method.The neighborhood is determined according to the weight of the subproblem for crossover mutation.Finally,Pareto layering is used to improve the updating efficiency and population diversity of the solution.The two-stage method is combined with the Pareto layering structure,which not only maintains the distribution and diversity of the algorithm,but also avoids the same solutions.Compared with several classical benchmark algorithms,the experimental results demonstrate competitive advantages on five test functions,hypervolume(HV)and inverted generational distance(IGD)metrics.Using the experimental results of real scenic spot datasets from two famous tourism social networking sites with vast amounts of users and large-scale online comments in Beijing,our proposed algorithm shows better distribution.It proves that the tourism routes recommended by our proposed algorithm have better distribution and diversity,so that the recommended routes can better meet the personalized needs of tourists.展开更多
We study the capacitated vehicle routing problem(CVRP)which is a well-known NP-hard combinatorial optimization problem(COP).The aim of the problem is to serve different customers by a convoy of vehicles starting from ...We study the capacitated vehicle routing problem(CVRP)which is a well-known NP-hard combinatorial optimization problem(COP).The aim of the problem is to serve different customers by a convoy of vehicles starting from a depot so that sum of the routing costs under their capacity constraints is minimized.Since the problem is very complicated,solving the problem using exact methods is almost impossible.So,one has to go for the heuristic/metaheuristic methods and genetic algorithm(GA)is broadly applied metaheuristic method to obtain near optimal solution to such COPs.So,this paper studies GAs to find solution to the problem.Generally,to solve a COP,GAs start with a chromosome set named initial population,and then mainly three operators-selection,crossover andmutation,are applied.Among these three operators,crossover is very crucial in designing and implementing GAs,and hence,numerous crossover operators were developed and applied to different COPs.There are two major kinds of crossover operators-blind crossovers and distance-based crossovers.We intend to compare the performance of four blind crossover and four distance-based crossover operators to test the suitability of the operators to solve the CVRP.These operators were originally proposed for the standard travelling salesman problem(TSP).First,these eight crossovers are illustrated using same parent chromosomes for building offspring(s).Then eight GAs using these eight crossover operators without any mutation operator and another eight GAs using these eight crossover operators with a mutation operator are developed.These GAs are experimented on some benchmark asymmetric and symmetric instances of numerous sizes and various number of vehicles.Our study revealed that the distance-based crossovers are much superior to the blind crossovers.Further,we observed that the sequential constructive crossover with and without mutation operator is the best one for theCVRP.This estimation is validated by Student’s t-test at 95%confidence level.We further determined a comparative rank of the eight crossovers for the CVRP.展开更多
In order to improve the picking efficiency,reduce the picking time,this paper take artificial picking operation of a certain distribution center which has double-area warehouse as the studying object.Discuss the picki...In order to improve the picking efficiency,reduce the picking time,this paper take artificial picking operation of a certain distribution center which has double-area warehouse as the studying object.Discuss the picking task allocation and routing problems.Establish the TSP model of order-picking system.Create a heuristic algorithm bases on the Genetic Algorithm(GA)which help to solve the task allocating problem and to get the associated order-picking routes.And achieve the simulation experiment with the Visual 6.0C++platform to prove the rationality of the model and the effectiveness of the arithmetic.展开更多
The multicast routing problem with multiple QoS constraints in networks with uncertain parameters is discussed, and a network model that is suitable to research such QoS multicast routing problem is described. The QMR...The multicast routing problem with multiple QoS constraints in networks with uncertain parameters is discussed, and a network model that is suitable to research such QoS multicast routing problem is described. The QMRGA, a multicast routing policy for Internet, mobile network or other highperformance networks is mainly presented, which is based on the genetic algorithm(GA), and can provide QoSsensitive paths in a scalable and flexible way in the network environment with uncertain parameters. The QMRGA can also optimize the network resources such as bandwidth and delay, and can converge to the optimal or nearoptimal solution within few iterations, even for the network environment with uncertain parameters. The incremental rate of computational cost can be close to a polynomial and is less than exponential rate. The performance measures of the QMRGA are evaluated by using simulations. The results show that QMRGA provides an available approach to QoS multicast routing in network environment with uncertain parameters.展开更多
