期刊文献+
共找到4,820篇文章
< 1 2 241 >
每页显示 20 50 100
STRONGLY CONVERGENT INERTIAL FORWARD-BACKWARD-FORWARD ALGORITHM WITHOUT ON-LINE RULE FOR VARIATIONAL INEQUALITIES
1
作者 姚永红 Abubakar ADAMU Yekini SHEHU 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期551-566,共16页
This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inerti... This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inertial parameters and the iterates,which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem.Consequently,our proof arguments are different from what is obtainable in the relevant literature.Finally,we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature. 展开更多
关键词 forward-backward-forward algorithm inertial extrapolation variational inequality on-line rule
下载PDF
A real-time intelligent lithology identification method based on a dynamic felling strategy weighted random forest algorithm
2
作者 Tie Yan Rui Xu +2 位作者 Shi-Hui Sun Zhao-Kai Hou Jin-Yu Feng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1135-1148,共14页
Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face ... Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation. 展开更多
关键词 Intelligent drilling Closed-loop drilling Lithology identification Random forest algorithm Feature extraction
下载PDF
Model Parameters Identification and Backstepping Control of Lower Limb Exoskeleton Based on Enhanced Whale Algorithm
3
作者 Yan Shi Jiange Kou +2 位作者 Zhenlei Chen Yixuan Wang Qing Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期100-114,共15页
Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of i... Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of inertia and mechanical size,the dynamic model of exoskeletons is difficult to construct.Hence,an enhanced whale optimization algorithm(EWOA)is proposed to identify the exoskeleton model parameters.Meanwhile,the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints.Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion.Finally,the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform.The knee joint motion achieves a steady-state response after 0.5 s.Meanwhile,the position error of hip joint response is less than 0.03 rad after 0.9 s.In addition,the steady-state human-robot interaction torque of the two joints is constrained within 15 N·m.This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters.Furthermore,an enhanced mutation strategy is adopted to avoid whale evolution’s unsatisfactory local optimal value. 展开更多
关键词 Parameter identification Enhanced whale optimization algorithm(EWOA) BACKSTEPPING Human-robot interaction Lower limb exoskeleton
下载PDF
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
4
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(ANNs) evolutionary algorithm hybrid identification model
下载PDF
The study of intelligent algorithm in particle identification of heavy-ion collisions at low and intermediate energies
5
作者 Gao-Yi Cheng Qian-Min Su +1 位作者 Xi-Guang Cao Guo-Qiang Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期170-182,共13页
Traditional particle identification methods face timeconsuming,experience-dependent,and poor repeatability challenges in heavy-ion collisions at low and intermediate energies.Researchers urgently need solutions to the... Traditional particle identification methods face timeconsuming,experience-dependent,and poor repeatability challenges in heavy-ion collisions at low and intermediate energies.Researchers urgently need solutions to the dilemma of traditional particle identification methods.This study explores the possibility of applying intelligent learning algorithms to the particle identification of heavy-ion collisions at low and intermediate energies.Multiple intelligent algorithms,including XgBoost and TabNet,were selected to test datasets from the neutron ion multi-detector for reaction-oriented dynamics(NIMROD-ISiS)and Geant4 simulation.Tree-based machine learning algorithms and deep learning algorithms e.g.TabNet show excellent performance and generalization ability.Adding additional data features besides energy deposition can improve the algorithm’s performance when the data distribution is nonuniform.Intelligent learning algorithms can be applied to solve the particle identification problem in heavy-ion collisions at low and intermediate energies. 展开更多
关键词 Heavy-ion collisions at low and intermediate energies Machine learning Ensemble learning algorithm Particle identification Data imbalance
下载PDF
Identification of Lubricating Oil Additives Using XGBoost and Ant Colony Optimization Algorithms
6
作者 Xia Yanqiu Cui Jinwei +2 位作者 Xie Peiyuan Zou Shaode Feng Xin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期158-167,共10页
To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant co... To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant colony optimization(ACO)algorithm is proposed.The XGBoost algorithm was used to train and test three additives,T534(alkyl diphenylamine),T308(isooctyl acid thiophospholipid octadecylamine),and T306(trimethylphenol phosphate),separately,in order to screen for the optimal combination of spectral bands for each additive.The ACO algorithm was used to optimize the parameters of the XGBoost algorithm to improve the identification accuracy.During this process,the support vector machine(SVM)and hybrid bat algorithms(HBA)were included as a comparison,generating four models:ACO-XGBoost,ACO-SVM,HBA-XGboost,and HBA-SVM.The results showed that all four models could identify the three additives efficiently,with the ACO-XGBoost model achieving 100%recognition of all three additives.In addition,the generalizability of the ACO-XGBoost model was further demonstrated by predicting a lubricating oil containing the three additives prepared in our laboratory and a collected sample of commercial oil currently in use。 展开更多
