This paper studied the effect of ferric chloride on waste sludge digestion,dewatering and sedimentation under the optimized doses in co-precipitation phosphorus removal process.The experimental results showed that the...This paper studied the effect of ferric chloride on waste sludge digestion,dewatering and sedimentation under the optimized doses in co-precipitation phosphorus removal process.The experimental results showed that the concentration of mixed liquid suspended solid(MLSS) was 2436 mg.L-1 and 2385 mg.L-1 in co-precipitation phosphorus removal process(CPR) and biological phosphorous removal process(BPR),respectively.The sludge reduction ratio for each process was 22.6% and 24.6% in aerobic digestion,and 27.6% and 29.9% in anaerobic digestion,respectively.Due to the addition of chemical to the end of aeration tank,the sludge content of CPR was slightly higher than that of BPR,but the sludge reduction rate for both processes had no distinct difference.The sludge volume index(SVI) and sludge specific resistance of BPR were 126 ml.g-1 and 11.7×1012 m.kg-1,respectively,while those of CPR were only 98 ml.g-1 and 7.1×1012 m.kg-1,indicating that CPR chemical could improve sludge settling and dewatering.展开更多
The aim of this article was to theoretically study diffusion and migration of chloride ions during electrochemical chloride removal. The proposed model would enable optimization of its application by predicting the op...The aim of this article was to theoretically study diffusion and migration of chloride ions during electrochemical chloride removal. The proposed model would enable optimization of its application by predicting the optimal treatment time and current combination. A mathematical model for simulating the transport behavior of chloride ions was developed by consideration of diffusion and migration of chloride ions when a constant DC current density was applied through the marine cast iron artifacts. The corresponding tests were conducted to validate the mathematical model. This model predicted the data of the extraction ratio of the chloride ion that correlated satisfactorily with the experimental values. An important issue in electrochemical chloride removal was to understand how chloride ions moved, taking account of diffusion and migration of chloride ions and the release of binding chloride ions. The effects of the treatment time, externally applied current density, chloride diffusion coefficient, and rate constant of release of binding chloride ion on chloride removal are studied. The specific quantitative details applied to one-dimensional model were discussed here. This article has proposed a mathematical model for the first time, which was showed to be a useful tool that can reveal the ionic transport mechanism and optimize the application during electrochemical chloride removal.展开更多
For efficient energy consumption and control of effluent quality, the cycle duration for a sequencing batch reactor (SBR) needs to be adjusted by real-time control according to the characteristics and loading of waste...For efficient energy consumption and control of effluent quality, the cycle duration for a sequencing batch reactor (SBR) needs to be adjusted by real-time control according to the characteristics and loading of waste-water. In this study, an on-line information system for phosphorus removal processes was established. Based on the analysis for four systems with different ecological community structures and two operation modes, anaerobic-aerobic process and anaerobic-anaerobic process, the characteristic patterns of oxidation-reduction potential (ORP) and pH were related to phosphorous dynamics in the anaerobic, anoxic and aerobic phases, for determination of the end of phosphorous removal. In the operation mode of anaerobic-aerobic process, the pH profile in the anaerobic phase was used to estimate the relative amount of phosphorous accumulating organisms (PAOs) and glycogen accumulat-ing organisms (GAOs), which is beneficial to early detection of ecology community shifts. The on-line sensor val-ues of pH and ORP may be used as the parameters to adjust the duration for phosphorous removal and community shifts to cope with influent variations and maintain appropriate operation conditions.展开更多
Phosphorus adsorption tests were carried out using poly-aluminum chloride sludge(PACS),which was collected from a water treatment plant in Nanjing.The amount of phosphorus adsorbed by PACS increased quickly within the...Phosphorus adsorption tests were carried out using poly-aluminum chloride sludge(PACS),which was collected from a water treatment plant in Nanjing.The amount of phosphorus adsorbed by PACS increased quickly within the first hour and reached equilibrium after about 48 h.The adsorption behavior of PACS for phosphorus is consistent with the Langmuir adsorption isotherm equation(R2>0.99)and parallel first-order kinetic equation(R2>0.98).With the increase of the PACS concentration,the adsorption capacity of PACS for phosphorus decreased,and the removal rate increased.The results of batch tests showed that the adsorption capacities of PACS for phosphorus ranged from 1.64 to 1.13 mg/g when the pH value varied from 4 to 10.However,the adsorption capacity of PACS was not evidently influenced by temperature.In comparison with the ion exchange resin,the adsorption capacity of PACS was barely inhibited by competitive ions,such as SO24,NO3,and Cl.The PACS surface after adsorption became smooth,and the vibration peaks of AleO and AleOH shifted.Both HCl and NaOH have a strong desorption effect on PACS after adsorption saturation,and with higher concentrations of HCl and NaOH,the desorption effect was stronger.Results of column adsorption experiments showed that with lower phosphorus and hydraulic loads,the adsorption column took longer to reach saturation.This indicated that PACS could be used as an efficient material for removal of phosphorus from water.This study provides a new treatment method with PACS.展开更多
