This paper uses CT to gain the energy directly from the high-voltage transmission line, to address the problem of power supply for monitoring system in high voltage side of transmission line. The draw-out power coil c...This paper uses CT to gain the energy directly from the high-voltage transmission line, to address the problem of power supply for monitoring system in high voltage side of transmission line. The draw-out power coil can induce voltage from the transmission line, using single-chip microcomputer to analog and output PMW wave to control the charging module, provides a stable 3.4 V DC voltage to the load, and solve the problem of easy saturating of core. The power supply based on this kind of draw-out power coil has undergone the overall testing, and it is verified-showing that it can properly work in a non-saturated status within the current range of 50 - 1000 A, and provide a stable output. The equipment also design protection circuit to improve the reliability to avid the impacts of the impulse current or short-circuit current. It effectively solves the problem of power supply for On-line Monitoring System of Transmission.展开更多
The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the buildi...The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the building to collapse.Many small changes caused the tower’s collapse,but the early staff often could not intuitively notice the changes in the tower’s state.In the current tower online monitoring system,terminal equipment often needs to replace batteries frequently due to premature exhaustion of power.According to the need for real-time measurement of power line tower,this research designed a real-time monitoring device monitoring the transmission tower attitude tilting and foundation state based on the inertial sensor,the acceleration of 3 axis inertial sensor and angular velocity raw data to pole average filtering pre-processing,and then through the complementary filtering algorithm for comprehensive calculation of tilt angle,the system meets the demand for inclined online monitoring of power line poles and towers regarding measurement accuracy,with low cost and power consumption.The optimization multi-sensor cooperative detection and correction measured tilt angle result relative accuracy can reach 1.03%,which has specific promotion and application value since the system has the advantages of unattended and efficient calculation.展开更多
Based on the collection of relevant literature and cases,the research and application status of on-line monitoring technology for electromagnetic environment of power transmission and transformation projects at home a...Based on the collection of relevant literature and cases,the research and application status of on-line monitoring technology for electromagnetic environment of power transmission and transformation projects at home and abroad were introduced.Moreover,the problems existing in the on-line monitoring of electromagnetic environment were expounded,and the development prospect was forecasted.展开更多
At present, the on-line monitoring is widely applied to the power line monitoring. In this paper, a new mechanical calculation model is established according to the on-line monitoring. And this model is based on the p...At present, the on-line monitoring is widely applied to the power line monitoring. In this paper, a new mechanical calculation model is established according to the on-line monitoring. And this model is based on the parameters that tension sensors and angle sensors on suspended points detect, and combines with the parameters of the wire itself, and also considers the deflection angel of wires due to wind. In this model, mechanics parameters of wires are turned into the new coordinate plane after deflection angel of wires due to wind, or windage yaw plane. A statics tension balance equation is built in the vertical direction of the new windage yaw plane. According to the theoretical analysis and algorithm, we verify the accuracy of this newly developed mechanical calculation model.展开更多
The WSN used in power line monitoring is long chain structure, and the bottleneck near the Sink node is more obvious. In view of this, A Sink nodes’ cooperation mechanism is presented. The Sink nodes from different W...The WSN used in power line monitoring is long chain structure, and the bottleneck near the Sink node is more obvious. In view of this, A Sink nodes’ cooperation mechanism is presented. The Sink nodes from different WSNs are adjacently deployed. Adopting multimode and spatial multiplexing network technology, the network is constructed into multi-mode-level to achieve different levels of data streaming. The network loads are shunted and the network resources are rationally utilized. Through the multi-sink nodes cooperation, the bottlenecks at the Sink node and its near several jump nodes are solved and process the competition of communication between nodes by channel adjustment. Finally, the paper analyzed the method and provided simulation experiment results. Simulation results show that the method can solve the funnel effect of the sink node, and get a good QoS.展开更多
Running composite insulators are prone to failure due to their harsh surrounding work environment, which directly affects the safe operation of transmission lines. This paper puts forward the method of using fiber Bra...Running composite insulators are prone to failure due to their harsh surrounding work environment, which directly affects the safe operation of transmission lines. This paper puts forward the method of using fiber Bragg grating(FBG) as the monitors to parameters correlated with thermal and stress of the composite insulators in transmission lines at working status. Firstly, monitoring points are found out by the mechanical test on composite insulator samples. Secondly, based on the monitoring theory, this paper introduces the feasibility design frame of the composite insulator with FBG implanted in the rod and the online monitor system. At last, it describes applications of this monitor system in the field of transmission lines.展开更多