关键词 lubricant oil additives fourier transform infrared spectroscopy type identification ACO-XGBoost combinatorial algorithm
下载PDF
DC-FIPD: Fraudulent IP Identification Method Based on Homology Detection
7
作者 Yuanyuan Ma Ang Chen +3 位作者 Cunzhi Hou Ruixia Jin Jinghui Zhang Ruixiang Li 《Computers, Materials & Continua》 SCIE EI 2024年第11期3301-3323,共23页
Currently,telecom fraud is expanding from the traditional telephone network to the Internet,and identifying fraudulent IPs is of great significance for reducing Internet telecom fraud and protecting consumer rights.Ho... Currently,telecom fraud is expanding from the traditional telephone network to the Internet,and identifying fraudulent IPs is of great significance for reducing Internet telecom fraud and protecting consumer rights.However,existing telecom fraud identification methods based on blacklists,reputation,content and behavioral characteristics have good identification performance in the telephone network,but it is difficult to apply to the Internet where IP(Internet Protocol)addresses change dynamically.To address this issue,we propose a fraudulent IP identification method based on homology detection and DBSCAN(Density-Based Spatial Clustering of Applications with Noise)clustering(DC-FIPD).First,we analyze the aggregation of fraudulent IP geographies and the homology of IP addresses.Next,the collected fraudulent IPs are clustered geographically to obtain the regional distribution of fraudulent IPs.Then,we constructed the fraudulent IP feature set,used the genetic optimization algorithm to determine the weights of the fraudulent IP features,and designed the calculation method of the IP risk value to give the risk value threshold of the fraudulent IP.Finally,the risk value of the target IP is calculated and the IP is identified based on the risk value threshold.Experimental results on a real-world telecom fraud detection dataset show that the DC-FIPD method achieves an average identification accuracy of 86.64%for fraudulent IPs.Additionally,the method records a precision of 86.08%,a recall of 45.24%,and an F1-score of 59.31%,offering a comprehensive evaluation of its performance in fraud detection.These results highlight the DC-FIPD method’s effectiveness in addressing the challenges of fraudulent IP identification. 展开更多
关键词 Fraudulent IP identification homology detection CLUSTERING genetic optimization algorithm telecom fraud identification
下载PDF
A Real-time Lithological Identification Method based on SMOTE-Tomek and ICSA Optimization
8
作者 DENG Song PAN Haoyu +5 位作者 LI Chaowei YAN Xiaopeng WANG Jiangshuai SHI Lin PEI Chunyu CAI Meng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期518-530,共13页
In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on ... In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on machine learning and mud logging data is studied in this paper.This method can effectively utilize downhole parameters collected in real-time during drilling,to identify lithology in real-time and provide a reference for optimization of drilling parameters.Given the imbalance of lithology samples,the synthetic minority over-sampling technique(SMOTE)and Tomek link were used to balance the sample number of five lithologies.Meanwhile,this paper introduces Tent map,random opposition-based learning and dynamic perceived probability to the original crow search algorithm(CSA),and establishes an improved crow search algorithm(ICSA).In this paper,ICSA is used to optimize the hyperparameter combination of random forest(RF),extremely random trees(ET),extreme gradient boosting(XGB),and light gradient boosting machine(LGBM)models.In addition,this study combines the recognition advantages of the four models.The accuracy of lithology identification by the weighted average probability model reaches 0.877.The study of this paper realizes high-precision real-time lithology identification method,which can provide lithology reference for the drilling process. 展开更多
关键词 mud logging data real-time lithological identification improved crow search algorithm petroleum geological exploration SMOTE-Tomek
下载PDF
Improved Particle Swarm Optimization for Parameter Identification of Permanent Magnet Synchronous Motor
9
作者 Shuai Zhou Dazhi Wang +2 位作者 Yongliang Ni Keling Song Yanming Li 《Computers, Materials & Continua》 SCIE EI 2024年第5期2187-2207,共21页
In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parame... In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parameter accuracy.This work proposes a fuzzy particle swarm optimization approach based on the transformation function and the filled function.This approach addresses the topic of particle swarmoptimization in parameter identification from two perspectives.Firstly,the algorithm uses a transformation function to change the form of the fitness function without changing the position of the extreme point of the fitness function,making the extreme point of the fitness function more prominent and improving the algorithm’s search ability while reducing the algorithm’s computational burden.Secondly,on the basis of themulti-loop fuzzy control systembased onmultiplemembership functions,it is merged with the filled function to improve the algorithm’s capacity to skip out of the local optimal solution.This approach can be used to identify the parameters of permanent magnet synchronous motors by sampling only the stator current,voltage,and speed data.The simulation results show that the method can effectively identify the electrical parameters of a permanent magnet synchronous motor,and it has superior global convergence performance and robustness. 展开更多
