Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of pre...Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of precision spectroscopy and trace gas detection.Here,we report the development of a mid-infrared Fourier transform spectrometer based on an optical frequency comb combined with a Herriott-type multipass cell.Using this instrument,the broadband absorption spectra of several important molecules,including methane,acetylene,water molecules and nitrous oxide,are measured by near real-time data acquisition in the 2800-3500 cm^(-1)spectral region.The achieved minimum detectable absorption of the instrument is 4.4×10^(-8)cm^(-1)·Hz^(-1/2)per spectral element.Broadband spectra of H_(2)0 are fited using the Voigt profile multispectral fitting technique and the consistency of the concentration inversion is 1%.Our system also enables precise spectroscopic measurements,and it allows the determination of the spectral line positions and upper state constants of N_(2)O in the(0002)-(1000)band,with results in good agreement with those reported by Toth[Appl.Opt.30,5289(1991)].展开更多
Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the number of actual on-line or even on-site industrial applications seems to be very limited. In the present paper, the attempts...Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the number of actual on-line or even on-site industrial applications seems to be very limited. In the present paper, the attempts to produce online predictions of the chemical oxygen demand (COD) in wastewater from a pulp and paper mill using NIR spectroscopy are described. The task was perceived as very challenging, but with a root mean square error of prediction of 149 mg/l, roughly corresponding to 1/10 of the studied concentration interval, this attempt was deemed as successful. This result was obtained by using partial least squares model regression, interpolated reference values for calibration purposes, and by evenly distributing the calibration data in the concentration space. This work may also represent the first industrial application of online COD measurements in wastewater using NIR spectroscopy.展开更多
In view of the difficulties in traditional long-wave infrared imaging spectrometer which is hard to realize a high signal-to-noise ratio and miniaturization as well under the weak remote sensing signal,Offner convex g...In view of the difficulties in traditional long-wave infrared imaging spectrometer which is hard to realize a high signal-to-noise ratio and miniaturization as well under the weak remote sensing signal,Offner convex grating spectrometer and Dyson concave grating spectrometer,both having concentric structure,are designed and analyzed in the band of 8-12 μm. The diffraction angle expressions of the two spectrometers are obtained and the diffraction characteristics are acquired. Both of the spectrometers are designed in Zemax environment under different F-numbers and different grating constants with the same slit,spatial resolution,spectral resolution and detector. The results show that Dyson grating spectrometer possesses the advantages of higher throughput and smaller volume, and Offner grating spectrometer possesses the advantage of more accessible material and the absence of chromatic aberration. The differences between Dyson form and Offner form show that the former is a better choice in the long-wave infrared imaging spectrometer.展开更多
This experiment studies on the used infrared spectroscopy to establish technology methods for liquor identification methods, as well as offers the science data for establishment of the fingerprint in white spirit. The...This experiment studies on the used infrared spectroscopy to establish technology methods for liquor identification methods, as well as offers the science data for establishment of the fingerprint in white spirit. The results have shown that using near-infrared spectroscopy analysis of liquor has the obvious features such as strong specificity, good reproducibility, simple operation, and finally confirmed that it is an authentic and ideal method for identification in white spirit.展开更多
The performance of a portable near-infrared (NIR) spectrometer to determine organic carbon (OC) in marine sediments was evaluated. The NIR reflection spectra of 180 samples in the range 950 - 1650 nm were acquired usi...The performance of a portable near-infrared (NIR) spectrometer to determine organic carbon (OC) in marine sediments was evaluated. The NIR reflection spectra of 180 samples in the range 950 - 1650 nm were acquired using an ultra-compact spectrometer. NIR spectroscopy combined with the partial least squares (PLS) regression and Savitzky-Golay (SG) smoothing was successfully applied to rapid and reagent-free determination of OC. Using the PLS-SG model with 1nd order derivative, 2th polynomial and eleven smoothing points, the root-mean-square errors (RMSEPM) and correlation coefficients (RP,M) of prediction for modeling were 0.073% and 0.894, respectively, the root-mean-square errors (RMSEPV) and correlation coefficients (RP,V) of prediction for validation were 0.075% and 0.883, respectively. Results showed that the small portable NIR instrument achieved well prediction effect for the analysis of OC in marine sediments, which had advantages of rapid, easy to carry and operate suitable for large-scale applications to analyze marine sediments.展开更多