In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used t...In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used to encode the solution, and an effective decoding method to construct the CGVRP route is presented accordingly. Secondly, the k-nearest neighbor(k NN) based initialization is presented to take use of the location information of the customers. Thirdly, according to the characteristics of the CGVRP, the search operators in the variable neighborhood search(VNS) framework and the simulated annealing(SA) strategy are executed on the TSP route for all solutions. Moreover, the customer adjustment operator and the alternative fuel station(AFS) adjustment operator on the CGVRP route are executed for the elite solutions after competition. In addition, the crossover operator is employed to share information among different solutions. The effect of parameter setting is investigated using the Taguchi method of design-ofexperiment to suggest suitable values. Via numerical tests, it demonstrates the effectiveness of both the competitive search and the decoding method. Moreover, extensive comparative results show that the proposed algorithm is more effective and efficient than the existing methods in solving the CGVRP.展开更多
Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed sy...Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed systems. In general, multi-constrained path selection with or without optimization is a NP-complete problem that can not be exactly solved in polynomial time. Hence, accurate constraints-based routing algorithms with a fast running time are scarce, perhaps even non-existent. The expected impact of such a constrained-based routing algorithm has resulted in the proposal of numerous heuristics and a few exact QoS algorithms. This paper aims to give a thorough, concise and fair evaluation of the most important multiple constraint-based QoS multicast routing algorithms known today, and it provides a descriptive overview and simulation results of these multi-constrained routing algorithms.展开更多
In the Internet, a group of replicated servers is commonly used in order to improve the scalability of network service. Anycast service is a new network service that can improve network load distribution and simplify ...In the Internet, a group of replicated servers is commonly used in order to improve the scalability of network service. Anycast service is a new network service that can improve network load distribution and simplify certain applications. In this paper, the authors described a simple anycast service model in the Internet without significant affecting the routing and protocol processing infrastructure that was already in place, and proposed an anycast QoS routing algorithm for this model. The algorithm used randomized method to balance network load and improve its performance. Several new techniques are proposed in the algorithm, first, theminimum hops for each node are used in the algorithm, which are used as metric for computing the probability of possible out links. The metric is pre computed for each node in the network, which can simplify the network complexity and provide the routing process with useful information. Second, randomness is used at the link level and depends dynamically on the routing configuration. This provides great flexibility for the routing process, prevents the routing process from overusing certain fixed routing paths, and adequately balances the delay of the routing path. the authors assess the quality of QoS algorithm in terms of the acceptance ratio on anycast QoS requests, and the simulation results on a variety of network topologies and on various parameters show that the algorithm has good performances and can balance network load effectively.展开更多
文摘An ants-based on-demand routing algorithm (AORA) specialized for mobile ad hoc networks is proposed. AORA measures the network's traffic information including delivery time, route energy etc. by the continuous delivery of data packets, then calculates the compositive parameter for each route which can be seen as the stigmity and uses it to choose the comparatively optimal route in real time. To adjust the weight of each traffic information, the algorithm can meet the different demand of the network's user. Multipath source self repair routing (MSSRR) algorithm and dynamic source routing (DSR) can be seen as the special samples of AORA. The routing overhead is not increased in this algorithm. By using simulation, it can be seen that the performance of AORA is better than that of DSR in all scenarios obviously, especially the delivery fraction is increased by more than 100 96.
基金supported by Natural Science Foundation Project of Gansu Provincial Science and Technology Department(No.1506RJZA084)Gansu Provincial Education Department Scientific Research Fund Grant Project(No.1204-13).
文摘To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.
