Promoting more floret primordia within a spike to acquire fertile potential during the differentiation and pre-dimorphism phases is critical for increasing the number of fertile florets per spike(NFFs).However,it is y...Promoting more floret primordia within a spike to acquire fertile potential during the differentiation and pre-dimorphism phases is critical for increasing the number of fertile florets per spike(NFFs).However,it is yet unknown the physiological mechanism regulating the complex and dynamic process.This study aimed to clarify how intra-spike hormones,pigments,and assimilates coordinate with each other to regulate spike morphology and then floret primordia development.A two-year field experiment was conducted with two winter wheat genotypes:N50(big-spike with greater NFFs)and SM22(mediumspike with fewer NFFs).We monitored high temporal and spatial-resolution changes in the number and morphology of floret primordia within a spike,as well as in intra-spike hormones,pigments,and assimilates.Our results revealed that the big-spike genotype had more NFFs than the medium-spike genotype,not only because they had more spikelets,but also because they had greater NFFs mainly at central spikelets.More floret primordia at central spikelets had sufficient time to develop and acquire fertile potential during the differentiation phase(167-176 d after sowing,DAS)and the pre-dimorphism phase(179 DAS)for the big-spike genotype than the medium-spike genotype.Floret primordia with fertile morphology during the pre-dimorphism phase always developed into fertile florets during the dimorphism phase.Those early-developed floret primordia most proximal and intermediate to the rachis in the big-spike genotype developed faster than the medium-spike genotype.Correspondingly,the spike dry matter and pigments(chlorophyll a,chlorophyll b,carotene,and carotenoids)content during 170-182 DAS,auxin(IAA)and cytokinin(CTK)content on 167 DAS were significantly higher in the big-spike genotype than in the medium-spike genotype,while jasmonic acid(JA)content was significantly lower in the big-spike genotype compared to the medium-spike genotype during 167-182 DAS.Since the significant differences in intra-spike hormone content of the two genotypes appear earlier than those in dry matter and pigments,we propose a possible model that helped the N50 genotype(big-spike)to form more fertile florets,taking the intra-spike hormone content as a signaling molecule induced assimilates and pigments synthesis,which accelerated the development of more floret primordia during the differentiation phase and then acquired fertile potential during the pre-dimorphism phase,finally improved the NFFs.Our high temporal and spatial-resolution analysis provides an accurate time window for precision cultivation and effective physiological breeding to improve the number of fertile florets in wheat.展开更多
The silk fabrics were matching dyed with three natural edible pigments(red rice red,ginger yellow and gardenia blue).By investigating the dyeing rates and lifting properties of these pigments,it was observed that thei...The silk fabrics were matching dyed with three natural edible pigments(red rice red,ginger yellow and gardenia blue).By investigating the dyeing rates and lifting properties of these pigments,it was observed that their compatibilities were excellent in the dyeing process:dye dosage 2.5%(omf),mordant alum dosage 2.0%(omf),dyeing temperature 80℃and dyeing time 40 min.The silk fabrics dyed with secondary colors exhibited vibrant and vivid color owing to the remarkable lightness and chroma of ginger yellow.However,gardenia blue exhibited multiple absorption peaks in the visible light range,resulting in significantly lower lightness and chroma for the silk fabrics dyed with tertiary colors,thus making it suitable only for matte-colored fabrics with low chroma levels.In addition,the silk fabrics dyed with these three pigments had a color fastness that exceeded grade 3 in resistance to perspiration,soap washing and light exposure,indicating acceptable wearing properties.The dyeing process described in this research exhibited a wide range of potential applications in matching dyeing of protein-based textiles with natural colorants.展开更多
Tea pigments have significant effects on human health.However,more attention have been paid to their physiological functions.The aim of this study was to analyze the quantitative and qualitative impact of tea pigments...Tea pigments have significant effects on human health.However,more attention have been paid to their physiological functions.The aim of this study was to analyze the quantitative and qualitative impact of tea pigments on human health,together with their current and potential future research directions.The study searched and screened 520 publications on WOS from January 2002 to December 2022.The article collected and collated literature published in the last 20 years and analyzed it bibliometrically for years,journals,countries,authors,topics,keywords and strongest citation bursts.The findings of keywords and strongest citation bursts revealed that the most discussed research topics were anticancer,black tea polyphenol,antioxidant,activator inhibitor,in vivo,gut microbiota,and summarize the relevant literature.As a reference for future research,the literature pointed out current shortcomings and speculated future development trend of tea pigments.展开更多
Salinity is one of the major abiotic factors that limit the growth and productivity of plants.Foliar application of plant growth regulators(PGRs)may help plants ameliorate the negative impacts of salinity.Thus,a field...Salinity is one of the major abiotic factors that limit the growth and productivity of plants.Foliar application of plant growth regulators(PGRs)may help plants ameliorate the negative impacts of salinity.Thus,a field experiment was conducted at the Botanical Garden University of Balochistan,Quetta,to explore the potential role of PGRs,i.e.,moringa leaf extract(MLE;10%),proline(PRO;1μM),salicylic acid(SA;250μM),and thiourea(TU;10 mM)in ameliorating the impacts of salinity(120 mM)on Plantago ovata,an important medicinal plant.Salinity hampered plant photosynthetic pigments and metabolites but elevated oxidative parameters.However,foliar application of PGRs enhanced photosynthetic pigments,including Chl b(21.11%),carotenoids(57.87%)except Chl a,activated the defense mechanisms by restoring and enhancing the metabolites,i.e.,soluble sugars(49.68%),soluble phenolics(33.34%),and proline(31.47%),significantly under salinity stress.Furthermore,foliar supplementation of PGRs under salt stress led to a decrease of about 43.02%and 43.27%in hydrogen peroxide and malondialdehyde content,respectively.Thus,PGRs can be recommended for improved photosynthetic efficiency and metabolite content that can help to get better yield under salt stress,with the best and most effective treatments being those of PRO and MLE to predominately ameliorate the harsh impacts of salinity.展开更多
Cotton has enormous economic potential,providing high-quality protein,oil,and fibre.But the comprehensive utilization of cottonseed is limited by the presence of pigment gland and its inclusion.Pigment gland is a comm...Cotton has enormous economic potential,providing high-quality protein,oil,and fibre.But the comprehensive utilization of cottonseed is limited by the presence of pigment gland and its inclusion.Pigment gland is a common characteristic of Gossypium genus and its relatives,appearing as visible dark opaque dots in most tissues and organs of cotton plants.Secondary metabolites,such as gossypol,synthesized and stored in the cavities of pigment glands act as natural phytoalexins,but are toxic to humans and other monogastric animals.However,only a few cotton genes have been identified as being associated with pigment gland morphogenesis to date,and the developmental processes and regulatory mechanism involved in pigment gland formation remain largely unclear.Here,the research progress on the process of pigment gland morphogenesis and the genetic basis of cotton pigment glands is reviewed,for providing a theoretical basis for cultivating cotton with the ideal pigment gland trait.展开更多
The retinal pigment epithelium(RPE)is fundamental to sustaining retinal homeostasis.RPE abnormality leads to visual defects and blindness,including age-related macular degeneration(AMD).Although breakthroughs have bee...The retinal pigment epithelium(RPE)is fundamental to sustaining retinal homeostasis.RPE abnormality leads to visual defects and blindness,including age-related macular degeneration(AMD).Although breakthroughs have been made in the treatment of neovascular AMD,effective intervention for atrophic AMD is largely absent.The adequate knowledge of RPE pathology is hindered by a lack of the patients'RPE datasets,especially at the single-cell resolution.In the current study,we delved into a large-scale single-cell resource of AMD donors,in which RPE cells were occupied in a substantial proportion.Bulk RNA-seq datasets of atrophic AMD were integrated to extract molecular characteristics of RPE in the pathogenesis of atrophic AMD.Both in vivo and in vitro models revealed that carboxypeptidase X,M14 family member 2(CPXM2),was specifically expressed in the RPE cells of atrophic AMD,which might be induced by oxidative stress and involved in the epithelial-mesenchymal transition of RPE cells.Additionally,silencing of CPXM2 inhibited the mesenchymal phenotype of RPE cells in an oxidative stress cell model.Thus,our results demonstrated that CPXM2 played a crucial role in regulating atrophic AMD and might serve as a potential therapeutic target for atrophic AMD.展开更多
