On-line estimation of unmeasurable biological variables is important in fermentation processes,directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the ta...On-line estimation of unmeasurable biological variables is important in fermentation processes,directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the targeted product.In this study,a novel strategy for state estimation of fed-batch fermentation process is proposed.By combining a simple and reliable mechanistic dynamic model with the sample-based regressive measurement model,a state space model is developed.An improved algorithm,swarm energy conservation particle swarm optimization(SECPSO) ,is presented for the parameter identification in the mechanistic model,and the support vector machines(SVM) method is adopted to establish the nonlinear measurement model.The unscented Kalman filter(UKF) is designed for the state space model to reduce the disturbances of the noises in the fermentation process.The proposed on-line estimation method is demonstrated by the simulation experiments of a penicillin fed-batch fermentation process.展开更多
Based on the theory of multi-body system (MBS), bine’s and huston’s methods are applied to an on-line measuring system of machining center in this paper. Through the study on modeling technique, the comprehensive mo...Based on the theory of multi-body system (MBS), bine’s and huston’s methods are applied to an on-line measuring system of machining center in this paper. Through the study on modeling technique, the comprehensive model for errors calculation in an on-line measuring System of machining center have been built for the first time. Using this model, the errors can be compensated by soft.ware and the measuring accuracy can be enhanced without any more inveSt. This model can be used in all kinds of machining center.展开更多
An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanic...An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanical properties were predicted for different process parameters. In the later passes full recrystallization becomes difficult to occur and higher residual strain remains in austenite after rolling. For the reasonable temperature and cooling schedule, yield strength of 30 mm plain carbon steel plate can reach 310 MPa. The first on-line application of prediction and control of microstructure and properties (PCMP) in the medium plate production was achieved. The predictions of the system are in good agreement with measurements.展开更多
Non-stationary time series could be divided into piecewise stationary stochastic signal. However, the number and locations of breakpoints, as well as the approximation function of the respective segment signal are unk...Non-stationary time series could be divided into piecewise stationary stochastic signal. However, the number and locations of breakpoints, as well as the approximation function of the respective segment signal are unknown. To solve this problem, a novel on-line structural breaks estimation algorithm based on piecewise autoregressive processes is proposed. In order to find the "best" combination of the number, lengths, and orders of the piecewise autoregressive (AR) processes, the Akaikes Information Criterion (AIC) and Yule-Walker equations are applied to estimate an AR model fit to the data. Numerical results demonstrate that the proposed estimation algorithm is suitable for different data series. Furthermore, the algorithm is used in a clinical study of electroencephalogram (EEG) with satisfactory results, and the ability to deal with real-time data is the most outstanding characteristic of on-line structural breaks estimation algorithm proposed.展开更多
In this paper, a dynamic fault model is proposed to predict yarn end breakage in the spinning procedure through investigation of fault characteristics. In view of the principle that uniformity bad in raw material caus...In this paper, a dynamic fault model is proposed to predict yarn end breakage in the spinning procedure through investigation of fault characteristics. In view of the principle that uniformity bad in raw material causes iustable yarn formation, the investigation focuses on the fault characteristic existing in the dynamic tension. Analyzing the dynamic spinning system, the phenomenon of over random shock in a spinning triangle is discovered to be the main physical event prior to yarn end breakage. The fault characteristic is further confirmed by dynamic tests and signal processing, and can be used to make an approach to predicting yarn end breakage. A relative energy feature is defined for evaluating the tendency of yarn end breakage, and its effectiveness is verified by on.line monitoring tests in the laboratory. The research results show that the proposed dynamic fault model has not only an advantage in indicating the presence of fault characteristics, but also great potentials in quantitating fault in online spinning monitoring.展开更多
In recent years,garbage classification and environmental protection are gradually becoming an important step in the construction of ecological civilization in China.However,the popularity and commercial value of the a...In recent years,garbage classification and environmental protection are gradually becoming an important step in the construction of ecological civilization in China.However,the popularity and commercial value of the application of artificial intelligence trash cans in Beijing are not high at present.This article analyzes these problems one by one and propose solutions,hoping that the commercial value of artificial intelligence trash cans can be optimized and improved and to make the city greener.This paper uses the questionnaire method and the literature method to research and analyze the optimization of the business model of artificial intelligence in garbage classification.展开更多
In order to characterize the voltage behavior of a lithium-ion battery for on-board electric vehicle battery management and control applications,a battery model with a moderate complexity was established.The battery o...In order to characterize the voltage behavior of a lithium-ion battery for on-board electric vehicle battery management and control applications,a battery model with a moderate complexity was established.The battery open circuit voltage (OCV) as a function of state of charge (SOC) was depicted by the Nernst equation.An equivalent circuit network was adopted to describe the polarization effect of the lithium-ion battery.A linear identifiable formulation of the battery model was derived by discretizing the frequent-domain description of the battery model.The recursive least square algorithm with forgetting was applied to implement the on-line parameter calibration.The validation results show that the on-line calibrated model can accurately predict the dynamic voltage behavior of the lithium-ion battery.The maximum and mean relative errors are 1.666% and 0.01%,respectively,in a hybrid pulse test,while 1.933% and 0.062%,respectively,in a transient power test.The on-line parameter calibration method thereby can ensure that the model possesses an acceptable robustness to varied battery loading profiles.展开更多
This paper provides a mathematical model for the billet reheating process in furnace.A new optimum method is brought up that the objective function is the integral value of enthalpy increasing process of a billet.Diff...This paper provides a mathematical model for the billet reheating process in furnace.A new optimum method is brought up that the objective function is the integral value of enthalpy increasing process of a billet.Different delays are simulated and calculated,some proper delay strategies are ob- tained.The on-line computer control model is de- veloped.The real production conditions simulated, the temperature deviation of drop out billet from the target temperature is kept within±15℃.展开更多
基金Supported by the National Natural Science Foundation of China(20476007 20676013)
文摘On-line estimation of unmeasurable biological variables is important in fermentation processes,directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the targeted product.In this study,a novel strategy for state estimation of fed-batch fermentation process is proposed.By combining a simple and reliable mechanistic dynamic model with the sample-based regressive measurement model,a state space model is developed.An improved algorithm,swarm energy conservation particle swarm optimization(SECPSO) ,is presented for the parameter identification in the mechanistic model,and the support vector machines(SVM) method is adopted to establish the nonlinear measurement model.The unscented Kalman filter(UKF) is designed for the state space model to reduce the disturbances of the noises in the fermentation process.The proposed on-line estimation method is demonstrated by the simulation experiments of a penicillin fed-batch fermentation process.