基金supported by Fundamental Research Program of Shanxi Province(No.20210302123444)the Research Project at the College Level of China Institute of Labor Relations(No.23XYJS018)+2 种基金the ICH Digitalization and Multi-Source Information Fusion Fujian Provincial University Engineering Research Center 2022 Open Fund Project(G3-KF2207)the China University Industry University Research Innovation Fund(No.2021FNA02009)the Key R&D Program(International Science and Technology Cooperation Project)of Shanxi Province China(No.201903D421003).
文摘Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts the flow of data but also makes the network susceptible to failures in case the primary path is disrupted.In contrast,routing protocols that leverage multiple paths within the network offer a more resilient and efficient solution.Multipath routing,as a fundamental concept,surpasses the limitations of traditional shortest path first protocols.It not only redirects traffic to unused resources,effectively mitigating network congestion,but also ensures load balancing across the network.This optimization significantly improves network utilization and boosts the overall performance,making it a widely recognized efficient method for enhancing network reliability.To further strengthen network resilience against failures,we introduce a routing scheme known as Multiple Nodes with at least Two Choices(MNTC).This innovative approach aims to significantly enhance network availability by providing each node with at least two routing choices.By doing so,it not only reduces the dependency on a single path but also creates redundant paths that can be utilized in case of failures,thereby enhancing the overall resilience of the network.To ensure the optimal placement of nodes,we propose three incremental deployment algorithms.These algorithms carefully select the most suitable set of nodes for deployment,taking into account various factors such as node connectivity,traffic patterns,and network topology.By deployingMNTCon a carefully chosen set of nodes,we can significantly enhance network reliability without the need for a complete overhaul of the existing infrastructure.We have conducted extensive evaluations of MNTC in diverse topological spaces,demonstrating its effectiveness in maintaining high network availability with minimal path stretch.The results are impressive,showing that even when implemented on just 60%of nodes,our incremental deployment method significantly boosts network availability.This underscores the potential of MNTC in enhancing network resilience and performance,making it a viable solution for modern networks facing increasing demands and complexities.The algorithms OSPF,TBFH,DC and LFC perform fast rerouting based on strict conditions,while MNTC is not restricted by these conditions.In five real network topologies,the average network availability ofMNTCis improved by 14.68%,6.28%,4.76%and 2.84%,respectively,compared with OSPF,TBFH,DC and LFC.
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant No.20210101417JC).
文摘Quantum key distribution(QKD)is a technology that can resist the threat of quantum computers to existing conventional cryptographic protocols.However,due to the stringent requirements of the quantum key generation environment,the generated quantum keys are considered valuable,and the slow key generation rate conflicts with the high-speed data transmission in traditional optical networks.In this paper,for the QKD network with a trusted relay,which is mainly based on point-to-point quantum keys and has complex changes in network resources,we aim to allocate resources reasonably for data packet distribution.Firstly,we formulate a linear programming constraint model for the key resource allocation(KRA)problem based on the time-slot scheduling.Secondly,we propose a new scheduling scheme based on the graded key security requirements(GKSR)and a new micro-log key storage algorithm for effective storage and management of key resources.Finally,we propose a key resource consumption(KRC)routing optimization algorithm to properly allocate time slots,routes,and key resources.Simulation results show that the proposed scheme significantly improves the key distribution success rate and key resource utilization rate,among others.
