Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded to...Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually.展开更多
To provide theoretical basis and practical guidance for preparing composite rods by direct continuous casting, copper-clad aluminum composite rods of external copper layer diameter 12 mm and inner aluminum core diamet...To provide theoretical basis and practical guidance for preparing composite rods by direct continuous casting, copper-clad aluminum composite rods of external copper layer diameter 12 mm and inner aluminum core diameter 8 mm were manufactured. Orthogonal tests consisted of three factors and three levels were carried out to research the effects of melting copper temperature, continuous casting speed and nitrogen pressure on the performance of composite rods. Results showed that nitrogen pressure is the most important factor in influencing the surface quality; continuous casting speed is the most important factor in influencing copper & aluminum inter diffusion amount. Nitrogen pressure can noticeably improve the surface quality and make the rods easily be drawn out, but the surface quality does not show visible improvement when the nitrogen pressure is above 0.05 MPa. Measured by tests, the compound layer can be divided into three types according to its cladding layer degree: deficient cladding, normal cladding and excess cladding. The diameter of normal copper-clad aluminum composite rods can be successfully drawn less than 0.6 mm without annealing.展开更多
To provide theoretical basis and practical guidance for preparing composite rods of external diameter no larger than 12 mm by directly continuous casting,low melting point materials of lead and tin were selected to pr...To provide theoretical basis and practical guidance for preparing composite rods of external diameter no larger than 12 mm by directly continuous casting,low melting point materials of lead and tin were selected to prepare composite rods of external diameter 12 mm and inner diameter 8 mm with air pressing core filled continuous casting process.The orthogonal tests consisting of three factors and three levels were designed to investigate the parameters of melting lead temperature,continuous casting speed and air pressure that affect the performance of the composite rods.The results show that melting lead temperature is the most important factor that influences the solid/liquid interface location;continuous casting speed is the most important factor that influences the surface quality and lead and tin inter-diffusion amount;air pressure can improve the surface quality obviously and make the rods easily drawn out,but the surface quality cannot get obvious improvement when the air pressure is above 0.03 MPa.The composite rods have excellent surface quality,obvious intermediate layer,even thick clad,and metallurgical bonding interface under the condition of melting lead temperature of 375 °C,continuous casting speed of 10 mm/min,and air pressure of 0.03 MPa.展开更多
Al-11%Si(mass fraction)alloy was transformed into a ductile material by equal-channel angular pressing(ECAP)with a rotary die.Two mechanisms at impact test,slip deformation by dislocation motion and grain boundary sli...Al-11%Si(mass fraction)alloy was transformed into a ductile material by equal-channel angular pressing(ECAP)with a rotary die.Two mechanisms at impact test,slip deformation by dislocation motion and grain boundary sliding,were discussed.The ultrafine grains with modified grain boundaries and the high content of fine particles(<1μm)were necessary for attaining high absorbed energy.The results contradict the condition of slip deformation by dislocation motion and coincide with that of grain boundary sliding.Many fine zigzag lines like a mosaic were observed on the side surface of the tested specimens.These observed lines may show grain boundaries appeared by the sliding of grains.展开更多
The detection system integrates control technology, network technology, video encoding and decoding, video transmiss-ion, multi-single chip microcomputer communication, dat-abase technology, computer software and robo...The detection system integrates control technology, network technology, video encoding and decoding, video transmiss-ion, multi-single chip microcomputer communication, dat-abase technology, computer software and robot technology. The robot can adaptively adjust its status according to diameter (from 400 mm to 650 mm) of pipeline. The maximum detection distance is up to 1 000 m. The method of video coding in the system is based on fractal transformation. The experiments show that the coding scheme is fast and good PSNR. The precision of on-line detection is up to 3% thickness of pipeline wall. The robot can also have a high precision of location up to 0.03 m. The control method is based on network and characterized by on-line and real-time. The experiment in real gas pipeline shows that the performance of the detection system is good.展开更多