Near-infrared (NIR) spectrometer based on semiconductor lasers can combine light source and splitter into one, which is an important direction for development of miniature instruments. In order to avoid random interfe...Near-infrared (NIR) spectrometer based on semiconductor lasers can combine light source and splitter into one, which is an important direction for development of miniature instruments. In order to avoid random interference caused by inconsistency between light sources, the novel evaluation indicators for global stability of multi-channels spectral system were proposed based on the correlation between dynamic deviation spectra of any two channels. The NIR analysis of moisture for corn powder samples based on the partial least squares combined with Savitzky-Golay (SG) smoothing was taken as an example, and a spectral correction method for enhancing prediction performance of multi-channels spectral system was further provided using above evaluation indicators. The experiment results showed that the global stability evaluation indicators significantly increased after SG smoothing correction. Meanwhile, the root-mean-square errors of prediction for corn moisture reduced from 0.373 to 0.283 (%), and the correlation coefficient between predicted and actual values was improved from 0.702 to 0.855. The above results indicated that by improving global stability indicators, the prediction ability of multi-channels spectral system can be improved. The proposed method provided a valuable reference for designing multi-channels diminutive spectrometer with high prediction performance, which had significance for large-scale application of NIR technology.展开更多
Moisture content is an important trait for rubber sheet trading system.Therefore,a calibrationequation for predicting moisture content was created by near infrared(NIR)technique in order todevelop a more fair trading ...Moisture content is an important trait for rubber sheet trading system.Therefore,a calibrationequation for predicting moisture content was created by near infrared(NIR)technique in order todevelop a more fair trading system in Thailand.Spectra were recorded in two systems.One wasmeasurement on each rubber sheet and the other was on a pile of sheets.Both were[measured by ahandheld NIR spectrometer in the short wavelength region(700-1100 nm)in the transflectancemode using Teflon as a diffuse refector.The spectra showed the peak at about 900 nm whichbelongs to isoprene,the major component of rubber sheet.Pretreatment with second derivativewas applied to remove baseline shift effect occurring due to thickness differences on each rubber sheet.From validation results,moisture contents predicted by single sheet system were moreaccurate than a pile of sheet system with standard error of prediction(SEP)=0.39 %and bias of-0.07%,and they were not significantly diferent from the actual values at 95%confidence.As aresult,determining moisture content in each rubber sheet by a handheld NIR,spectrometerprovided accurate values,easy and rapid operation.展开更多
基于有机胺吸收剂的化学吸收法能够有效捕集船舶烟气中的CO_(2),但吸收剂降解失效、挥发泄漏会造成严重的环境问题。虽然傅里叶红外光谱仪能够实时监测挥发的有机胺体积分数,但受限于高饱和蒸气压有机胺类蒸气难标定问题,对胺类体积分...基于有机胺吸收剂的化学吸收法能够有效捕集船舶烟气中的CO_(2),但吸收剂降解失效、挥发泄漏会造成严重的环境问题。虽然傅里叶红外光谱仪能够实时监测挥发的有机胺体积分数,但受限于高饱和蒸气压有机胺类蒸气难标定问题,对胺类体积分数的实际监测精度较低。对此,设计两种傅里叶红外光谱仪中高饱和蒸气压有机胺蒸气体积分数标定方法,分别为固定比例校准算法和基于循环神经网络的序列映射法。结果表明,相较于固定比例法,基于循环神经网络的非线性序列映射法能够实现更好的校准性能,平均绝对误差下降了81.57%,均方误差下降了70.05%,可有效反映船舶碳捕集与封存(carbon capture and storage,CCS)系统对大气环境的影响。展开更多
An apparatus based on collinear tandem time-of-flight mass spectrometer has been designed for the measurement of infrared photodissociation spectroscopy of mass-selected ions in the gas phase.The ions from a pulsed la...An apparatus based on collinear tandem time-of-flight mass spectrometer has been designed for the measurement of infrared photodissociation spectroscopy of mass-selected ions in the gas phase.The ions from a pulsed laser vaporization supersonic ion source are skimmed and mass separated by a Wiley-McLaren time-of-flight mass spectrometer.The ion of interest is mass selected,decelerated and dissociated by a tunable IR laser.The fragment and parent ions are reaccelerated and mass analyzed by the second time-of-flight mass spectrometer.A simple new assembly integrated with mass gate,deceleration and reacceleration ion optics was designed,which allows us to measure the infrared spectra of mass selected ions with high sensitivity and easy timing synchronization.展开更多
基金supported by the National Natural Science Foundation China(No.42022051,No.U21A2028)Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y202089)the HFIPS Director's Fund(No.YZJJ202101,No.BJPY2023A02).