基金supported by the National Key R&D Program of China (2020YFB2008400)LAGEO of Chinese Academy of Sciences (LAGEO-2019-2)+11 种基金Program for Science&Technology Innovation Talents in the University of Henan Province (20HASTIT022)21th Project of the Xizang Cultural Inheritance and Development Collaborative Innovation Center in 2018 (21IRTSTHN015)Natural Science Foundation of Xizang Named“Research of Key Technology of Millimeter Wave MIMO Secure Transmission with Relay Enhancement”in 2018Xizang Autonomous Region Education Science“13th Five-year Plan”Major Project for 2018 (XZJKY201803)Natural Science Foundation of Henan under Grant 202300410126Young Backbone Teachers in Henan Province (2018GGJS049)Henan Province Young Talent Lift Project (2020HYTP009)Program for Innovative Research Team in University of Henan Province (21IRTSTHNO15)Equipment Pre-research Joint Research Program of Ministry of Education (8091B032129)Training Program for Young Scholar of Henan Province for Colleges and Universities under Grand (2020GGJS172)Program for Science&Technology Innovation Talents in Universities of Henan Province under Grand (22HASTIT020)Henan Province Science Fund for Distinguished Young Scholars (222300420006).
文摘The huge increase in the communication network rate has made the application fields and scenarios for vehicular ad hoc networks more abundant and diversified and proposed more requirements for the efficiency and quality of data transmission.To improve the limited communication distance and poor communication quality of the Internet of Vehicles(IoV),an optimal intelligent routing algorithm is proposed in this paper.Combined multiweight decision algorithm with the greedy perimeter stateless routing protocol,designed and evaluated standardized function for link stability.Linear additive weighting is used to optimize link stability and distance to improve the packet delivery rate of the IoV.The blockchain system is used as the storage structure for relay data,and the smart contract incentive algorithm based on machine learning is used to encourage relay vehicles to provide more communication bandwidth for data packet transmission.The proposed scheme is simulated and analyzed under different scenarios and different parameters.The experimental results demonstrate that the proposed scheme can effectively reduce the packet loss rate and improve system performance.
基金supported by the Natural Science Foundation of China(No.52062027)the'Double-First Class'Major Research Programs,the Educational Department of Gansu Province(GSSYLXM-04)+5 种基金Soft Science Special Project of Gansu Basic Research PIan under Grant No.22JR4ZA035Gansu Provincial Science and Technology Major Special Project-Enterprise Innovation Consortium Project(No.22ZD6GA010)Natural Science Foundation of Gansu Province(22JR5RA343)Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University,China,and Open Fund of National Engineering Research Center of Highway Maintenance Technology,Changsha University of Science&Technology(No.kfj220108)Key Research and Development Project of Gansu Province(No.22YF7GA142)Industry Support Plan Project from the Department of Education of Gansu Province(No.2024CYZC-28).
文摘This paper uses the bibliometric analysis software CiteSpace to examine the current status and evolution of cold-chain logistics vehicle routing problems(CCVRP).7381 relevant articles published in the Web of Science core collection from 2008 to 2024 were analyzed,an in-depth understanding of the publication trends and category distribution were gained.Subsequently,CiteSpace was used to create a scientific knowledge graph and perform visualization analysis.The analysis includes collaboration among authors,countries,and institutions;co-citation analysis of authors,journals,and references;citation burst detection of keywords;and co-citation cluster analysis of references.Based on a deep understanding of current research hotspots,an in-depth discussion of existing research was conducted from three perspectives:optimization objectives,distribution scenarios,and solution algorithms.The results show that CCVRP involves complex factors such as temperature requirements,time window constraints,and multi-objective optimization.These intricate constraints are causing research to become increasingly interdisciplinary and comprehensive.The evolution of hot topics shows that the research directions span multiple fields,from algorithm design to logistics management.This review helps researchers better understand the history,current status,and future development directions of CCVRP research,and provides valuable references and inspiration for academia and practice.
基金funded by the Russian Foundation for Basic Research(RFBR)(No.20-07-00531).