AIM:To investigate the proliferation regulatory effect of cone-rod homeobox(CRX)in retinal pigment epithelium(RPE)and retinoblastoma(RB)cells to explore the potential application and side effect(oncogenic potential)of...AIM:To investigate the proliferation regulatory effect of cone-rod homeobox(CRX)in retinal pigment epithelium(RPE)and retinoblastoma(RB)cells to explore the potential application and side effect(oncogenic potential)of CRXbased gene therapy in RPE-based retinopathies.METHODS:Adult human retinal pigment epithelial(ARPE)-19 and human retinal pigment epithelial(RPE)-1 cells and Y79 RB cell were used in the study.Genetic manipulation was performed by lentivirus-based technology.The cell proliferation was determined by a CellTiter-Glo Reagent.The mRNA and protein levels were determined by quantitative real-time polymerase chain reaction(qPCR)and Western blot assay.The transcriptional activity of the promoter was determined by luciferase reporter gene assay.The bindings between CRX and transcription factor 7(TCF7)promoter as well as TCF7 and the promoters of TCF7 target genes were examined by chromatin immunoprecipitation(ChIP)assay.The transcription of the TCF7 was determined by a modified nuclear run-on assay.RESULTS:CRX overexpression and knockdown significantly increased(n=3,P<0.05 in all the cells)and decreased(n=3,P<0.01 in all the cells)the proliferation of RPE and RB cells.CRX overexpression and knockdown significantly increased and deceased the mRNA levels of Wnt signaling target genes[including MYC proto-oncogene(MYC),JUN,FOS like 1(FOSL1),CCND1,cyclin D2(CCND2),cyclin D3(CCND3),cellular communication network factor 4(CCN4),peroxisome proliferator activated receptor delta(PPARD),and matrix metallopeptidase 7(MMP7)]and the luciferase activity driven by the Wnt signaling transcription factor(TCF7).TCF7 overexpression and knockdown significantly increased and decreased the proliferation of RPE and RB cells and depletion of TCF7 significantly abolished the stimulatory effect of CRX on the proliferation of RPE and RB cells.CRX overexpression and knockdown significantly increased and decreased the mRNA level of TCF7 and the promoter of TCF7 was significantly immunoprecipitated by CRX antibody.CONCLUSION:CRX transcriptionally activates TCF7 to promote the proliferation of RPE and RB cells in vitro.CRX is a potential target for RPE-based regenerative medicine.The potential risk of this strategy,tumorigenic potential,should be considered.展开更多
AIM:To explore the effect of epidermal growth factor receptor(EGFR)inhibition by erlotinib and EGFR siRNA on epidermal growth factor(EGF)-induced activation of retinal pigment epithelium(RPE)cells.METHODS:Human RPE ce...AIM:To explore the effect of epidermal growth factor receptor(EGFR)inhibition by erlotinib and EGFR siRNA on epidermal growth factor(EGF)-induced activation of retinal pigment epithelium(RPE)cells.METHODS:Human RPE cell line(ARPE-19 cells)was activated by 100 ng/mL EGF.Erlotinib and EGFR siRNA were used to intervene EGF treatment.Cellular viability,proliferation,and migration were detected by methyl thiazolyl tetrazolium(MTT)assay,bromodeoxyuridine(BrdU)staining assay and wound healing assay,respectively.EGFR/protein kinase B(AKT)pathway proteins and N-cadherin,α-smooth muscle actin(α-SMA),and vimentin were tested by Western blot assay.EGFR was also determined by immunofluorescence staining.RESULTS:EGF treatment for 24h induced a significant increase of ARPE-19 cells’viability,proliferation and migration,phosphorylation of EGFR/AKT proteins,and decreased total EGFR expression.Erlotinib suppressed ARPE-19 cells’viability,proliferation and migration through down regulating total EGFR and AKT protein expressions.Erlotinib also inhibited EGF-induced an increase of proliferative and migrative ability in ARPE-19 cells and clearly suppressed EGF-induced EGFR/AKT proteins phosphorylation and decreased expression of N-cadherin,α-SMA,and vimentin proteins.Similarly,EGFR inhibition by EGFR siRNA significantly affected EGF-induced an increase of cell proliferation,viability,and migration,phosphorylation of EGFR/AKT proteins,and up-regulation of N-cadherin,α-SMA,and vimentin proteins.CONCLUSION:Erlotinib and EGFR-knockdown suppress EGF-induced cell viability,proliferation,and migration via EGFR/AKT pathway in RPE cells.EGFR inhibition may be a possible therapeutic approach for proliferative vitreoretinopathy(PVR).展开更多
BACKGROUND Pigmented villonodular synovitis(PVNS)is a benign proliferative disorder that affects the synovial joints,bursae,and tendon sheaths.To date,few studies have reported on the treatment of postoperative pain a...BACKGROUND Pigmented villonodular synovitis(PVNS)is a benign proliferative disorder that affects the synovial joints,bursae,and tendon sheaths.To date,few studies have reported on the treatment of postoperative pain and edema in patients with PVNS.Herein,we present the case of a woman who developed pain and edema in the left lower limb 1 wk after synovectomy and arthroscopic partial meniscectomy and was unable to walk due to limited flexion and extension of the left knee.CASE SUMMARY A 32-year-old woman underwent synovectomy and arthroscopic partial meniscectomy successively and was treated with a combination of manual lymphatic drainage(MLD)and kinesio taping(KT)in our hospital to alleviate postoperative pain and edema.The following parameters were assessed at 2 wk post-treatment and 1 wk post-discharge follow up:suprapatellar circumference,infrapatellar circumference,visual analog scale score,knee range of motion,pittsburgh sleep quality index score,hamilton anxiety rating scale(HAMA)score,and hamilton depression rating scale(HAMD)score.After treatment,the postoperative pain and edema in the patient’s left knee were effectively relieved,resulting in improved sleep quality and remarkably attenuated HAMA and HAMD scores.CONCLUSION Combined MLD and KT may be an effective approach for relieving postoperative pain and edema in patients with PVNS.展开更多
AIM:To explore the effects of hepatocyte growth factor(HGF)on retinal pigment epithelium(RPE)cell behaviors.METHODS:The human adult retinal pigment epithelial cell line-19(ARPE-19)were treated by HGF or mesenchymalepi...AIM:To explore the effects of hepatocyte growth factor(HGF)on retinal pigment epithelium(RPE)cell behaviors.METHODS:The human adult retinal pigment epithelial cell line-19(ARPE-19)were treated by HGF or mesenchymalepithelial transition factor(MET)inhibitor SU11274 in vitro.Cell viability was detected by a Cell Counting Kit-8 assay.Cell proliferation and motility was detected by a bromodeoxyuridine incorporation assay and a wound healing assay,respectively.The expression levels of MET,phosphorylated MET,protein kinase B(AKT),and phosphorylated AKT proteins were determined by Western blot assay.The MET and phosphorylated MET proteins were also determined by immunofluorescence assay.RESULTS:HGF increased ARPE-19 cells’viability,proliferation and migration,and induced an increase of phosphorylated MET and phosphorylated AKT proteins.SU11274 significantly reduced cell viability,proliferation,and migration and decreased the expression of MET and AKT proteins.SU11274 suppressed HGF-induced increase of viability,proliferation,and migration in ARPE-19 cells.Additionally,SU11274 also blocked HGF-induced phosphorylation of MET and AKT proteins.CONCLUSION:HGF enhances cellular viability,proliferation,and migration in RPE cells through the MET/AKT signaling pathway,whereas this enhancement is suppressed by the MET inhibitor SU11274.HGF-induced MET/AKT signaling might be a vital contributor of RPE cells survival.展开更多