关键词 Transformation function filled function fuzzy particle swarm optimization algorithm permanent magnet synchronous motor parameter identification
下载PDF
Arc Grounding Fault Identification Using Integrated Characteristics in the Power Grid
10
作者 Penghui Liu Yaning Zhang +1 位作者 Yuxing Dai Yanzhou Sun 《Energy Engineering》 EI 2024年第7期1883-1901,共19页
Arc grounding faults occur frequently in the power grid with small resistance grounding neutral points.The existing arc fault identification technology only uses the fault line signal characteristics to set the identi... Arc grounding faults occur frequently in the power grid with small resistance grounding neutral points.The existing arc fault identification technology only uses the fault line signal characteristics to set the identification index,which leads to detection failure when the arc zero-off characteristic is short.To solve this problem,this paper presents an arc fault identification method by utilizing integrated signal characteristics of both the fault line and sound lines.Firstly,the waveform characteristics of the fault line and sound lines under an arc grounding fault are studied.After that,the convex hull,gradient product,and correlation coefficient index are used as the basic characteristic parameters to establish fault identification criteria.Then,the logistic regression algorithm is employed to deal with the reference samples,establish the machine discrimination model,and realize the discrimination of fault types.Finally,simulation test results and experimental results verify the accuracy of the proposed method.The comparison analysis shows that the proposed method has higher recognition accuracy,especially when the arc dissipation power is smaller than 2×10^(3) W,the zero-off period is not obvious.In conclusion,the proposed method expands the arc fault identification theory. 展开更多
关键词 Arc fault convex hull algorithm correlation coefficient fault identification GRADIENT logistic regression
下载PDF
Identification of time-varying system and energy-based optimization of adaptive control in seismically excited structure
11
作者 Elham Aghabarari Fereidoun Amini Pedram Ghaderi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期227-240,共14页
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ... The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems. 展开更多
关键词 integrated online identification time-varying systems structural energy multiple forgetting factor recursive least squares optimal simple adaptive control algorithm
下载PDF
Identification Method for Users-Transformer Relationship in Station Area Based on Local Selective Combination in Parallel Outlier Ensembles Algorithm
12
作者 Yunlong Ma Junwei Niu +3 位作者 Bo Xu Xingtao Song Wei Huang Guoqiang Sun 《Energy Engineering》 EI 2023年第3期681-700,共20页
In the power distribution system,the missing or incorrect file of users-transformer relationship(UTR)in lowvoltage station area(LVSA)will affect the leanmanagement of the LVSA,and the operation andmaintenance of the d... In the power distribution system,the missing or incorrect file of users-transformer relationship(UTR)in lowvoltage station area(LVSA)will affect the leanmanagement of the LVSA,and the operation andmaintenance of the distribution network.To effectively improve the lean management of LVSA,the paper proposes an identification method for the UTR based on Local Selective Combination in ParallelOutlier Ensembles algorithm(LSCP).Firstly,the voltage data is reconstructed based on the information entropy to highlight the differences in between.Then,the LSCP algorithmcombines four base outlier detection algorithms,namely Isolation Forest(I-Forest),One-Class Support VectorMachine(OC-SVM),Copula-Based Outlier Detection(COPOD)and Local Outlier Factor(LOF),to construct the identification model of UTR.This model can accurately detect users’differences in voltage data,and identify users with wrong UTR.Meanwhile,the key input parameter of the LSCP algorithm is determined automatically through the line loss rate,and the influence of artificial settings on recognition accuracy can be reduced.Finally,thismethod is verified in the actual LVSA where the recall and precision rates are 100%compared with othermethods.Furthermore,the applicability to the LVSAs with difficult data acquisition and the voltage data error in transmission are analyzed.The proposed method adopts the ensemble learning framework and does not need to set the detection threshold manually.And it is applicable to the LVSAs with difficult data acquisition and high voltage similarity,which improves the stability and accuracy of UTR identification in LVSA. 展开更多
关键词 Low-voltage station area users-transformer relationship identification line loss ensemble learning LSCP algorithm
下载PDF
On-line detecting of transformer winding deformation based on parameter identification of leakage inductance