文摘Considering the effects of increased economic globalization and global warming,developing methods for reducing shipping costs and greenhouse gas emissions in ocean transportation has become crucial.Owing to its key role in modern navigation technology,ship weather routing is the research focus of several scholars in this field.This study presents a hybrid genetic algorithm for the design of an optimal ship route for safe transoceanic navigation under complicated sea conditions.On the basis of the basic genetic algorithm,simulated annealing algorithm is introduced to enhance its local search ability and avoid premature convergence,with the ship’s voyage time and fuel consumption as optimization goals.Then,a mathematical model of ship weather routing is developed based on the grid system.A measure of fitness calibration is proposed,which can change the selection pressure of the algorithm as the population evolves.In addition,a hybrid crossover operator is proposed to enhance the ability to find the optimal solution and accelerate the convergence speed of the algorithm.Finally,a multi-population technique is applied to improve the robustness of the algorithm using different evolutionary strategies.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 62271192in part by Central Plains Talents Plan under Grant ZYYCYU202012173+9 种基金in part by theNationalKeyR&DProgramof China underGrant 2020YFB2008400in part by the Program of CEMEE under Grant 2022Z00202Bin part by the LAGEO of Chinese Academy of Sciences underGrantLAGEO-2019-2in part by the Program for Science and Technology Innovation Talents in the University of Henan Province under Grant 20HASTIT022in part by the Natural Science Foundation of Henan under Grant 202300410126in part by the Program for Innovative Research Team in University of Henan Province under Grant 21IRTSTHN015in part by the Equipment Pre-Research Joint Research Program of Ministry of Education under Grant 8091B032129in part by the Training Program for Young Scholar of Henan Province for Colleges and Universities under Grant 2020GGJS172in part by the Program for Science and Technology Innovation Talents in Universities of Henan Province under Grant 22HASTIT020in part by the Henan Province Science Fund for Distinguished Young Scholars under Grant 222300420006.
文摘The improvement of the quality and efficiency of vehicle wireless network data transmission is always a key concern in the Internet of Vehicles(IoV).Routing transmission solved the limitation of transmission distance to a certain extent.Traditional routing algorithm cannot adapt to complex traffic environment,resulting in low transmission efficiency.In order to improve the transmission success rate and quality of vehicle network routing transmission,make the routing algorithm more suitable for complex traffic environment,and reduce transmission power consumption to improve energy efficiency,a comprehensive optimized routing transmission algorithm is proposed.Based on the routing transmission algorithm,an optimization algorithmbased on road condition,vehicle status and network performance is proposed to improve the success rate of routing transmission in the IoV.Relative distance difference and density are used as decision-making indicators to measure Road Side Unit(RSU)assisted transmission.And the Ambient backscatter communication(AmBC)technology and energy collection are used to reduce the energy consumption of routing relay transmission.An energy collection optimization algorithm is proposed to optimize the energy efficiency of AmBC and improve the energy efficiency of transmission.Simulation results show that the proposed routing optimization algorithm can effectively improve the success rate of packet transmission in vehicular ad hoc networks(VANETs),and theAmBC optimization algorithmcan effectively reduce energy consumption in the transmission process.The proposed optimization algorithm achieves comprehensive optimization of routing transmission performance and energy efficiency.
基金supported by the Fundamental Research Funds for the Central Universities(2021RC239)the Postdoctoral Science Foundation of China(2021 M690338)+3 种基金the Hainan Provincial Natural Science Foundation of China(620RC562,2019RC096,620RC560)the Scientific Research Setup Fund of Hainan University(KYQD(ZR)1877)the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation(QCXM201910)the National Natural Science Foundation of China(61802092,62162021).
文摘Quantum transmission experiments have shown that the success-ful transmission rate of entangled quanta in optical fibers decreases expo-nentially.Although current quantum networks deploy quantum relays to establish long-distance connections,the increase in transmission distance and entanglement switching costs still need to be considered when selecting the next hop.However,most of the existing quantum network models prefer to consider the parameters of the physical layer,which ignore the influence factors of the network layer.In this paper,we propose a meshy quantum network model based on quantum teleportation,which considers both net-work layer and physical layer parameters.The proposed model can reflect the realistic transmission characteristics and morphological characteristics of the quantum relay network.Then,we study the network throughput of different routing algorithms with the same given parameters when multiple source-destination pairs are interconnected simultaneously.To solve the chal-lenges of routing competition caused by the simultaneous transmission,we present greedy memory-occupied algorithm Q-GMOA and random memory-occupied algorithm Q-RMOA.The proposed meshy quantum network model and the memory-occupied routing algorithms can improve the utilization rate of resources and the transmission performance of the quantum network.And the evaluation results indicate that the proposed methods embrace a higher transmission rate than the previous methods with repeater occupation.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/142/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R237)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR14).