BACKGROUND The incidence and mortality of colorectal cancer(CRC)are among the highest in the world,and its occurrence and development are closely related to tumor neovascularization.When the balance between pigment ep...BACKGROUND The incidence and mortality of colorectal cancer(CRC)are among the highest in the world,and its occurrence and development are closely related to tumor neovascularization.When the balance between pigment epithelium-derived factors(PEDF)that inhibit angiogenesis and vascular endothelial growth factors(VEGF)that stimulate angiogenesis is broken,angiogenesis is out of control,resulting in tumor development.Therefore,it is very necessary to find more therapeutic targets for CRC for early intervention and later treatment.AIM To investigate the expression and significance of PEDF,VEGF,and CD31-stained microvessel density values(CD31-MVD)in normal colorectal mucosa,adenoma,and CRC.METHODS In this case-control study,we collected archived wax blocks of specimens from the Digestive Endoscopy Center and the General Surgery Department of Chengdu Second People's Hospital from April 2022 to October 2022.Fifty cases of specimen wax blocks were selected as normal intestinal mucosa confirmed by electronic colonoscopy and concurrent biopsy(normal control group),50 cases of specimen wax blocks were selected as colorectal adenoma confirmed by electronic colonoscopy and pathological biopsy(adenoma group),and 50 cases of specimen wax blocks were selected as CRC confirmed by postoperative pathological biopsy after inpatient operation of general surgery(CRC group).An immunohistochemical staining experiment was carried out to detect PEDF and VEGF expression in three groups of specimens,analyze their differences,study the relationship between the two and clinicopathological factors in CRC group,record CD31-MVD in the three groups,and analyze the correlation of PEDF,VEGF,and CD31-MVD in the colorectal adenoma group and the CRC group.The F test or adjusted F test is used to analyze measurement data statistically.Kruskal-Wallis rank sum test was used between groups for ranked data.The chi-square test,adjusted chi-square test,or Fisher's exact test were used to compare the rates between groups.All differences between groups were compared using the Bonferroni method for multiple comparisons.Spearman correlation analysis was used to test the correlation of the data.The test level(α)was 0.05,and a two-sided P<0.05 was considered statistically significant.RESULTS The positive expression rate and expression intensity of PEDF were gradually decreased in the normal control group,adenoma group,and CRC group(100%vs 78%vs 50%,χ^(2)=34.430,P<0.001;++~++vs+~++vs-~+,H=94.059,P<0.001),while VEGF increased gradually(0%vs 68%vs 96%,χ^(2)=98.35,P<0.001;-vs-~+vs++~+++,H=107.734,P<0.001).In the CRC group,the positive expression rate of PEDF decreased with the increase of differen-tiation degree,invasion depth,lymph node metastasis,distant metastasis,and TNM stage(χ^(2)=20.513,4.160,5.128,6.349,5.128,P<0.05);the high expression rate of VEGF was the opposite(χ^(2)=10.317,13.134,17.643,21.844,17.643,P<0.05).In the colorectal adenoma group,the expression intensity of PEDF correlated negatively with CD31-MVD(r=-0.601,P<0.001),whereas VEGF was not significantly different(r=0.258,P=0.07).In the CRC group,the expression intensity of PEDF correlated negatively with the expression intensity of CD31-MVD and VEGF(r=-0.297,P<0.05;r=-0.548,P<0.05),while VEGF expression intensity was positively related to CD31-MVD(r=0.421,P=0.002).CONCLUSION It is possible that PEDF can be used as a new treatment and prevention target for CRC by upregulating the expression of PEDF while inhibiting the expression of VEGF.展开更多
AIM:To examine the regulatory role of microRNA-204(miR-204)on silent information regulator 1(SIRT1)and vascular endothelial growth factor(VEGF)under highglucose-induced metabolic memory in human retinal pigment epithe...AIM:To examine the regulatory role of microRNA-204(miR-204)on silent information regulator 1(SIRT1)and vascular endothelial growth factor(VEGF)under highglucose-induced metabolic memory in human retinal pigment epithelial(hRPE)cells.METHODS:Cells were cultured with either normal(5 mmol/L)or high D-glucose(25 mmol/L)concentrations for 8d to establish control and high-glucose groups,respectively.To induce metabolic memory,cells were cultured with 25 mmol/L D-glucose for 4d followed by culture with 5 mmol/L D-glucose for 4d.In addition,exposed in 25 mmol/L D-glucose for 4d and then transfected with 100 nmol/L miR-204 control,miR-204 inhibitor or miR-204 mimic in 5 mmol/L D-glucose for 4d.Quantitative reverse transcription-polymerase chain reaction(RT-qPCR)was used to detect miR-204 mRNA levels.SIRT1 and VEGF protein levels were assessed by immunohistochemical and Western blot.Flow cytometry was used to investigate apoptosis rate.RESULTS:It was found that high glucose promoted miR-204 and VEGF expression,and inhibited SIRT1 activity,even after the return to normal glucose culture conditions.Upregulation of miR-204 promoted apoptosis inhibiting SIRT1 and increasing VEGF expression.However,downregulation of miR-204 produced the opposite effects.CONCLUSION:The study identifies that miR-204 is the upstream target of SIRT1and VEGF,and that miR-204 can protect hRPE cells from the damage caused by metabolic memory through increasing SIRT1 and inhibiting VEGF expression.展开更多
AIM:To evaluate the effect of bone morphogenetic protein-6(BMP-6)on transforming growth factor(TGF)-β_(2)-induced epithelial-mesenchymal transition(EMT)in retinal pigment epithelium(RPE).METHODS:Adult retinal pigment...AIM:To evaluate the effect of bone morphogenetic protein-6(BMP-6)on transforming growth factor(TGF)-β_(2)-induced epithelial-mesenchymal transition(EMT)in retinal pigment epithelium(RPE).METHODS:Adult retinal pigment epithelial cell line(ARPE-19)were randomly divided into control,TGF-β_(2)(5μg/L),and BMP-6 small interfering RNA(siRNA)group.The cell morphology was observed by microscopy,and the cell migration ability were detected by Transwell chamber.The EMT-related indexes and BMP-6 protein levels were detected by Western blotting.Furthermore,a BMP-6 overexpression plasmid was constructed and RPE cells were divided into the control group,TGF-β_(2)+empty plasmid group,BMP-6 overexpression group,and TGF-β_(2)+BMP-6 overexpression group.The EMT-related indexes and extracellular regulated protein kinases(ERK)protein levels were detected.RESULTS:Compared with the control group,the migration of RPE cells in the TGF-β_(2) group was significantly enhanced.TGF-β_(2) increased the protein expression levels ofα-smooth muscle actin(α-SMA),fibronectin and vimentin but significantly decreased the protein levels of E-cadherin and BMP-6(P<0.05)in RPE.Similarly,the migration of RPE cells in the BMP-6 siRNA group was also significantly enhanced.BMP-6 siRNA increased the protein expression levels ofα-SMA,fibronectin and vimentin but significantly decreased the protein expression levels of E-cadherin(P<0.05).Overexpression of BMP-6 inhibited the migration of RPE cells induced by TGF-β_(2) and prevented TGF-β_(2) from affecting EMT-related biomarkers(P<0.05).CONCLUSION:BMP-6 prevents the EMT in RPE cells induced by TGF-β_(2),which may provide a theoretical basis for the prevention and treatment of proliferative vitreoretinopathy.展开更多
AIM:To investigate the effect of acetyl-L-carnitine(ALCAR)on cell viability,morphological integrity,and vascular endothelial growth factor(VEGF)expression in human retinal pigment epithelium(ARPE-19)cells using a hypo...AIM:To investigate the effect of acetyl-L-carnitine(ALCAR)on cell viability,morphological integrity,and vascular endothelial growth factor(VEGF)expression in human retinal pigment epithelium(ARPE-19)cells using a hypoxic model.METHODS:In the first set of experiments,the optimal CoCl_(2) dose was determined by exposing ARPE-19 cell cultures to different concentrations.To evaluate the effect of ALCAR on cell viability,five groups of ARPE-19 cell culture were established that included a control group,a sham group(200μM CoCl_(2)),and groups that received 1,10 and 100 mM doses of ALCAR combined with 200μM CoCl_(2),respectively.The cell viability was measured by MTT assay.The morphological characteristics of cells were observed by an inverted phase contrast microscope.The levels of VEGF and HIF-1α secretion by ARPE-19 cells were detected by enzyme linked immunosorbent assay(ELISA)assay.RESULTS:ARPE-19 cells were exposed to different doses of CoCl_(2) in order to create a hypoxia model.Nevertheless,when exposed to a concentration of 200μM CoCl_(2),a notable decrease in viability to 83% was noted.ALCAR was found to increase the cell viability at 1 mM and 10 mM concentrations,while the highest concentration(100 mM)did not have an added effect.The cell viability was found to be significantly higher in the groups treated with a concentration of 1 mM and 10 mM ALCAR compared to the Sham group(P=0.041,P=0.019,respectively).The cell viability and morphology remained unaffected by the greatest dose of ALCAR(100 mM).The administration of 10 mM ALCAR demonstrated a statistically significant reduction in the levels of VEGF and HIF-1α compared with the Sham group(P=0.013,P=0.033,respectively).CONCLUSION:The findings from the current study indicate that ALCAR could represent a viable therapeutic option with the potential to open up novel treatment pathways for retinal diseases,particular relevance for age-related macular degeneration(AMD).However,to fully elucidate ALCAR’s application potential in retinal diseases,additional investigation is necessary to clearly define the exact mechanisms involved.展开更多