文摘Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of precision spectroscopy and trace gas detection.Here,we report the development of a mid-infrared Fourier transform spectrometer based on an optical frequency comb combined with a Herriott-type multipass cell.Using this instrument,the broadband absorption spectra of several important molecules,including methane,acetylene,water molecules and nitrous oxide,are measured by near real-time data acquisition in the 2800-3500 cm^(-1)spectral region.The achieved minimum detectable absorption of the instrument is 4.4×10^(-8)cm^(-1)·Hz^(-1/2)per spectral element.Broadband spectra of H_(2)0 are fited using the Voigt profile multispectral fitting technique and the consistency of the concentration inversion is 1%.Our system also enables precise spectroscopic measurements,and it allows the determination of the spectral line positions and upper state constants of N_(2)O in the(0002)-(1000)band,with results in good agreement with those reported by Toth[Appl.Opt.30,5289(1991)].
文摘Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the number of actual on-line or even on-site industrial applications seems to be very limited. In the present paper, the attempts to produce online predictions of the chemical oxygen demand (COD) in wastewater from a pulp and paper mill using NIR spectroscopy are described. The task was perceived as very challenging, but with a root mean square error of prediction of 149 mg/l, roughly corresponding to 1/10 of the studied concentration interval, this attempt was deemed as successful. This result was obtained by using partial least squares model regression, interpolated reference values for calibration purposes, and by evenly distributing the calibration data in the concentration space. This work may also represent the first industrial application of online COD measurements in wastewater using NIR spectroscopy.
基金Sponsored by the National High Technology Research and Development Program of China(863 Program)(Grant No.2013AA03A116)
文摘In view of the difficulties in traditional long-wave infrared imaging spectrometer which is hard to realize a high signal-to-noise ratio and miniaturization as well under the weak remote sensing signal,Offner convex grating spectrometer and Dyson concave grating spectrometer,both having concentric structure,are designed and analyzed in the band of 8-12 μm. The diffraction angle expressions of the two spectrometers are obtained and the diffraction characteristics are acquired. Both of the spectrometers are designed in Zemax environment under different F-numbers and different grating constants with the same slit,spatial resolution,spectral resolution and detector. The results show that Dyson grating spectrometer possesses the advantages of higher throughput and smaller volume, and Offner grating spectrometer possesses the advantage of more accessible material and the absence of chromatic aberration. The differences between Dyson form and Offner form show that the former is a better choice in the long-wave infrared imaging spectrometer.
文摘This experiment studies on the used infrared spectroscopy to establish technology methods for liquor identification methods, as well as offers the science data for establishment of the fingerprint in white spirit. The results have shown that using near-infrared spectroscopy analysis of liquor has the obvious features such as strong specificity, good reproducibility, simple operation, and finally confirmed that it is an authentic and ideal method for identification in white spirit.
文摘The performance of a portable near-infrared (NIR) spectrometer to determine organic carbon (OC) in marine sediments was evaluated. The NIR reflection spectra of 180 samples in the range 950 - 1650 nm were acquired using an ultra-compact spectrometer. NIR spectroscopy combined with the partial least squares (PLS) regression and Savitzky-Golay (SG) smoothing was successfully applied to rapid and reagent-free determination of OC. Using the PLS-SG model with 1nd order derivative, 2th polynomial and eleven smoothing points, the root-mean-square errors (RMSEPM) and correlation coefficients (RP,M) of prediction for modeling were 0.073% and 0.894, respectively, the root-mean-square errors (RMSEPV) and correlation coefficients (RP,V) of prediction for validation were 0.075% and 0.883, respectively. Results showed that the small portable NIR instrument achieved well prediction effect for the analysis of OC in marine sediments, which had advantages of rapid, easy to carry and operate suitable for large-scale applications to analyze marine sediments.