文摘Wireless Sensor Networks(WSN)has evolved into a key technology for ubiquitous living and the domain of interest has remained active in research owing to its extensive range of applications.In spite of this,it is challenging to design energy-efficient WSN.The routing approaches are leveraged to reduce the utilization of energy and prolonging the lifespan of network.In order to solve the restricted energy problem,it is essential to reduce the energy utilization of data,transmitted from the routing protocol and improve network development.In this background,the current study proposes a novel Differential Evolution with Arithmetic Optimization Algorithm Enabled Multi-hop Routing Protocol(DEAOA-MHRP)for WSN.The aim of the proposed DEAOA-MHRP model is select the optimal routes to reach the destination in WSN.To accomplish this,DEAOA-MHRP model initially integrates the concepts of Different Evolution(DE)and Arithmetic Optimization Algorithms(AOA)to improve convergence rate and solution quality.Besides,the inclusion of DE in traditional AOA helps in overcoming local optima problems.In addition,the proposed DEAOA-MRP technique derives a fitness function comprising two input variables such as residual energy and distance.In order to ensure the energy efficient performance of DEAOA-MHRP model,a detailed comparative study was conducted and the results established its superior performance over recent approaches.
文摘The main objective of this paper is to propose a new hybrid algorithm for solving the Bi objective green vehicle routing problem (BGVRP) from the BicriterionAnt metaheuristic. The methodology used is subdivided as follows: first, we introduce data from the GVRP or instances from the literature. Second, we use the first cluster route second technique using the k-means algorithm, then we apply the BicriterionAntAPE (BicriterionAnt Adjacent Pairwise Exchange) algorithm to each cluster obtained. And finally, we make a comparative analysis of the results obtained by the case study as well as instances from the literature with some existing metaheuristics NSGA, SPEA, BicriterionAnt in order to see the performance of the new hybrid algorithm. The results show that the routes which minimize the total distance traveled by the vehicles are different from those which minimize the CO<sub>2</sub> pollution, which can be understood by the fact that the objectives are conflicting. In this study, we also find that the optimal route reduces product CO<sub>2</sub> by almost 7.2% compared to the worst route.
基金The Natural Science Foundation of Zhejiang Province(No.Y1090232)
文摘To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With this protocol, the resource reservation table of each node will record the bandwidth requirements of data flows, which access itself, its neighbor nodes and hidden nodes, and every node calculates the remaining available bandwidth by deducting the bandwidth reserved in the resource reservation table from the total available bandwidth of the node. Moreover, the BCMR searches in a distributed manner for the paths with the shortest delay conditioned by the bandwidth constraint. Simulation results demonstrate the good performance of BCMR in terms of packet delivery reliability and the delay. BCMR can meet the requirements of real time communication and can be used in the multicast applications with low mobility in wireless ad hoc networks.
基金Supported by the Science and Technology Surface Project of Yunnan Province(2010ZC142)the Doctoral Foundation of Dali University(KYBS201015),the Scientific Research Program for College Students of Dali University~~
文摘[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectualization. [Method] Based on the application characteristics of Wireless Sensor Network (WSN), the intelligent greenhouse monitoring system was designed. And for the incompleteness strategy of load balancing in the Low-Energy Adaptive Clustering Hierarchy (LEACH), a Real- time Threshold Routing Algorithm (RTRA) was proposed. [Result] The performance of network lifetime and network delay of RTRA were tested in MATLAB and found that, within the same testing environment, RTRA can save nodes energy consumption, prolong network lifetime, and had better real-time performance than LEACH. The al- gorithm satisfies the crops' requirements on real-time and energy efficiency in the greenhouse system. [Conclusion] For the good performance on real-time, the de- signed intelligent greenhouse real-time monitoring system laid the foundation for the research and development of agricultural informatization and intellectualization.