Four kinds of iron oxide pigments were added into wood-fiber/high-density-polyethylene composites (WF/HDPE) at three different concentrations, to determine the effects of pigments on the changes in the color and mec...Four kinds of iron oxide pigments were added into wood-fiber/high-density-polyethylene composites (WF/HDPE) at three different concentrations, to determine the effects of pigments on the changes in the color and mechanical properties of the composites before and after UV accelerated weathering. HDPE, wood fibers, pigments and other processing additives were dry-mixed in a high-speed mixer. The mixtures were extruded by two-step extrusion process with a self-designed twin-screw/single-screw extruder system. Color of the samples was determined according to CIE 1976 L^*a^*b^* system by a spec- trophotometer and the bending properties were tested to evaluate the mechanical properties before and after accelerated UV weathering. The result shows that the modulus of elasticity of WF/HDPE did not obvi- ously changed after incorporating with the pigments, but the bending strength increased. After accelerated aging for 2000 h, both color and mechanical properties significantly changed. Iron oxide red and black performed better than the other two pigments, and the pigments dosage of 2.28% in the composites is favourable.展开更多
[Objective] The study aimed at investigating the influence of enhanced UV-B radiation on photosynthesis of grapevine.[Method] The seedlings of Cabernet sauvignon were treated with different intensities of UV-B radiati...[Objective] The study aimed at investigating the influence of enhanced UV-B radiation on photosynthesis of grapevine.[Method] The seedlings of Cabernet sauvignon were treated with different intensities of UV-B radiation under outdoor conditions,and then the contents of photosynthetic pigments and flavonoids in leaves were determined by measuring the absorbance of leaves extracts at 663,645,470 and 300 nm,respectively.[Result] The content of photosynthetic pigments in the leaves of grapevine obviously increased with time under the treatments of different enhanced UV-B radiation.Compared with the control,the chlorophyll a,chlorophyll b,total chlorophyll and carotenoid were obviously increased by 5%,2%,4% and 3% in the enhanced UV-B radiation treatment of 10.8 μW/cm2(T1),and in the treatment of 25.6 μW/cm2(T2) the corresponding levels were subsequently increased by 11%,9%,10% and 7% with a significant increase in the content of chlorophyll a.On the other hand,the flavonoids content in the leaves of grapevine were obviously increased by 13%,9% in T1 and T2.[Conclusion] The grapevine has strong adaptability to UV-B radiation,and appropriate enhanced UV-B radiation couldn't decrease the photosynthesis of grapevine leaves.展开更多
Linear dichroism (LD) spectroscopy is an important technique in the study of the orientation and organization of pigments in the photosynthetic membrane complexes in vivo and in vitro . In this work, the orient...Linear dichroism (LD) spectroscopy is an important technique in the study of the orientation and organization of pigments in the photosynthetic membrane complexes in vivo and in vitro . In this work, the orientation of the pigments in the isolated photosystem Ⅱ (PSⅡ) sub_core reaction center complexes was analyzed and characterized by means of low temperature absorption and LD spectroscopy. The preparations containing different amounts of CP47 isolated from spinach (Spinacia oleracea L.) chloroplast were used in order to investigate the orientation of pigments in the PSⅡ sub_core CP47/D1/D2/Cyt b_559 (CP47/D1/D2) complexes. Chlorophyll a (Chl a) absorbing at 680 nm in CP47/D1/D2/Cyt b_559 complex showed an orientation of the Q y transition parallel to the membrane plane. It is proposed that there are two forms of β_carotene (β_Car) in CP47/D1/D2/Cyt b_559 complex, denoted as β_Car (Ⅰ) and β_Car (Ⅱ), with different orientations, β_Car (Ⅰ) at 470 and 505 nm is roughly parallel to the membrane plane, and β_Car (Ⅱ) at 460 and 490 nm seems to be perpendicular orientation. Upon the photoinhibitory experiment β_Car (Ⅱ) was found to be photosensitive and easily photodamaged. It also showed that the positive LD signal observed at 680 nm was quite complicated. This signal is tentatively attributed to P680 and some Chl a of antenna in CP47 protein based upon our measurements.展开更多
[Objective] The aim was to isolate a prodigiosin producing strain and study its pigment fractions.[Method] Red pigment-producing bacteria was identified by physiological and biochemical characteristics after isolation...[Objective] The aim was to isolate a prodigiosin producing strain and study its pigment fractions.[Method] Red pigment-producing bacteria was identified by physiological and biochemical characteristics after isolation in plate.By using column chromatography and thin-layer chromatography,pigment fractions were separated and purified from the extractives of the strain after fermentation in flask,and then pigment fractions were analyzed via UV-Vis and LC/MS.[Result] A red pigment-producing Serratia marcescens strain NS-17 sampled from soil of Nanchang was isolated and identified.2 pigment fractions showing similar UV-Vis and LC/MS characters were separated and purified,the characters of fraction 1 were identical to those of prodigiosin,while fraction 2 showed a special UV-Vis absorption spectrum that had not been reported.[Conclusion] A prodigiosin-producing Serratia marcescens strain NS-17 and its 2 pigment fractions were isolated.展开更多
In order to reduce greenhouse gas emission and urban heat island mitigation, pure and titanium(Ti)-doped Cr2O3 cool pigments were prepared via the thermal decomposition of CrOOH. The result reveals that the pure Cr2...In order to reduce greenhouse gas emission and urban heat island mitigation, pure and titanium(Ti)-doped Cr2O3 cool pigments were prepared via the thermal decomposition of CrOOH. The result reveals that the pure Cr2O3 pigment presents both a high near-infrared reflectance and excellent yellowish-green color. Meanwhile, titanium was doped to improve the NIR reflectance and strengthen the color. The color of the designed pigments was brighter, and most importantly, the NIR reflectance increased from 84.04% to 91.25% with increasing Ti content from 0 to 0.006% (mole fraction). However, excessive doping of Ti4+ for Cr3+ in Cr2O3 (x(Ti)≥0.008%) decreased the NIR reflectance. One possible reason is that the conductivity type of the Cr2?xTixO3+δ changed from p-type conduction to n-type conduction with increasing Ti content, accompanied by the change of the electrical resistivity and the NIR reflectance. The prepared yellowish-green Cr2O3 pigments have a great potential for extensive applications in construction and military.展开更多
Understanding the feeding selectivity on phytoplankton by shellfi sh is currently a big challenge. In order to investigate the feeding behavior of bay scallop ( Argopecten irradians ) on phytoplankton, we compared its...Understanding the feeding selectivity on phytoplankton by shellfi sh is currently a big challenge. In order to investigate the feeding behavior of bay scallop ( Argopecten irradians ) on phytoplankton, we compared its compositions of phytopigments in digestive glands with those in the surrounding seawater, and conducted fi ve consecutive investigations between July and November 2016 in a bay scallop culture area along coast of Qinghuangdao City, northwest of the Bohai Sea, China. Phytopigments in four-size fractionated phytoplankton of seawater (micro-(20-200 μm);nano(L)-[10-20 μm];nano(S)-[2.7-10 μm], and pico-[<2.7 μm]) and digestive glands of A . irradians were examined to investigate the selective feeding of A . irradians . Results show that fucoxanthin and peridinin constituted the major part of taxonomically diagnostic carotenoids (TDCs) in the micro- and nano(L)-phytoplankton in seawater. Compared with total phytoplankton biomass of seawater (TPB, sum of the four sizes), a substantial decrease of fucoxanthin proportion to total DCs in digestive glands was observed while that of peridinin, 19′-butanoyloxyfucoxanthin, alloxanthin and 19′-hexanoyloxy-fucoxanthin showed an obvious increase when those pigments were mainly confi ned to micro-sized phytoplankton (20-200 μm). However, zeaxanthin and prasinoxanthin were mainly confi ned to nano(s)- and pico-phytoplankton, of which the proportions in digestive glands were usually lower in TPB. The contribution of lutein to total DCs in digestive glands (with an average of 7.23%) increased compared with TPB of seawater (with an average of 0.63%) during all fi ve sampling times.展开更多
基金funded by the Scientific and Technological Innovation Team Project of Seed Industry for Saline-alkali Tolerant Crop in Hebei Province(23327501D)the National Key Research and Development Program of China(2022YFD2300802,2022YFD1900703)the China Agriculture Research System(CARS-3).