Due to their unique features,such as the inherent safety,simplified fuel cycle,and continuous on-line reprocessing,molten salt reactors(MSRs)are regarded as one of the six reference reactors in the Generation IV Inter...Due to their unique features,such as the inherent safety,simplified fuel cycle,and continuous on-line reprocessing,molten salt reactors(MSRs)are regarded as one of the six reference reactors in the Generation IV International Forum(GEN-IV).Molten chloride salt fast reactors(MCFRs)are a type of MSR.Compared to molten fluoride salt reactors(MFSRs),MCFRs have a higher solubility of heavy metal atoms,a harder neutron spectrum,lower accumulation of fission products(FPs),and better breeding and transmutation performance.Thus,MCFRs have been recognized as a type of MSR with great prospects for future development.However,as the most important feature for MSRs,the effect of different reprocessing modes on MCFRs must be researched in depth.As such,this study investigated the effect of different isotopes,especially FPs,on the neutronic performance of an MCFR,such as its breeding performance.Furthermore,the characteristics of the different reprocessing modes and MCFR rates were analyzed in terms of safety,radioactivity level,neutron economy,and breeding capacity.In the end,a reprocessing method suitable for MCFRs was determined through calculation and analysis,which provides a reference for the further research of MCFRs.展开更多
That phosphorus has been removed more from water in purification process can result in higher grade of biological stability of the effluent tap water, especially for the water plant when using surface water source. Th...That phosphorus has been removed more from water in purification process can result in higher grade of biological stability of the effluent tap water, especially for the water plant when using surface water source. This study conducted the experiments of phosphorus removal by three coagulants including aluminum chloride, aluminum sulfate and poly aluminum chloride. The results indicated that the poly aluminum chloride is the preferred one that could remove phosphorus up to 80%, followed by aluminum chloride and aluminum sulfate. The lowest proportion of aluminum quality to phosphorus quality is 63 as using poly aluminum chloride, followed by aluminum chloride and aluminum sulfate. It is suggested that the poly aluminum chloride should be the best option to remove phosphorus in water plant.展开更多
基金Supported by the Major National Water Sci-Tech Projects of China(2009ZX07210-009)the Department of Environmental Protection of Shandong Province(2006032,2060403)
文摘This paper studied the effect of ferric chloride on waste sludge digestion,dewatering and sedimentation under the optimized doses in co-precipitation phosphorus removal process.The experimental results showed that the concentration of mixed liquid suspended solid(MLSS) was 2436 mg.L-1 and 2385 mg.L-1 in co-precipitation phosphorus removal process(CPR) and biological phosphorous removal process(BPR),respectively.The sludge reduction ratio for each process was 22.6% and 24.6% in aerobic digestion,and 27.6% and 29.9% in anaerobic digestion,respectively.Due to the addition of chemical to the end of aeration tank,the sludge content of CPR was slightly higher than that of BPR,but the sludge reduction rate for both processes had no distinct difference.The sludge volume index(SVI) and sludge specific resistance of BPR were 126 ml.g-1 and 11.7×1012 m.kg-1,respectively,while those of CPR were only 98 ml.g-1 and 7.1×1012 m.kg-1,indicating that CPR chemical could improve sludge settling and dewatering.
基金the National Key Technologies R&D Program of the Tenth Five-Year Plan Period for financial support (Contract No.2001BA805B01)
文摘The aim of this article was to theoretically study diffusion and migration of chloride ions during electrochemical chloride removal. The proposed model would enable optimization of its application by predicting the optimal treatment time and current combination. A mathematical model for simulating the transport behavior of chloride ions was developed by consideration of diffusion and migration of chloride ions when a constant DC current density was applied through the marine cast iron artifacts. The corresponding tests were conducted to validate the mathematical model. This model predicted the data of the extraction ratio of the chloride ion that correlated satisfactorily with the experimental values. An important issue in electrochemical chloride removal was to understand how chloride ions moved, taking account of diffusion and migration of chloride ions and the release of binding chloride ions. The effects of the treatment time, externally applied current density, chloride diffusion coefficient, and rate constant of release of binding chloride ion on chloride removal are studied. The specific quantitative details applied to one-dimensional model were discussed here. This article has proposed a mathematical model for the first time, which was showed to be a useful tool that can reveal the ionic transport mechanism and optimize the application during electrochemical chloride removal.