文摘Based on the theory of multi-body system (MBS), bine’s and huston’s methods are applied to an on-line measuring system of machining center in this paper. Through the study on modeling technique, the comprehensive model for errors calculation in an on-line measuring System of machining center have been built for the first time. Using this model, the errors can be compensated by soft.ware and the measuring accuracy can be enhanced without any more inveSt. This model can be used in all kinds of machining center.
基金This work was financially supported by the High Technology Development Program(No.2001AA339030)the National Natural Science Foundation of China(No.50334010).
文摘An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanical properties were predicted for different process parameters. In the later passes full recrystallization becomes difficult to occur and higher residual strain remains in austenite after rolling. For the reasonable temperature and cooling schedule, yield strength of 30 mm plain carbon steel plate can reach 310 MPa. The first on-line application of prediction and control of microstructure and properties (PCMP) in the medium plate production was achieved. The predictions of the system are in good agreement with measurements.
基金supported by Fund of National Science & Technology monumental projects under Grants No. 2012ZX03005012, 2011ZX03005-004-03, 2009ZX03003-007
文摘Non-stationary time series could be divided into piecewise stationary stochastic signal. However, the number and locations of breakpoints, as well as the approximation function of the respective segment signal are unknown. To solve this problem, a novel on-line structural breaks estimation algorithm based on piecewise autoregressive processes is proposed. In order to find the "best" combination of the number, lengths, and orders of the piecewise autoregressive (AR) processes, the Akaikes Information Criterion (AIC) and Yule-Walker equations are applied to estimate an AR model fit to the data. Numerical results demonstrate that the proposed estimation algorithm is suitable for different data series. Furthermore, the algorithm is used in a clinical study of electroencephalogram (EEG) with satisfactory results, and the ability to deal with real-time data is the most outstanding characteristic of on-line structural breaks estimation algorithm proposed.
文摘In this paper, a dynamic fault model is proposed to predict yarn end breakage in the spinning procedure through investigation of fault characteristics. In view of the principle that uniformity bad in raw material causes iustable yarn formation, the investigation focuses on the fault characteristic existing in the dynamic tension. Analyzing the dynamic spinning system, the phenomenon of over random shock in a spinning triangle is discovered to be the main physical event prior to yarn end breakage. The fault characteristic is further confirmed by dynamic tests and signal processing, and can be used to make an approach to predicting yarn end breakage. A relative energy feature is defined for evaluating the tendency of yarn end breakage, and its effectiveness is verified by on.line monitoring tests in the laboratory. The research results show that the proposed dynamic fault model has not only an advantage in indicating the presence of fault characteristics, but also great potentials in quantitating fault in online spinning monitoring.
文摘In recent years,garbage classification and environmental protection are gradually becoming an important step in the construction of ecological civilization in China.However,the popularity and commercial value of the application of artificial intelligence trash cans in Beijing are not high at present.This article analyzes these problems one by one and propose solutions,hoping that the commercial value of artificial intelligence trash cans can be optimized and improved and to make the city greener.This paper uses the questionnaire method and the literature method to research and analyze the optimization of the business model of artificial intelligence in garbage classification.
基金Project(50905015) supported by the National Natural Science Foundation of China
文摘In order to characterize the voltage behavior of a lithium-ion battery for on-board electric vehicle battery management and control applications,a battery model with a moderate complexity was established.The battery open circuit voltage (OCV) as a function of state of charge (SOC) was depicted by the Nernst equation.An equivalent circuit network was adopted to describe the polarization effect of the lithium-ion battery.A linear identifiable formulation of the battery model was derived by discretizing the frequent-domain description of the battery model.The recursive least square algorithm with forgetting was applied to implement the on-line parameter calibration.The validation results show that the on-line calibrated model can accurately predict the dynamic voltage behavior of the lithium-ion battery.The maximum and mean relative errors are 1.666% and 0.01%,respectively,in a hybrid pulse test,while 1.933% and 0.062%,respectively,in a transient power test.The on-line parameter calibration method thereby can ensure that the model possesses an acceptable robustness to varied battery loading profiles.
文摘This paper provides a mathematical model for the billet reheating process in furnace.A new optimum method is brought up that the objective function is the integral value of enthalpy increasing process of a billet.Different delays are simulated and calculated,some proper delay strategies are ob- tained.The on-line computer control model is de- veloped.The real production conditions simulated, the temperature deviation of drop out billet from the target temperature is kept within±15℃.