文摘Promoting more floret primordia within a spike to acquire fertile potential during the differentiation and pre-dimorphism phases is critical for increasing the number of fertile florets per spike(NFFs).However,it is yet unknown the physiological mechanism regulating the complex and dynamic process.This study aimed to clarify how intra-spike hormones,pigments,and assimilates coordinate with each other to regulate spike morphology and then floret primordia development.A two-year field experiment was conducted with two winter wheat genotypes:N50(big-spike with greater NFFs)and SM22(mediumspike with fewer NFFs).We monitored high temporal and spatial-resolution changes in the number and morphology of floret primordia within a spike,as well as in intra-spike hormones,pigments,and assimilates.Our results revealed that the big-spike genotype had more NFFs than the medium-spike genotype,not only because they had more spikelets,but also because they had greater NFFs mainly at central spikelets.More floret primordia at central spikelets had sufficient time to develop and acquire fertile potential during the differentiation phase(167-176 d after sowing,DAS)and the pre-dimorphism phase(179 DAS)for the big-spike genotype than the medium-spike genotype.Floret primordia with fertile morphology during the pre-dimorphism phase always developed into fertile florets during the dimorphism phase.Those early-developed floret primordia most proximal and intermediate to the rachis in the big-spike genotype developed faster than the medium-spike genotype.Correspondingly,the spike dry matter and pigments(chlorophyll a,chlorophyll b,carotene,and carotenoids)content during 170-182 DAS,auxin(IAA)and cytokinin(CTK)content on 167 DAS were significantly higher in the big-spike genotype than in the medium-spike genotype,while jasmonic acid(JA)content was significantly lower in the big-spike genotype compared to the medium-spike genotype during 167-182 DAS.Since the significant differences in intra-spike hormone content of the two genotypes appear earlier than those in dry matter and pigments,we propose a possible model that helped the N50 genotype(big-spike)to form more fertile florets,taking the intra-spike hormone content as a signaling molecule induced assimilates and pigments synthesis,which accelerated the development of more floret primordia during the differentiation phase and then acquired fertile potential during the pre-dimorphism phase,finally improved the NFFs.Our high temporal and spatial-resolution analysis provides an accurate time window for precision cultivation and effective physiological breeding to improve the number of fertile florets in wheat.
基金Fujian External Cooperation Project of Natural Science Foundation,China(No.2022I0042)。
文摘The silk fabrics were matching dyed with three natural edible pigments(red rice red,ginger yellow and gardenia blue).By investigating the dyeing rates and lifting properties of these pigments,it was observed that their compatibilities were excellent in the dyeing process:dye dosage 2.5%(omf),mordant alum dosage 2.0%(omf),dyeing temperature 80℃and dyeing time 40 min.The silk fabrics dyed with secondary colors exhibited vibrant and vivid color owing to the remarkable lightness and chroma of ginger yellow.However,gardenia blue exhibited multiple absorption peaks in the visible light range,resulting in significantly lower lightness and chroma for the silk fabrics dyed with tertiary colors,thus making it suitable only for matte-colored fabrics with low chroma levels.In addition,the silk fabrics dyed with these three pigments had a color fastness that exceeded grade 3 in resistance to perspiration,soap washing and light exposure,indicating acceptable wearing properties.The dyeing process described in this research exhibited a wide range of potential applications in matching dyeing of protein-based textiles with natural colorants.
基金funded by Livelihood Plan Project of Department of Science and Technology of Liaoning Province(2021JH2/10300069,2019-ZD-0845)Department of Education of Liaoning Province(LJKZ0918)National College Students’Innovation and Entrepreneurship Training Program(202210163013).
文摘Tea pigments have significant effects on human health.However,more attention have been paid to their physiological functions.The aim of this study was to analyze the quantitative and qualitative impact of tea pigments on human health,together with their current and potential future research directions.The study searched and screened 520 publications on WOS from January 2002 to December 2022.The article collected and collated literature published in the last 20 years and analyzed it bibliometrically for years,journals,countries,authors,topics,keywords and strongest citation bursts.The findings of keywords and strongest citation bursts revealed that the most discussed research topics were anticancer,black tea polyphenol,antioxidant,activator inhibitor,in vivo,gut microbiota,and summarize the relevant literature.As a reference for future research,the literature pointed out current shortcomings and speculated future development trend of tea pigments.
基金supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia,Grant No.451–03–68/2022–124/200032.
文摘Salinity is one of the major abiotic factors that limit the growth and productivity of plants.Foliar application of plant growth regulators(PGRs)may help plants ameliorate the negative impacts of salinity.Thus,a field experiment was conducted at the Botanical Garden University of Balochistan,Quetta,to explore the potential role of PGRs,i.e.,moringa leaf extract(MLE;10%),proline(PRO;1μM),salicylic acid(SA;250μM),and thiourea(TU;10 mM)in ameliorating the impacts of salinity(120 mM)on Plantago ovata,an important medicinal plant.Salinity hampered plant photosynthetic pigments and metabolites but elevated oxidative parameters.However,foliar application of PGRs enhanced photosynthetic pigments,including Chl b(21.11%),carotenoids(57.87%)except Chl a,activated the defense mechanisms by restoring and enhancing the metabolites,i.e.,soluble sugars(49.68%),soluble phenolics(33.34%),and proline(31.47%),significantly under salinity stress.Furthermore,foliar supplementation of PGRs under salt stress led to a decrease of about 43.02%and 43.27%in hydrogen peroxide and malondialdehyde content,respectively.Thus,PGRs can be recommended for improved photosynthetic efficiency and metabolite content that can help to get better yield under salt stress,with the best and most effective treatments being those of PRO and MLE to predominately ameliorate the harsh impacts of salinity.
基金National Key Technology R&D Program of China(2022YFF1001403)National Science Foundation of China(32101764).
文摘Cotton has enormous economic potential,providing high-quality protein,oil,and fibre.But the comprehensive utilization of cottonseed is limited by the presence of pigment gland and its inclusion.Pigment gland is a common characteristic of Gossypium genus and its relatives,appearing as visible dark opaque dots in most tissues and organs of cotton plants.Secondary metabolites,such as gossypol,synthesized and stored in the cavities of pigment glands act as natural phytoalexins,but are toxic to humans and other monogastric animals.However,only a few cotton genes have been identified as being associated with pigment gland morphogenesis to date,and the developmental processes and regulatory mechanism involved in pigment gland formation remain largely unclear.Here,the research progress on the process of pigment gland morphogenesis and the genetic basis of cotton pigment glands is reviewed,for providing a theoretical basis for cultivating cotton with the ideal pigment gland trait.
基金the National Natural Science Foundation of China(Grant Nos.81970821 and 82271100 to Q.L.).
文摘The retinal pigment epithelium(RPE)is fundamental to sustaining retinal homeostasis.RPE abnormality leads to visual defects and blindness,including age-related macular degeneration(AMD).Although breakthroughs have been made in the treatment of neovascular AMD,effective intervention for atrophic AMD is largely absent.The adequate knowledge of RPE pathology is hindered by a lack of the patients'RPE datasets,especially at the single-cell resolution.In the current study,we delved into a large-scale single-cell resource of AMD donors,in which RPE cells were occupied in a substantial proportion.Bulk RNA-seq datasets of atrophic AMD were integrated to extract molecular characteristics of RPE in the pathogenesis of atrophic AMD.Both in vivo and in vitro models revealed that carboxypeptidase X,M14 family member 2(CPXM2),was specifically expressed in the RPE cells of atrophic AMD,which might be induced by oxidative stress and involved in the epithelial-mesenchymal transition of RPE cells.Additionally,silencing of CPXM2 inhibited the mesenchymal phenotype of RPE cells in an oxidative stress cell model.Thus,our results demonstrated that CPXM2 played a crucial role in regulating atrophic AMD and might serve as a potential therapeutic target for atrophic AMD.