Galloping of power transmission lines might bring about huge damage such as massive power outage and collapse of the transmission towers. To realize forecast of the galloping and provide data for study on the gallopin...Galloping of power transmission lines might bring about huge damage such as massive power outage and collapse of the transmission towers. To realize forecast of the galloping and provide data for study on the galloping mechanism, this paper proposes an online monitoring system for tracking galloping profile of power transmission lines based on wireless inertial measurement units (WIMUs). The system is composed of three modules: wireless inertial measurement nodes, monitoring base station, and remote monitoring station. After detailing the hardware system, the corresponding software which positions and displays galloping profile of the transmission line in real-time is outlined. The feasibility of the proposed on-line monitoring system is demonstrated through a series of experiments at the State Grid Key Laboratory of Power Overhead Transmission Line Galloping (Zhengzhou, China) by taking into account different vibration patterns.展开更多
Overhead lines are the backbone of the electrical power transmission.Contrary to the distributions networks,the transmission system consists only in exceptional cases of longer cable lines.Typical exceptions are conne...Overhead lines are the backbone of the electrical power transmission.Contrary to the distributions networks,the transmission system consists only in exceptional cases of longer cable lines.Typical exceptions are connections of cavern power plants,approaches to airports or bird sanctuaries and lines in urban centres.In the majority of cases,an overhead line is the most economic and practicable solution for the energy transmission.In tourism regions,an overhead line will be seen as impairment of nature or landscape and so the approval chain and procedure is in most countries long-winded and circumstantial.At the other hand,the energy consumption in Europe is growing and the volatility of transmitted power is also increasing during the last decade caused by the opening of the electric energy market.This opening process leads to a stopping of the enlargement of the interoperation network and to a minimisation of the maintenance of existing lines.Today the network operates more often at the limit of the equipment and the small and large-areas disturbances and blackouts are increasing.The operators of transmission lines are forced to ensure the electrical power supply and so they have to improve the reliability of the network.One solution is to monitor the critical(heavy loaded)overhead lines.For example,with the knowledge of the thermal condition,the risk of unexpected outages can be reduced.Today several monitoring systems are available on the market.They differ in the principle and techniques of the condition evaluation.The three most interesting output variables are the line temperature,the capable transmission power and the actual sag of the investigated section.In this paper an overview of existing overhead line monitoring system and also an outline over the usage and benefit for the application will be given.Thermal monitoring is one technique to improve the reliability of the network and for increasing or optimising the capable transmission power.展开更多
The national energy supplier (Eskom in South Africa) supplies electricity through thousands-of-kilometers of overhead power lines. The current methods of inspection of these overhead power lines are infrequent and e...The national energy supplier (Eskom in South Africa) supplies electricity through thousands-of-kilometers of overhead power lines. The current methods of inspection of these overhead power lines are infrequent and expensive. In this paper, the authors present the development of a prototype monitoring system for power line inspection in South Africa. The developed prototype monitoring system collects data (information) from the overhead power lines, is remotely accessible and fits into a power line robot. The prototype monitoring system makes use ofa PandaBoard (SBC) with GPS receiver and 5 MP camera to collect data. Hardware fatigue is the biggest problem faced on the overhead power lines and is captured by means of the 5 MP camera and is displayed on a website hosted by the PandaBoard via Wi-Fi. The monitoring system has low power consumption, is light weight, compact and easily collects data. The data obtained from the prototype monitoring system was satisfactory and provides an improved solution for monitoring power lines for Eskom in South Africa.展开更多