文摘Near-infrared (NIR) spectrometer based on semiconductor lasers can combine light source and splitter into one, which is an important direction for development of miniature instruments. In order to avoid random interference caused by inconsistency between light sources, the novel evaluation indicators for global stability of multi-channels spectral system were proposed based on the correlation between dynamic deviation spectra of any two channels. The NIR analysis of moisture for corn powder samples based on the partial least squares combined with Savitzky-Golay (SG) smoothing was taken as an example, and a spectral correction method for enhancing prediction performance of multi-channels spectral system was further provided using above evaluation indicators. The experiment results showed that the global stability evaluation indicators significantly increased after SG smoothing correction. Meanwhile, the root-mean-square errors of prediction for corn moisture reduced from 0.373 to 0.283 (%), and the correlation coefficient between predicted and actual values was improved from 0.702 to 0.855. The above results indicated that by improving global stability indicators, the prediction ability of multi-channels spectral system can be improved. The proposed method provided a valuable reference for designing multi-channels diminutive spectrometer with high prediction performance, which had significance for large-scale application of NIR technology.
基金supported by Industrial and Research Projects for Undergraduate Students 2008(The Thailand Research Fund)and Center of Excellence Project of Research,Development Institute at Kamphaengsaen,Kasetsart University。
文摘Moisture content is an important trait for rubber sheet trading system.Therefore,a calibrationequation for predicting moisture content was created by near infrared(NIR)technique in order todevelop a more fair trading system in Thailand.Spectra were recorded in two systems.One wasmeasurement on each rubber sheet and the other was on a pile of sheets.Both were[measured by ahandheld NIR spectrometer in the short wavelength region(700-1100 nm)in the transflectancemode using Teflon as a diffuse refector.The spectra showed the peak at about 900 nm whichbelongs to isoprene,the major component of rubber sheet.Pretreatment with second derivativewas applied to remove baseline shift effect occurring due to thickness differences on each rubber sheet.From validation results,moisture contents predicted by single sheet system were moreaccurate than a pile of sheet system with standard error of prediction(SEP)=0.39 %and bias of-0.07%,and they were not significantly diferent from the actual values at 95%confidence.As aresult,determining moisture content in each rubber sheet by a handheld NIR,spectrometerprovided accurate values,easy and rapid operation.
文摘基于有机胺吸收剂的化学吸收法能够有效捕集船舶烟气中的CO_(2),但吸收剂降解失效、挥发泄漏会造成严重的环境问题。虽然傅里叶红外光谱仪能够实时监测挥发的有机胺体积分数,但受限于高饱和蒸气压有机胺类蒸气难标定问题,对胺类体积分数的实际监测精度较低。对此,设计两种傅里叶红外光谱仪中高饱和蒸气压有机胺蒸气体积分数标定方法,分别为固定比例校准算法和基于循环神经网络的序列映射法。结果表明,相较于固定比例法,基于循环神经网络的非线性序列映射法能够实现更好的校准性能,平均绝对误差下降了81.57%,均方误差下降了70.05%,可有效反映船舶碳捕集与封存(carbon capture and storage,CCS)系统对大气环境的影响。
基金supported by the Ministry of Science and Technology of China(2013CB834603,2012YQ220113-3,and 2011YQ06010003)the National Natural Science Foundation of China(21273045 and 20933030)the Committee of Science and Technology of Shanghai(13XD1400800)
文摘An apparatus based on collinear tandem time-of-flight mass spectrometer has been designed for the measurement of infrared photodissociation spectroscopy of mass-selected ions in the gas phase.The ions from a pulsed laser vaporization supersonic ion source are skimmed and mass separated by a Wiley-McLaren time-of-flight mass spectrometer.The ion of interest is mass selected,decelerated and dissociated by a tunable IR laser.The fragment and parent ions are reaccelerated and mass analyzed by the second time-of-flight mass spectrometer.A simple new assembly integrated with mass gate,deceleration and reacceleration ion optics was designed,which allows us to measure the infrared spectra of mass selected ions with high sensitivity and easy timing synchronization.