基金Supported by grants from the Zhejiang Medicine and Health Science and Technology Project(No.2018KY748)Ningbo Natural Science Foundation(No.2019A610352)+3 种基金Ningbo Major Scientific and Technological Research and“Unveiling and Commanding”Project(No.2021Z054)Chongqing Science&Technology Commission(No.CSTB2022NSCQ-MSX1413)Ningbo Clinical Research Center for Ophthalmology(No.2022L003)Ningbo Key Laboratory for Neuroretinopathy Medical Research,and the Project of NINGBO Leading Medical&Health Discipline(No.2016-S05).
文摘AIM:To investigate the proliferation regulatory effect of cone-rod homeobox(CRX)in retinal pigment epithelium(RPE)and retinoblastoma(RB)cells to explore the potential application and side effect(oncogenic potential)of CRXbased gene therapy in RPE-based retinopathies.METHODS:Adult human retinal pigment epithelial(ARPE)-19 and human retinal pigment epithelial(RPE)-1 cells and Y79 RB cell were used in the study.Genetic manipulation was performed by lentivirus-based technology.The cell proliferation was determined by a CellTiter-Glo Reagent.The mRNA and protein levels were determined by quantitative real-time polymerase chain reaction(qPCR)and Western blot assay.The transcriptional activity of the promoter was determined by luciferase reporter gene assay.The bindings between CRX and transcription factor 7(TCF7)promoter as well as TCF7 and the promoters of TCF7 target genes were examined by chromatin immunoprecipitation(ChIP)assay.The transcription of the TCF7 was determined by a modified nuclear run-on assay.RESULTS:CRX overexpression and knockdown significantly increased(n=3,P<0.05 in all the cells)and decreased(n=3,P<0.01 in all the cells)the proliferation of RPE and RB cells.CRX overexpression and knockdown significantly increased and deceased the mRNA levels of Wnt signaling target genes[including MYC proto-oncogene(MYC),JUN,FOS like 1(FOSL1),CCND1,cyclin D2(CCND2),cyclin D3(CCND3),cellular communication network factor 4(CCN4),peroxisome proliferator activated receptor delta(PPARD),and matrix metallopeptidase 7(MMP7)]and the luciferase activity driven by the Wnt signaling transcription factor(TCF7).TCF7 overexpression and knockdown significantly increased and decreased the proliferation of RPE and RB cells and depletion of TCF7 significantly abolished the stimulatory effect of CRX on the proliferation of RPE and RB cells.CRX overexpression and knockdown significantly increased and decreased the mRNA level of TCF7 and the promoter of TCF7 was significantly immunoprecipitated by CRX antibody.CONCLUSION:CRX transcriptionally activates TCF7 to promote the proliferation of RPE and RB cells in vitro.CRX is a potential target for RPE-based regenerative medicine.The potential risk of this strategy,tumorigenic potential,should be considered.
基金Supported by the Natural Science Foundation of Shaanxi Province,China(No.2022JM-521).
文摘AIM:To explore the effect of epidermal growth factor receptor(EGFR)inhibition by erlotinib and EGFR siRNA on epidermal growth factor(EGF)-induced activation of retinal pigment epithelium(RPE)cells.METHODS:Human RPE cell line(ARPE-19 cells)was activated by 100 ng/mL EGF.Erlotinib and EGFR siRNA were used to intervene EGF treatment.Cellular viability,proliferation,and migration were detected by methyl thiazolyl tetrazolium(MTT)assay,bromodeoxyuridine(BrdU)staining assay and wound healing assay,respectively.EGFR/protein kinase B(AKT)pathway proteins and N-cadherin,α-smooth muscle actin(α-SMA),and vimentin were tested by Western blot assay.EGFR was also determined by immunofluorescence staining.RESULTS:EGF treatment for 24h induced a significant increase of ARPE-19 cells’viability,proliferation and migration,phosphorylation of EGFR/AKT proteins,and decreased total EGFR expression.Erlotinib suppressed ARPE-19 cells’viability,proliferation and migration through down regulating total EGFR and AKT protein expressions.Erlotinib also inhibited EGF-induced an increase of proliferative and migrative ability in ARPE-19 cells and clearly suppressed EGF-induced EGFR/AKT proteins phosphorylation and decreased expression of N-cadherin,α-SMA,and vimentin proteins.Similarly,EGFR inhibition by EGFR siRNA significantly affected EGF-induced an increase of cell proliferation,viability,and migration,phosphorylation of EGFR/AKT proteins,and up-regulation of N-cadherin,α-SMA,and vimentin proteins.CONCLUSION:Erlotinib and EGFR-knockdown suppress EGF-induced cell viability,proliferation,and migration via EGFR/AKT pathway in RPE cells.EGFR inhibition may be a possible therapeutic approach for proliferative vitreoretinopathy(PVR).
基金Shanghai Municipal Health Commission,No.20214Y0078and The Key Discipline Construction Project,No.SHXHZDXK202321.
文摘BACKGROUND Pigmented villonodular synovitis(PVNS)is a benign proliferative disorder that affects the synovial joints,bursae,and tendon sheaths.To date,few studies have reported on the treatment of postoperative pain and edema in patients with PVNS.Herein,we present the case of a woman who developed pain and edema in the left lower limb 1 wk after synovectomy and arthroscopic partial meniscectomy and was unable to walk due to limited flexion and extension of the left knee.CASE SUMMARY A 32-year-old woman underwent synovectomy and arthroscopic partial meniscectomy successively and was treated with a combination of manual lymphatic drainage(MLD)and kinesio taping(KT)in our hospital to alleviate postoperative pain and edema.The following parameters were assessed at 2 wk post-treatment and 1 wk post-discharge follow up:suprapatellar circumference,infrapatellar circumference,visual analog scale score,knee range of motion,pittsburgh sleep quality index score,hamilton anxiety rating scale(HAMA)score,and hamilton depression rating scale(HAMD)score.After treatment,the postoperative pain and edema in the patient’s left knee were effectively relieved,resulting in improved sleep quality and remarkably attenuated HAMA and HAMD scores.CONCLUSION Combined MLD and KT may be an effective approach for relieving postoperative pain and edema in patients with PVNS.
基金the Natural Science Foundation of Shaanxi Province(No.2022JM-521)the Science and Technology Plan Project of Xi’an(No.21YXYJ0031).
文摘AIM:To explore the effects of hepatocyte growth factor(HGF)on retinal pigment epithelium(RPE)cell behaviors.METHODS:The human adult retinal pigment epithelial cell line-19(ARPE-19)were treated by HGF or mesenchymalepithelial transition factor(MET)inhibitor SU11274 in vitro.Cell viability was detected by a Cell Counting Kit-8 assay.Cell proliferation and motility was detected by a bromodeoxyuridine incorporation assay and a wound healing assay,respectively.The expression levels of MET,phosphorylated MET,protein kinase B(AKT),and phosphorylated AKT proteins were determined by Western blot assay.The MET and phosphorylated MET proteins were also determined by immunofluorescence assay.RESULTS:HGF increased ARPE-19 cells’viability,proliferation and migration,and induced an increase of phosphorylated MET and phosphorylated AKT proteins.SU11274 significantly reduced cell viability,proliferation,and migration and decreased the expression of MET and AKT proteins.SU11274 suppressed HGF-induced increase of viability,proliferation,and migration in ARPE-19 cells.Additionally,SU11274 also blocked HGF-induced phosphorylation of MET and AKT proteins.CONCLUSION:HGF enhances cellular viability,proliferation,and migration in RPE cells through the MET/AKT signaling pathway,whereas this enhancement is suppressed by the MET inhibitor SU11274.HGF-induced MET/AKT signaling might be a vital contributor of RPE cells survival.
基金The study was approved by the Ethics Committee of the Second People's Hospital of Chengdu.