基金partially supported by the National Natural Science Foundation of China(41930644,61972439)the Collaborative Innovation Project of Anhui Province(GXXT-2022-093)the Key Program in the Youth Elite Support Plan in Universities of Anhui Province(gxyqZD2019010)。
文摘Tourism route planning is widely applied in the smart tourism field.The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails,sharp peaks and disconnected regions problems,which leads to uneven distribution and weak diversity of optimization solutions of tourism routes.Inspired by these limitations,we propose a multi-objective evolutionary algorithm for tourism route recommendation(MOTRR)with two-stage and Pareto layering based on decomposition.The method decomposes the multiobjective problem into several subproblems,and improves the distribution of solutions through a two-stage method.The crowding degree mechanism between extreme and intermediate populations is used in the two-stage method.The neighborhood is determined according to the weight of the subproblem for crossover mutation.Finally,Pareto layering is used to improve the updating efficiency and population diversity of the solution.The two-stage method is combined with the Pareto layering structure,which not only maintains the distribution and diversity of the algorithm,but also avoids the same solutions.Compared with several classical benchmark algorithms,the experimental results demonstrate competitive advantages on five test functions,hypervolume(HV)and inverted generational distance(IGD)metrics.Using the experimental results of real scenic spot datasets from two famous tourism social networking sites with vast amounts of users and large-scale online comments in Beijing,our proposed algorithm shows better distribution.It proves that the tourism routes recommended by our proposed algorithm have better distribution and diversity,so that the recommended routes can better meet the personalized needs of tourists.
基金the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University for funding thiswork through Research Group No.RG-21-09-17.
文摘We study the capacitated vehicle routing problem(CVRP)which is a well-known NP-hard combinatorial optimization problem(COP).The aim of the problem is to serve different customers by a convoy of vehicles starting from a depot so that sum of the routing costs under their capacity constraints is minimized.Since the problem is very complicated,solving the problem using exact methods is almost impossible.So,one has to go for the heuristic/metaheuristic methods and genetic algorithm(GA)is broadly applied metaheuristic method to obtain near optimal solution to such COPs.So,this paper studies GAs to find solution to the problem.Generally,to solve a COP,GAs start with a chromosome set named initial population,and then mainly three operators-selection,crossover andmutation,are applied.Among these three operators,crossover is very crucial in designing and implementing GAs,and hence,numerous crossover operators were developed and applied to different COPs.There are two major kinds of crossover operators-blind crossovers and distance-based crossovers.We intend to compare the performance of four blind crossover and four distance-based crossover operators to test the suitability of the operators to solve the CVRP.These operators were originally proposed for the standard travelling salesman problem(TSP).First,these eight crossovers are illustrated using same parent chromosomes for building offspring(s).Then eight GAs using these eight crossover operators without any mutation operator and another eight GAs using these eight crossover operators with a mutation operator are developed.These GAs are experimented on some benchmark asymmetric and symmetric instances of numerous sizes and various number of vehicles.Our study revealed that the distance-based crossovers are much superior to the blind crossovers.Further,we observed that the sequential constructive crossover with and without mutation operator is the best one for theCVRP.This estimation is validated by Student’s t-test at 95%confidence level.We further determined a comparative rank of the eight crossovers for the CVRP.