In recent years,several efforts have been made to develop power transmission line abnormal target detection models based on edge devices.Typically,updates to these models rely on participation of the cloud,which means...In recent years,several efforts have been made to develop power transmission line abnormal target detection models based on edge devices.Typically,updates to these models rely on participation of the cloud,which means that network resource shortages can lead to update failures,followed by unsatisfactory recognition and detection performance in practical use.To address this problem,this article proposes an edge visual incremental perception framework,based on deep semisupervised learning,for monitoring power transmission lines.After generation of the initial model using a small amount of labeled data,models trained using this framework can update themselves based on unlabeled data.A teacher-student joint training strategy,a data augmentation strategy,and a model updating strategy are also designed and adopted to improve the performance of the models trained with this framework.The proposed framework is then examined with various transmission line datasets with 1%,2%,5%,and 10%labeled data.General performance enhancement is thus confirmed against traditional supervised learning strategies.With the 10%labeled data training set,the recognition accuracy of the model is improved to exceed 80%,meeting the practical needs of power system operation,and thus clearly validating the effectiveness of the framework.展开更多
A directional coupler in a miter bend was designed to monitor the microwave power of the transmission line in an electron cyclotron resonance heating(ECRH) system. It is based on aperture-coupling theory and simulat...A directional coupler in a miter bend was designed to monitor the microwave power of the transmission line in an electron cyclotron resonance heating(ECRH) system. It is based on aperture-coupling theory and simulation of an electromagnetic(EM) field to design and optimize the 140 GHz high-power directional coupler. In addition, we simulated the double-aperture directional coupler by using three-dimensional(3D) EM simulation software, in which the central frequency is 140 GHz, coupling factor is about –70 dB, and directivity is greater than 17 dB. The results show that such a coupler is a viable tool for power measurement in high-power transmission systems.展开更多
A distributed online fiber sensing system based on the phase-sensitive optical time domain reflectometer(Φ-OTDR)enhanced by the drawing tower fiber Bragg grating(FBG)array is presented and investigated experimentally...A distributed online fiber sensing system based on the phase-sensitive optical time domain reflectometer(Φ-OTDR)enhanced by the drawing tower fiber Bragg grating(FBG)array is presented and investigated experimentally for monitoring the galloping of overhead transmission lines.The chirped FBG array enhanced Φ-OTDR sensing system can be used to measure the galloping behavior of the overhead transmission lines(optical phase conductor or optical power ground wire),which are helpful for monitoring the frequency response characteristics of the ice-induced galloping,evaluating the motion tendencies of these cables,and avoiding the risk of flashover during galloping.The feasibility of the proposed online monitoring system is demonstrated through a series of experiments at the Special Optical Fiber Cable Laboratory of State Grid Corporation of China(Beijing,China).Results show that the proposed system is effective and reliable for the monitoring of galloping shape and characteristic frequency,which can predict the trend of destructive vibration behavior and avoid the occurrence of cable breaking and tower toppling accidents,and these features are essential for the safety operation in smart grids.展开更多
文摘This paper uses CT to gain the energy directly from the high-voltage transmission line, to address the problem of power supply for monitoring system in high voltage side of transmission line. The draw-out power coil can induce voltage from the transmission line, using single-chip microcomputer to analog and output PMW wave to control the charging module, provides a stable 3.4 V DC voltage to the load, and solve the problem of easy saturating of core. The power supply based on this kind of draw-out power coil has undergone the overall testing, and it is verified-showing that it can properly work in a non-saturated status within the current range of 50 - 1000 A, and provide a stable output. The equipment also design protection circuit to improve the reliability to avid the impacts of the impulse current or short-circuit current. It effectively solves the problem of power supply for On-line Monitoring System of Transmission.
基金This work was supported by the National Natural Science Foundation of China(Nos.62172242,51901152)Industry University Cooperation Education Program of the Ministry of Education(No.2020021680113)Shanxi Scholarship Council of China.
文摘The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the building to collapse.Many small changes caused the tower’s collapse,but the early staff often could not intuitively notice the changes in the tower’s state.In the current tower online monitoring system,terminal equipment often needs to replace batteries frequently due to premature exhaustion of power.According to the need for real-time measurement of power line tower,this research designed a real-time monitoring device monitoring the transmission tower attitude tilting and foundation state based on the inertial sensor,the acceleration of 3 axis inertial sensor and angular velocity raw data to pole average filtering pre-processing,and then through the complementary filtering algorithm for comprehensive calculation of tilt angle,the system meets the demand for inclined online monitoring of power line poles and towers regarding measurement accuracy,with low cost and power consumption.The optimization multi-sensor cooperative detection and correction measured tilt angle result relative accuracy can reach 1.03%,which has specific promotion and application value since the system has the advantages of unattended and efficient calculation.