文摘BACKGROUND The incidence and mortality of colorectal cancer(CRC)are among the highest in the world,and its occurrence and development are closely related to tumor neovascularization.When the balance between pigment epithelium-derived factors(PEDF)that inhibit angiogenesis and vascular endothelial growth factors(VEGF)that stimulate angiogenesis is broken,angiogenesis is out of control,resulting in tumor development.Therefore,it is very necessary to find more therapeutic targets for CRC for early intervention and later treatment.AIM To investigate the expression and significance of PEDF,VEGF,and CD31-stained microvessel density values(CD31-MVD)in normal colorectal mucosa,adenoma,and CRC.METHODS In this case-control study,we collected archived wax blocks of specimens from the Digestive Endoscopy Center and the General Surgery Department of Chengdu Second People's Hospital from April 2022 to October 2022.Fifty cases of specimen wax blocks were selected as normal intestinal mucosa confirmed by electronic colonoscopy and concurrent biopsy(normal control group),50 cases of specimen wax blocks were selected as colorectal adenoma confirmed by electronic colonoscopy and pathological biopsy(adenoma group),and 50 cases of specimen wax blocks were selected as CRC confirmed by postoperative pathological biopsy after inpatient operation of general surgery(CRC group).An immunohistochemical staining experiment was carried out to detect PEDF and VEGF expression in three groups of specimens,analyze their differences,study the relationship between the two and clinicopathological factors in CRC group,record CD31-MVD in the three groups,and analyze the correlation of PEDF,VEGF,and CD31-MVD in the colorectal adenoma group and the CRC group.The F test or adjusted F test is used to analyze measurement data statistically.Kruskal-Wallis rank sum test was used between groups for ranked data.The chi-square test,adjusted chi-square test,or Fisher's exact test were used to compare the rates between groups.All differences between groups were compared using the Bonferroni method for multiple comparisons.Spearman correlation analysis was used to test the correlation of the data.The test level(α)was 0.05,and a two-sided P<0.05 was considered statistically significant.RESULTS The positive expression rate and expression intensity of PEDF were gradually decreased in the normal control group,adenoma group,and CRC group(100%vs 78%vs 50%,χ^(2)=34.430,P<0.001;++~++vs+~++vs-~+,H=94.059,P<0.001),while VEGF increased gradually(0%vs 68%vs 96%,χ^(2)=98.35,P<0.001;-vs-~+vs++~+++,H=107.734,P<0.001).In the CRC group,the positive expression rate of PEDF decreased with the increase of differen-tiation degree,invasion depth,lymph node metastasis,distant metastasis,and TNM stage(χ^(2)=20.513,4.160,5.128,6.349,5.128,P<0.05);the high expression rate of VEGF was the opposite(χ^(2)=10.317,13.134,17.643,21.844,17.643,P<0.05).In the colorectal adenoma group,the expression intensity of PEDF correlated negatively with CD31-MVD(r=-0.601,P<0.001),whereas VEGF was not significantly different(r=0.258,P=0.07).In the CRC group,the expression intensity of PEDF correlated negatively with the expression intensity of CD31-MVD and VEGF(r=-0.297,P<0.05;r=-0.548,P<0.05),while VEGF expression intensity was positively related to CD31-MVD(r=0.421,P=0.002).CONCLUSION It is possible that PEDF can be used as a new treatment and prevention target for CRC by upregulating the expression of PEDF while inhibiting the expression of VEGF.
基金Supported by the Training Project for Young and Middleaged Core Talents in Health System of Fujian Province(No.2016-ZQN-62)Natural Science Foundation of Fujian Province(No.2020J01652).
文摘AIM:To examine the regulatory role of microRNA-204(miR-204)on silent information regulator 1(SIRT1)and vascular endothelial growth factor(VEGF)under highglucose-induced metabolic memory in human retinal pigment epithelial(hRPE)cells.METHODS:Cells were cultured with either normal(5 mmol/L)or high D-glucose(25 mmol/L)concentrations for 8d to establish control and high-glucose groups,respectively.To induce metabolic memory,cells were cultured with 25 mmol/L D-glucose for 4d followed by culture with 5 mmol/L D-glucose for 4d.In addition,exposed in 25 mmol/L D-glucose for 4d and then transfected with 100 nmol/L miR-204 control,miR-204 inhibitor or miR-204 mimic in 5 mmol/L D-glucose for 4d.Quantitative reverse transcription-polymerase chain reaction(RT-qPCR)was used to detect miR-204 mRNA levels.SIRT1 and VEGF protein levels were assessed by immunohistochemical and Western blot.Flow cytometry was used to investigate apoptosis rate.RESULTS:It was found that high glucose promoted miR-204 and VEGF expression,and inhibited SIRT1 activity,even after the return to normal glucose culture conditions.Upregulation of miR-204 promoted apoptosis inhibiting SIRT1 and increasing VEGF expression.However,downregulation of miR-204 produced the opposite effects.CONCLUSION:The study identifies that miR-204 is the upstream target of SIRT1and VEGF,and that miR-204 can protect hRPE cells from the damage caused by metabolic memory through increasing SIRT1 and inhibiting VEGF expression.
基金Supported by the Key Research&Development Program of Shaanxi Province(No.2022SF-311,No.2024SFYBXM-328,No.2024SF-YBXM-325)the Natural Science Basic Research Program of Shaanxi Province,China(No.2021JQ-385).
文摘AIM:To evaluate the effect of bone morphogenetic protein-6(BMP-6)on transforming growth factor(TGF)-β_(2)-induced epithelial-mesenchymal transition(EMT)in retinal pigment epithelium(RPE).METHODS:Adult retinal pigment epithelial cell line(ARPE-19)were randomly divided into control,TGF-β_(2)(5μg/L),and BMP-6 small interfering RNA(siRNA)group.The cell morphology was observed by microscopy,and the cell migration ability were detected by Transwell chamber.The EMT-related indexes and BMP-6 protein levels were detected by Western blotting.Furthermore,a BMP-6 overexpression plasmid was constructed and RPE cells were divided into the control group,TGF-β_(2)+empty plasmid group,BMP-6 overexpression group,and TGF-β_(2)+BMP-6 overexpression group.The EMT-related indexes and extracellular regulated protein kinases(ERK)protein levels were detected.RESULTS:Compared with the control group,the migration of RPE cells in the TGF-β_(2) group was significantly enhanced.TGF-β_(2) increased the protein expression levels ofα-smooth muscle actin(α-SMA),fibronectin and vimentin but significantly decreased the protein levels of E-cadherin and BMP-6(P<0.05)in RPE.Similarly,the migration of RPE cells in the BMP-6 siRNA group was also significantly enhanced.BMP-6 siRNA increased the protein expression levels ofα-SMA,fibronectin and vimentin but significantly decreased the protein expression levels of E-cadherin(P<0.05).Overexpression of BMP-6 inhibited the migration of RPE cells induced by TGF-β_(2) and prevented TGF-β_(2) from affecting EMT-related biomarkers(P<0.05).CONCLUSION:BMP-6 prevents the EMT in RPE cells induced by TGF-β_(2),which may provide a theoretical basis for the prevention and treatment of proliferative vitreoretinopathy.
文摘AIM:To investigate the effect of acetyl-L-carnitine(ALCAR)on cell viability,morphological integrity,and vascular endothelial growth factor(VEGF)expression in human retinal pigment epithelium(ARPE-19)cells using a hypoxic model.METHODS:In the first set of experiments,the optimal CoCl_(2) dose was determined by exposing ARPE-19 cell cultures to different concentrations.To evaluate the effect of ALCAR on cell viability,five groups of ARPE-19 cell culture were established that included a control group,a sham group(200μM CoCl_(2)),and groups that received 1,10 and 100 mM doses of ALCAR combined with 200μM CoCl_(2),respectively.The cell viability was measured by MTT assay.The morphological characteristics of cells were observed by an inverted phase contrast microscope.The levels of VEGF and HIF-1α secretion by ARPE-19 cells were detected by enzyme linked immunosorbent assay(ELISA)assay.RESULTS:ARPE-19 cells were exposed to different doses of CoCl_(2) in order to create a hypoxia model.Nevertheless,when exposed to a concentration of 200μM CoCl_(2),a notable decrease in viability to 83% was noted.ALCAR was found to increase the cell viability at 1 mM and 10 mM concentrations,while the highest concentration(100 mM)did not have an added effect.The cell viability was found to be significantly higher in the groups treated with a concentration of 1 mM and 10 mM ALCAR compared to the Sham group(P=0.041,P=0.019,respectively).The cell viability and morphology remained unaffected by the greatest dose of ALCAR(100 mM).The administration of 10 mM ALCAR demonstrated a statistically significant reduction in the levels of VEGF and HIF-1α compared with the Sham group(P=0.013,P=0.033,respectively).CONCLUSION:The findings from the current study indicate that ALCAR could represent a viable therapeutic option with the potential to open up novel treatment pathways for retinal diseases,particular relevance for age-related macular degeneration(AMD).However,to fully elucidate ALCAR’s application potential in retinal diseases,additional investigation is necessary to clearly define the exact mechanisms involved.