基金Supported by the Project of Scientific Research Base and Scientific Innovation Platform of Beijing Municipal Education Com-mission (PXM2008_014204_050843)the National Natural Science Foundation of China (50808004)the DoctoralStartup Research Program of Beijing University of Technology
文摘For efficient energy consumption and control of effluent quality, the cycle duration for a sequencing batch reactor (SBR) needs to be adjusted by real-time control according to the characteristics and loading of waste-water. In this study, an on-line information system for phosphorus removal processes was established. Based on the analysis for four systems with different ecological community structures and two operation modes, anaerobic-aerobic process and anaerobic-anaerobic process, the characteristic patterns of oxidation-reduction potential (ORP) and pH were related to phosphorous dynamics in the anaerobic, anoxic and aerobic phases, for determination of the end of phosphorous removal. In the operation mode of anaerobic-aerobic process, the pH profile in the anaerobic phase was used to estimate the relative amount of phosphorous accumulating organisms (PAOs) and glycogen accumulat-ing organisms (GAOs), which is beneficial to early detection of ecology community shifts. The on-line sensor val-ues of pH and ORP may be used as the parameters to adjust the duration for phosphorous removal and community shifts to cope with influent variations and maintain appropriate operation conditions.
基金This work was supported by the Primary Research and Development Plan of Jiangsu Province(Grant No.BE2016703)the Natural Science Youth Fund of Jiangsu Province(Grant No.BK20171017)+1 种基金the National Natural Science Youth Fund of China(Grant No.51707093)the Science and Technology Program of the Ministry of Housing and Urban-Rural Development of China(Grant No.2014-K7-010).
文摘Phosphorus adsorption tests were carried out using poly-aluminum chloride sludge(PACS),which was collected from a water treatment plant in Nanjing.The amount of phosphorus adsorbed by PACS increased quickly within the first hour and reached equilibrium after about 48 h.The adsorption behavior of PACS for phosphorus is consistent with the Langmuir adsorption isotherm equation(R2>0.99)and parallel first-order kinetic equation(R2>0.98).With the increase of the PACS concentration,the adsorption capacity of PACS for phosphorus decreased,and the removal rate increased.The results of batch tests showed that the adsorption capacities of PACS for phosphorus ranged from 1.64 to 1.13 mg/g when the pH value varied from 4 to 10.However,the adsorption capacity of PACS was not evidently influenced by temperature.In comparison with the ion exchange resin,the adsorption capacity of PACS was barely inhibited by competitive ions,such as SO24,NO3,and Cl.The PACS surface after adsorption became smooth,and the vibration peaks of AleO and AleOH shifted.Both HCl and NaOH have a strong desorption effect on PACS after adsorption saturation,and with higher concentrations of HCl and NaOH,the desorption effect was stronger.Results of column adsorption experiments showed that with lower phosphorus and hydraulic loads,the adsorption column took longer to reach saturation.This indicated that PACS could be used as an efficient material for removal of phosphorus from water.This study provides a new treatment method with PACS.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project (No.XDA02010000)the Frontier Science Key Program of Chinese Academy of Sciences (No.QYZDY-SSW-JSC016)the Shanghai Sailing Program (No.20YF1457600).
文摘Due to their unique features,such as the inherent safety,simplified fuel cycle,and continuous on-line reprocessing,molten salt reactors(MSRs)are regarded as one of the six reference reactors in the Generation IV International Forum(GEN-IV).Molten chloride salt fast reactors(MCFRs)are a type of MSR.Compared to molten fluoride salt reactors(MFSRs),MCFRs have a higher solubility of heavy metal atoms,a harder neutron spectrum,lower accumulation of fission products(FPs),and better breeding and transmutation performance.Thus,MCFRs have been recognized as a type of MSR with great prospects for future development.However,as the most important feature for MSRs,the effect of different reprocessing modes on MCFRs must be researched in depth.As such,this study investigated the effect of different isotopes,especially FPs,on the neutronic performance of an MCFR,such as its breeding performance.Furthermore,the characteristics of the different reprocessing modes and MCFR rates were analyzed in terms of safety,radioactivity level,neutron economy,and breeding capacity.In the end,a reprocessing method suitable for MCFRs was determined through calculation and analysis,which provides a reference for the further research of MCFRs.
文摘That phosphorus has been removed more from water in purification process can result in higher grade of biological stability of the effluent tap water, especially for the water plant when using surface water source. This study conducted the experiments of phosphorus removal by three coagulants including aluminum chloride, aluminum sulfate and poly aluminum chloride. The results indicated that the poly aluminum chloride is the preferred one that could remove phosphorus up to 80%, followed by aluminum chloride and aluminum sulfate. The lowest proportion of aluminum quality to phosphorus quality is 63 as using poly aluminum chloride, followed by aluminum chloride and aluminum sulfate. It is suggested that the poly aluminum chloride should be the best option to remove phosphorus in water plant.