基金Supported by the Open Project of Jiangsu Key Laboratory of Environmental Engineering(ZX2017005)
文摘Based on the collection of relevant literature and cases,the research and application status of on-line monitoring technology for electromagnetic environment of power transmission and transformation projects at home and abroad were introduced.Moreover,the problems existing in the on-line monitoring of electromagnetic environment were expounded,and the development prospect was forecasted.
文摘At present, the on-line monitoring is widely applied to the power line monitoring. In this paper, a new mechanical calculation model is established according to the on-line monitoring. And this model is based on the parameters that tension sensors and angle sensors on suspended points detect, and combines with the parameters of the wire itself, and also considers the deflection angel of wires due to wind. In this model, mechanics parameters of wires are turned into the new coordinate plane after deflection angel of wires due to wind, or windage yaw plane. A statics tension balance equation is built in the vertical direction of the new windage yaw plane. According to the theoretical analysis and algorithm, we verify the accuracy of this newly developed mechanical calculation model.
文摘The WSN used in power line monitoring is long chain structure, and the bottleneck near the Sink node is more obvious. In view of this, A Sink nodes’ cooperation mechanism is presented. The Sink nodes from different WSNs are adjacently deployed. Adopting multimode and spatial multiplexing network technology, the network is constructed into multi-mode-level to achieve different levels of data streaming. The network loads are shunted and the network resources are rationally utilized. Through the multi-sink nodes cooperation, the bottlenecks at the Sink node and its near several jump nodes are solved and process the competition of communication between nodes by channel adjustment. Finally, the paper analyzed the method and provided simulation experiment results. Simulation results show that the method can solve the funnel effect of the sink node, and get a good QoS.
基金supported by National High-tech Research and Development Program of China (863 Program) (2013AA030701)Science and Technology Project of the State Grid Xinjiang Electric Power Corporation (5230DK15009L)
文摘Running composite insulators are prone to failure due to their harsh surrounding work environment, which directly affects the safe operation of transmission lines. This paper puts forward the method of using fiber Bragg grating(FBG) as the monitors to parameters correlated with thermal and stress of the composite insulators in transmission lines at working status. Firstly, monitoring points are found out by the mechanical test on composite insulator samples. Secondly, based on the monitoring theory, this paper introduces the feasibility design frame of the composite insulator with FBG implanted in the rod and the online monitor system. At last, it describes applications of this monitor system in the field of transmission lines.
文摘Galloping of power transmission lines might bring about huge damage such as massive power outage and collapse of the transmission towers. To realize forecast of the galloping and provide data for study on the galloping mechanism, this paper proposes an online monitoring system for tracking galloping profile of power transmission lines based on wireless inertial measurement units (WIMUs). The system is composed of three modules: wireless inertial measurement nodes, monitoring base station, and remote monitoring station. After detailing the hardware system, the corresponding software which positions and displays galloping profile of the transmission line in real-time is outlined. The feasibility of the proposed on-line monitoring system is demonstrated through a series of experiments at the State Grid Key Laboratory of Power Overhead Transmission Line Galloping (Zhengzhou, China) by taking into account different vibration patterns.
文摘Overhead lines are the backbone of the electrical power transmission.Contrary to the distributions networks,the transmission system consists only in exceptional cases of longer cable lines.Typical exceptions are connections of cavern power plants,approaches to airports or bird sanctuaries and lines in urban centres.In the majority of cases,an overhead line is the most economic and practicable solution for the energy transmission.In tourism regions,an overhead line will be seen as impairment of nature or landscape and so the approval chain and procedure is in most countries long-winded and circumstantial.At the other hand,the energy consumption in Europe is growing and the volatility of transmitted power is also increasing during the last decade caused by the opening of the electric energy market.This opening process leads to a stopping of the enlargement of the interoperation network and to a minimisation of the maintenance of existing lines.Today the network operates more often at the limit of the equipment and the small and large-areas disturbances and blackouts are increasing.The operators of transmission lines are forced to ensure the electrical power supply and so they have to improve the reliability of the network.One solution is to monitor the critical(heavy loaded)overhead lines.For example,with the knowledge of the thermal condition,the risk of unexpected outages can be reduced.Today several monitoring systems are available on the market.They differ in the principle and techniques of the condition evaluation.The three most interesting output variables are the line temperature,the capable transmission power and the actual sag of the investigated section.In this paper an overview of existing overhead line monitoring system and also an outline over the usage and benefit for the application will be given.Thermal monitoring is one technique to improve the reliability of the network and for increasing or optimising the capable transmission power.