基金supported by the National Natural Science Foundation of China (30671644, 30771680)
文摘Four kinds of iron oxide pigments were added into wood-fiber/high-density-polyethylene composites (WF/HDPE) at three different concentrations, to determine the effects of pigments on the changes in the color and mechanical properties of the composites before and after UV accelerated weathering. HDPE, wood fibers, pigments and other processing additives were dry-mixed in a high-speed mixer. The mixtures were extruded by two-step extrusion process with a self-designed twin-screw/single-screw extruder system. Color of the samples was determined according to CIE 1976 L^*a^*b^* system by a spec- trophotometer and the bending properties were tested to evaluate the mechanical properties before and after accelerated UV weathering. The result shows that the modulus of elasticity of WF/HDPE did not obvi- ously changed after incorporating with the pigments, but the bending strength increased. After accelerated aging for 2000 h, both color and mechanical properties significantly changed. Iron oxide red and black performed better than the other two pigments, and the pigments dosage of 2.28% in the composites is favourable.
文摘[Objective] The study aimed at investigating the influence of enhanced UV-B radiation on photosynthesis of grapevine.[Method] The seedlings of Cabernet sauvignon were treated with different intensities of UV-B radiation under outdoor conditions,and then the contents of photosynthetic pigments and flavonoids in leaves were determined by measuring the absorbance of leaves extracts at 663,645,470 and 300 nm,respectively.[Result] The content of photosynthetic pigments in the leaves of grapevine obviously increased with time under the treatments of different enhanced UV-B radiation.Compared with the control,the chlorophyll a,chlorophyll b,total chlorophyll and carotenoid were obviously increased by 5%,2%,4% and 3% in the enhanced UV-B radiation treatment of 10.8 μW/cm2(T1),and in the treatment of 25.6 μW/cm2(T2) the corresponding levels were subsequently increased by 11%,9%,10% and 7% with a significant increase in the content of chlorophyll a.On the other hand,the flavonoids content in the leaves of grapevine were obviously increased by 13%,9% in T1 and T2.[Conclusion] The grapevine has strong adaptability to UV-B radiation,and appropriate enhanced UV-B radiation couldn't decrease the photosynthesis of grapevine leaves.
基金Commissaire Energie de Atomique de Francethe 9th Five-Year Major Program of the National Natural Science Foundation of China(39890390)+1 种基金the State Key Basic Research Development Plan of China(973)(G1998010100)Innovation of Laboratory of Photosynthests Basic Research,Institute of Botany,The Chinese Acadeny of Sciences
文摘Linear dichroism (LD) spectroscopy is an important technique in the study of the orientation and organization of pigments in the photosynthetic membrane complexes in vivo and in vitro . In this work, the orientation of the pigments in the isolated photosystem Ⅱ (PSⅡ) sub_core reaction center complexes was analyzed and characterized by means of low temperature absorption and LD spectroscopy. The preparations containing different amounts of CP47 isolated from spinach (Spinacia oleracea L.) chloroplast were used in order to investigate the orientation of pigments in the PSⅡ sub_core CP47/D1/D2/Cyt b_559 (CP47/D1/D2) complexes. Chlorophyll a (Chl a) absorbing at 680 nm in CP47/D1/D2/Cyt b_559 complex showed an orientation of the Q y transition parallel to the membrane plane. It is proposed that there are two forms of β_carotene (β_Car) in CP47/D1/D2/Cyt b_559 complex, denoted as β_Car (Ⅰ) and β_Car (Ⅱ), with different orientations, β_Car (Ⅰ) at 470 and 505 nm is roughly parallel to the membrane plane, and β_Car (Ⅱ) at 460 and 490 nm seems to be perpendicular orientation. Upon the photoinhibitory experiment β_Car (Ⅱ) was found to be photosensitive and easily photodamaged. It also showed that the positive LD signal observed at 680 nm was quite complicated. This signal is tentatively attributed to P680 and some Chl a of antenna in CP47 protein based upon our measurements.
文摘[Objective] The aim was to isolate a prodigiosin producing strain and study its pigment fractions.[Method] Red pigment-producing bacteria was identified by physiological and biochemical characteristics after isolation in plate.By using column chromatography and thin-layer chromatography,pigment fractions were separated and purified from the extractives of the strain after fermentation in flask,and then pigment fractions were analyzed via UV-Vis and LC/MS.[Result] A red pigment-producing Serratia marcescens strain NS-17 sampled from soil of Nanchang was isolated and identified.2 pigment fractions showing similar UV-Vis and LC/MS characters were separated and purified,the characters of fraction 1 were identical to those of prodigiosin,while fraction 2 showed a special UV-Vis absorption spectrum that had not been reported.[Conclusion] A prodigiosin-producing Serratia marcescens strain NS-17 and its 2 pigment fractions were isolated.
基金Project(11204304)supported by the National Natural Science Foundation of ChinaProject(2013CB632600)supported by the National Basic Research Program of ChinaProject(2011AA060702)supported by the National High-tech Research and Development Program of China
文摘In order to reduce greenhouse gas emission and urban heat island mitigation, pure and titanium(Ti)-doped Cr2O3 cool pigments were prepared via the thermal decomposition of CrOOH. The result reveals that the pure Cr2O3 pigment presents both a high near-infrared reflectance and excellent yellowish-green color. Meanwhile, titanium was doped to improve the NIR reflectance and strengthen the color. The color of the designed pigments was brighter, and most importantly, the NIR reflectance increased from 84.04% to 91.25% with increasing Ti content from 0 to 0.006% (mole fraction). However, excessive doping of Ti4+ for Cr3+ in Cr2O3 (x(Ti)≥0.008%) decreased the NIR reflectance. One possible reason is that the conductivity type of the Cr2?xTixO3+δ changed from p-type conduction to n-type conduction with increasing Ti content, accompanied by the change of the electrical resistivity and the NIR reflectance. The prepared yellowish-green Cr2O3 pigments have a great potential for extensive applications in construction and military.
基金Supported by the Qingdao National Laboratory for Marine Science and Technology Program(No.2016ASKJ02)the Central Publicinterest Scientific Institution Basal Research Fund,YSFRI,CAFS(No.20603022018002)the National Natural Science Foundation of China(Nos.41676103,41476098)
文摘Understanding the feeding selectivity on phytoplankton by shellfi sh is currently a big challenge. In order to investigate the feeding behavior of bay scallop ( Argopecten irradians ) on phytoplankton, we compared its compositions of phytopigments in digestive glands with those in the surrounding seawater, and conducted fi ve consecutive investigations between July and November 2016 in a bay scallop culture area along coast of Qinghuangdao City, northwest of the Bohai Sea, China. Phytopigments in four-size fractionated phytoplankton of seawater (micro-(20-200 μm);nano(L)-[10-20 μm];nano(S)-[2.7-10 μm], and pico-[<2.7 μm]) and digestive glands of A . irradians were examined to investigate the selective feeding of A . irradians . Results show that fucoxanthin and peridinin constituted the major part of taxonomically diagnostic carotenoids (TDCs) in the micro- and nano(L)-phytoplankton in seawater. Compared with total phytoplankton biomass of seawater (TPB, sum of the four sizes), a substantial decrease of fucoxanthin proportion to total DCs in digestive glands was observed while that of peridinin, 19′-butanoyloxyfucoxanthin, alloxanthin and 19′-hexanoyloxy-fucoxanthin showed an obvious increase when those pigments were mainly confi ned to micro-sized phytoplankton (20-200 μm). However, zeaxanthin and prasinoxanthin were mainly confi ned to nano(s)- and pico-phytoplankton, of which the proportions in digestive glands were usually lower in TPB. The contribution of lutein to total DCs in digestive glands (with an average of 7.23%) increased compared with TPB of seawater (with an average of 0.63%) during all fi ve sampling times.