文摘In order to improve the picking efficiency,reduce the picking time,this paper take artificial picking operation of a certain distribution center which has double-area warehouse as the studying object.Discuss the picking task allocation and routing problems.Establish the TSP model of order-picking system.Create a heuristic algorithm bases on the Genetic Algorithm(GA)which help to solve the task allocating problem and to get the associated order-picking routes.And achieve the simulation experiment with the Visual 6.0C++platform to prove the rationality of the model and the effectiveness of the arithmetic.
文摘The multicast routing problem with multiple QoS constraints in networks with uncertain parameters is discussed, and a network model that is suitable to research such QoS multicast routing problem is described. The QMRGA, a multicast routing policy for Internet, mobile network or other highperformance networks is mainly presented, which is based on the genetic algorithm(GA), and can provide QoSsensitive paths in a scalable and flexible way in the network environment with uncertain parameters. The QMRGA can also optimize the network resources such as bandwidth and delay, and can converge to the optimal or nearoptimal solution within few iterations, even for the network environment with uncertain parameters. The incremental rate of computational cost can be close to a polynomial and is less than exponential rate. The performance measures of the QMRGA are evaluated by using simulations. The results show that QMRGA provides an available approach to QoS multicast routing in network environment with uncertain parameters.
基金supported by the National Science Fund for Distinguished Young Scholars of China(61525304)the National Natural Science Foundation of China(61873328)
文摘In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used to encode the solution, and an effective decoding method to construct the CGVRP route is presented accordingly. Secondly, the k-nearest neighbor(k NN) based initialization is presented to take use of the location information of the customers. Thirdly, according to the characteristics of the CGVRP, the search operators in the variable neighborhood search(VNS) framework and the simulated annealing(SA) strategy are executed on the TSP route for all solutions. Moreover, the customer adjustment operator and the alternative fuel station(AFS) adjustment operator on the CGVRP route are executed for the elite solutions after competition. In addition, the crossover operator is employed to share information among different solutions. The effect of parameter setting is investigated using the Taguchi method of design-ofexperiment to suggest suitable values. Via numerical tests, it demonstrates the effectiveness of both the competitive search and the decoding method. Moreover, extensive comparative results show that the proposed algorithm is more effective and efficient than the existing methods in solving the CGVRP.
文摘Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed systems. In general, multi-constrained path selection with or without optimization is a NP-complete problem that can not be exactly solved in polynomial time. Hence, accurate constraints-based routing algorithms with a fast running time are scarce, perhaps even non-existent. The expected impact of such a constrained-based routing algorithm has resulted in the proposal of numerous heuristics and a few exact QoS algorithms. This paper aims to give a thorough, concise and fair evaluation of the most important multiple constraint-based QoS multicast routing algorithms known today, and it provides a descriptive overview and simulation results of these multi-constrained routing algorithms.
基金TheNationalScienceFundforOverseasDistinguishedYoungScholars (No .6 992 82 0 1)FoundationforUniversityKeyTeacherbytheMinist
文摘In the Internet, a group of replicated servers is commonly used in order to improve the scalability of network service. Anycast service is a new network service that can improve network load distribution and simplify certain applications. In this paper, the authors described a simple anycast service model in the Internet without significant affecting the routing and protocol processing infrastructure that was already in place, and proposed an anycast QoS routing algorithm for this model. The algorithm used randomized method to balance network load and improve its performance. Several new techniques are proposed in the algorithm, first, theminimum hops for each node are used in the algorithm, which are used as metric for computing the probability of possible out links. The metric is pre computed for each node in the network, which can simplify the network complexity and provide the routing process with useful information. Second, randomness is used at the link level and depends dynamically on the routing configuration. This provides great flexibility for the routing process, prevents the routing process from overusing certain fixed routing paths, and adequately balances the delay of the routing path. the authors assess the quality of QoS algorithm in terms of the acceptance ratio on anycast QoS requests, and the simulation results on a variety of network topologies and on various parameters show that the algorithm has good performances and can balance network load effectively.