13
作者 郝治国 张保会 李朋 《Journal of Pharmaceutical Analysis》 SCIE CAS 2007年第1期24-28,共5页
Transformers are required to demonstrate the ability to withstand short circuit currents.Over currents caused by short circuit can give rise to windings deformation.In this paper,a novel method is proposed to monitor ... Transformers are required to demonstrate the ability to withstand short circuit currents.Over currents caused by short circuit can give rise to windings deformation.In this paper,a novel method is proposed to monitor the state of transformer windings,which is achieved through on-line detecting the leakage inductance of the windings.Specifically,the mathematical model is established for online identifying the leakage inductance of the windings by applying least square algorithm(LSA) to the equivalent circuit equations.The effect of measurement and model inaccuracy on the identification error is analyzed,and the corrected model is also given to decrease these adverse effect on the results.Finally,dynamic test is carried out to verify our method.The test results clearly show that our method is very accurate even under the fluctuation of load or power factor.Therefore,our method can be effectively used to on-line detect the windings deformation. 展开更多
关键词 Leakage inductance parameter identification windings deformation on-line monitoring least square equivalent circuit equation
下载PDF
An Improved Jump Spider Optimization for Network Traffic Identification Feature Selection 被引量:1
14
作者 Hui Xu Yalin Hu +1 位作者 Weidong Cao Longjie Han 《Computers, Materials & Continua》 SCIE EI 2023年第9期3239-3255,共17页
The massive influx of traffic on the Internet has made the composition of web traffic increasingly complex.Traditional port-based or protocol-based network traffic identification methods are no longer suitable for to... The massive influx of traffic on the Internet has made the composition of web traffic increasingly complex.Traditional port-based or protocol-based network traffic identification methods are no longer suitable for today’s complex and changing networks.Recently,machine learning has beenwidely applied to network traffic recognition.Still,high-dimensional features and redundant data in network traffic can lead to slow convergence problems and low identification accuracy of network traffic recognition algorithms.Taking advantage of the faster optimizationseeking capability of the jumping spider optimization algorithm(JSOA),this paper proposes a jumping spider optimization algorithmthat incorporates the harris hawk optimization(HHO)and small hole imaging(HHJSOA).We use it in network traffic identification feature selection.First,the method incorporates the HHO escape energy factor and the hard siege strategy to forma newsearch strategy for HHJSOA.This location update strategy enhances the search range of the optimal solution of HHJSOA.We use small hole imaging to update the inferior individual.Next,the feature selection problem is coded to propose a jumping spiders individual coding scheme.Multiple iterations of the HHJSOA algorithmfind the optimal individual used as the selected feature for KNN classification.Finally,we validate the classification accuracy and performance of the HHJSOA algorithm using the UNSW-NB15 dataset and KDD99 dataset.Experimental results show that compared with other algorithms for the UNSW-NB15 dataset,the improvement is at least 0.0705,0.00147,and 1 on the accuracy,fitness value,and the number of features.In addition,compared with other feature selectionmethods for the same datasets,the proposed algorithmhas faster convergence,better merit-seeking,and robustness.Therefore,HHJSOAcan improve the classification accuracy and solve the problem that the network traffic recognition algorithm needs to be faster to converge and easily fall into local optimum due to high-dimensional features. 展开更多
关键词 Network traffic identification feature selection jumping spider optimization algorithm harris hawk optimization small hole imaging
下载PDF
A Linear Domain System Identification for Small Unmanned Aerial Rotorcraft Based on Adaptive Genetic Algorithm 被引量:12
15
作者 Xusheng Lei,Yuhu Du School of the Instrumentation Science and Opto-Electronic Engineering,Beihang University,Beijing 100191,P.R.China 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第2期142-149,共8页
This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the... This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the data sequences of flighttests as inputs (control signals for servos) and outputs (aircraft’s attitude and velocity information).After data preprocessing, thesystem constructs the horizontal and vertical dynamic model for the small unmanned aerial rotorcraft using adaptive geneticalgorithm.The identified model is verified by a series of simulations and tests.Comparison between flight data and the one-stepprediction data obtained from the identification model shows that the dynamic model has a good estimation for real unmannedaerial rotorcraft system.Based on the proposed dynamic model, the small unmanned aerial rotorcraft can perform hovering,turning, and straight flight tasks in real flight tests. 展开更多
关键词 small unmanned aerial rotorcraft dynamic space model model identification adaptive genetic algorithm
下载PDF
Damage Identification of A TLP Floating Wind Turbine by Meta-Heuristic Algorithms 被引量:4
16
作者 M.M.Ettefagh 《China Ocean Engineering》 SCIE EI CSCD 2015年第6期891-902,共12页
Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring(SHM). In this paper a new damage identific... Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring(SHM). In this paper a new damage identification method is proposed based on meta-heuristic algorithms using the dynamic response of the TLP(Tension-Leg Platform) floating wind turbine structure. The Genetic Algorithms(GA), Artificial Immune System(AIS), Particle Swarm Optimization(PSO), and Artificial Bee Colony(ABC) are chosen for minimizing the object function, defined properly for damage identification purpose. In addition to studying the capability of mentioned algorithms in correctly identifying the damage, the effect of the response type on the results of identification is studied. Also, the results of proposed damage identification are investigated with considering possible uncertainties of the structure. Finally, for evaluating the proposed method in real condition, a 1/100 scaled experimental setup of TLP Floating Wind Turbine(TLPFWT) is provided in a laboratory scale and the proposed damage identification method is applied to the scaled turbine. 展开更多
关键词 floating wind turbine multi-body dynamics damage identification meta-heuristic algorithms OPTIMIZATION
下载PDF
Self-adaptive PID controller of microwave drying rotary device tuning on-line by genetic algorithms 被引量:6
17
作者 杨彪 梁贵安 +5 位作者 彭金辉 郭胜惠 李玮 张世敏 李英伟 白松 《Journal of Central South University》 SCIE EI CAS 2013年第10期2685-2692,共8页
The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and wi... The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design. 展开更多
关键词 industrial microwave DRYING ROTARY device SELF-ADAPTIVE PID controller genetic algorithm on-line tuning SELENIUM-ENRICHED SLAG
下载PDF
Generalized Yule-walker and two-stage identification algorithms for dual-rate systems 被引量:2
18
作者 Feng DING 《控制理论与应用(英文版)》 EI 2006年第4期338-342,共5页
In this paper, two approaches are developed for directly identifying single-rate models of dual-rate stochastic systems in which the input updating frequency is an integer multiple of the output sampling frequency. Th... In this paper, two approaches are developed for directly identifying single-rate models of dual-rate stochastic systems in which the input updating frequency is an integer multiple of the output sampling frequency. The first is the generalized Yule-Walker algorithm and the second is a two-stage algorithm based on the correlation technique. The basic idea is to directly identify the parameters of underlying single-rate models instead of the lifted models of dual-rate systems from the dual-rate input-output data, assuming that the measurement data are stationary and ergodic. An example is given. 展开更多
关键词 identification ESTIMATION Least squares optimization Multirate systems Dual-rate systems Correlation analysis Yule-walker algorithm.
下载PDF
Application of Genetic Algorithms in Identification ofLinear Time-Varying System 被引量:3
19
作者 Zhichun Mu KeLiu +4 位作者 Zichao Wang Datai Yu D. Koshal D. Pearce Information Engineering School, University of Science & Technology Beijing, Beijing 100083, China School of Engineering, University of Brighton, Brighton, UK 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2000年第1期58-62,共5页
By applying genetic algorithms (GA) to on-line identification of linear time-varying systems; a number of modifications are made to the Simple Genetic Algorithm to improve the performance of the algorithm in identific... By applying genetic algorithms (GA) to on-line identification of linear time-varying systems; a number of modifications are made to the Simple Genetic Algorithm to improve the performance of the algorithm in identification applications. The simulation results indicate that the method is not only capable of following the changing parameters of the system, but also has improved the identification accuracy compared with that using the least square method. 展开更多
关键词 genetic algorithm system identification linear system
下载PDF
An adaptive control strategy for microgrid secondary frequency based on parameter identification
20
作者 Yong Shi Yin Cheng +1 位作者 Bao Xie Jianhui Su 《Global Energy Interconnection》 EI CSCD 2023年第5期592-600,共9页
Complex microgrid structures and time-varying conditions, among other factors, cause problems in the mechanical modeling of microgrids, making model-based controller optimization difficult. Therefore, this study propo... Complex microgrid structures and time-varying conditions, among other factors, cause problems in the mechanical modeling of microgrids, making model-based controller optimization difficult. Therefore, this study proposed a secondary frequency adaptive control strategy based on parameter identification, which uses an online parameter identification method to identify the parameters in the microgrid in real-time. The identified parameters are then used in the secondary frequency adaptive controller to optimize the real-time controller performance. The proposed method realizes adaptive optimization of the controller in the microgrid operation state and is applied to a microgrid with unknown parameters to adjust the controller parameters. Finally, a simulation experiment was conducted to verify the model accuracy and the frequency regulation effect of the proposed adaptive control strategy. 展开更多
关键词 Adaptive control Genetic algorithm MICROGRID Online identification
下载PDF
上一页 1 2 241 下一页 到第
使用帮助 返回顶部