文摘The national energy supplier (Eskom in South Africa) supplies electricity through thousands-of-kilometers of overhead power lines. The current methods of inspection of these overhead power lines are infrequent and expensive. In this paper, the authors present the development of a prototype monitoring system for power line inspection in South Africa. The developed prototype monitoring system collects data (information) from the overhead power lines, is remotely accessible and fits into a power line robot. The prototype monitoring system makes use ofa PandaBoard (SBC) with GPS receiver and 5 MP camera to collect data. Hardware fatigue is the biggest problem faced on the overhead power lines and is captured by means of the 5 MP camera and is displayed on a website hosted by the PandaBoard via Wi-Fi. The monitoring system has low power consumption, is light weight, compact and easily collects data. The data obtained from the prototype monitoring system was satisfactory and provides an improved solution for monitoring power lines for Eskom in South Africa.
基金supported by the National Key R&D Program of China (2020YFB0905900).
文摘In recent years,several efforts have been made to develop power transmission line abnormal target detection models based on edge devices.Typically,updates to these models rely on participation of the cloud,which means that network resource shortages can lead to update failures,followed by unsatisfactory recognition and detection performance in practical use.To address this problem,this article proposes an edge visual incremental perception framework,based on deep semisupervised learning,for monitoring power transmission lines.After generation of the initial model using a small amount of labeled data,models trained using this framework can update themselves based on unlabeled data.A teacher-student joint training strategy,a data augmentation strategy,and a model updating strategy are also designed and adopted to improve the performance of the models trained with this framework.The proposed framework is then examined with various transmission line datasets with 1%,2%,5%,and 10%labeled data.General performance enhancement is thus confirmed against traditional supervised learning strategies.With the 10%labeled data training set,the recognition accuracy of the model is improved to exceed 80%,meeting the practical needs of power system operation,and thus clearly validating the effectiveness of the framework.
基金supported by International S&T Cooperation Program of China(No.2011DFA63190)National Natural Science Foundation of China(No.11275045)the International Cooperation Plan Program of Sichuan Province,China(No.M1701040113HH0001)
文摘A directional coupler in a miter bend was designed to monitor the microwave power of the transmission line in an electron cyclotron resonance heating(ECRH) system. It is based on aperture-coupling theory and simulation of an electromagnetic(EM) field to design and optimize the 140 GHz high-power directional coupler. In addition, we simulated the double-aperture directional coupler by using three-dimensional(3D) EM simulation software, in which the central frequency is 140 GHz, coupling factor is about –70 dB, and directivity is greater than 17 dB. The results show that such a coupler is a viable tool for power measurement in high-power transmission systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.61775173,61975157,and 52071245)the Science and Technology Project of State Grid Corporation of China(Research on the basic technology of the next generation intelligent optical cable based on grating array fiber sensor,Grant No.5442XX190009).
文摘A distributed online fiber sensing system based on the phase-sensitive optical time domain reflectometer(Φ-OTDR)enhanced by the drawing tower fiber Bragg grating(FBG)array is presented and investigated experimentally for monitoring the galloping of overhead transmission lines.The chirped FBG array enhanced Φ-OTDR sensing system can be used to measure the galloping behavior of the overhead transmission lines(optical phase conductor or optical power ground wire),which are helpful for monitoring the frequency response characteristics of the ice-induced galloping,evaluating the motion tendencies of these cables,and avoiding the risk of flashover during galloping.The feasibility of the proposed online monitoring system is demonstrated through a series of experiments at the Special Optical Fiber Cable Laboratory of State Grid Corporation of China(Beijing,China).Results show that the proposed system is effective and reliable for the monitoring of galloping shape and characteristic frequency,which can predict the trend of destructive vibration behavior and avoid the occurrence of cable breaking and tower toppling accidents,and these features are essential for the safety operation in smart grids.