The laser powder bed fusion(L-PBF)method of additive manufacturing(AM)is increasingly used in various industrial manufacturing fields due to its high material utilization and design freedom of parts.However,the parts ...The laser powder bed fusion(L-PBF)method of additive manufacturing(AM)is increasingly used in various industrial manufacturing fields due to its high material utilization and design freedom of parts.However,the parts produced by L-PBF usually contain such defects as crack and porosity because of the technological characteristics of L-PBF,which affect the quality of the product.Laser ultrasonic testing(LUT)is a potential technology for on-line testing of the L-PBF process.It is a non-contact and non-destructive approach based on signals from abundant waveforms with a wide frequency-band.In this study,a method of LUT for on-line inspection of L-PBF process was proposed,and a system of LUT was established approaching the actual environment of on-line detection to evaluate the method applicability for defects detection of L-PBF parts.The detection results of near-surface defects in L-PBF 316L stainless steel parts show that the crack-type defects with a sub-millimeter level within 0.5 mm depth can be identified,and accordingly,the positions and dimensions information can be acquired.The results were verified by X-ray computed tomography,which indicates that the present method exhibits great potential for on-line inspection of AM processes.展开更多
The deformation behavior of hot isostatic pressing (HIP) FGH96 superalloy was characterized in the temperature range of 1000-1100 ℃ and strain rate range of 0. 001-0. 1 s^-1 using hot compression testing. The flow ...The deformation behavior of hot isostatic pressing (HIP) FGH96 superalloy was characterized in the temperature range of 1000-1100 ℃ and strain rate range of 0. 001-0. 1 s^-1 using hot compression testing. The flow curves of HIP FGH96, superalloy during hot deformation was analyzed systematically. The results show that deformation temperature, strain rate and strain are the main influence factors on flow stress of HIP FGH96 superalloy during hot deformation. The flow stress displays a peak at a critical strain and then decreases with further increase in strain. For a given strain, the flow stress decreases with the increase of deformation temperature, and increases with the increase of strain rate. A mathematical model of these flow curves was established through regression analysis and taking the strain as a modification factor. The calculated stress values agree well with the experimental values.展开更多
Aluminum silicon alloy of composition (Al-25%Si-3%Ni-1%Fe-2%Cu) was atomized using water atomization. The powders were cold compacted in a die to produce green cylinder compacts. Four consolidation processes were appl...Aluminum silicon alloy of composition (Al-25%Si-3%Ni-1%Fe-2%Cu) was atomized using water atomization. The powders were cold compacted in a die to produce green cylinder compacts. Four consolidation processes were applied, namely;conventional sintering at 500℃, sintering followed by hot forging to obtain pistons, one step hot forging into pistons, and hot pressing. The microstructure of the sintered specimens showed inter-granular pores and oxide layers on particle interfaces of 84% relative density. When the sintered specimens were hot forged, both the inter-granular pores and oxide layers on particle interfaces almost disappeared and the relative densities increased up to about 95%. The same microstructure is also obtained for the one step forged specimens, but the relative densities increased to about 97%. However, the hot pressing specimens showed the presence of oxide layers on particle surfaces as well as few isolated pores. The relative density of the hot pressed specimens was about 90%. Hardness and ultimate compression strength were measured. It is noted that the strongest bulk materials are those made by hot forging, followed by those made by hot pressing and the weakest bulk materials are those made by conventional sintering.展开更多
基金funding from the NATO Agency Science for Peace and Security (#G5787)Ballistic investigations were co-financed by Military University of Technology in Warsaw under research project UGB 829/2023/WATSeparate works made in G.V.Kurdyumov Institute for Metal Physics of N.A.S.of Ukraine were partially financially supported by N.A.S.of Ukraine within the frames of project#III09-18。
文摘Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually.
基金financially supported by the Program for New Century Excellent Talents in University(NCET-12-0849)the Fundamental Research Funds for the Central Universities(13ZD12)the National Natural Science Foundation of China(No.51006034)
文摘To provide theoretical basis and practical guidance for preparing composite rods by direct continuous casting, copper-clad aluminum composite rods of external copper layer diameter 12 mm and inner aluminum core diameter 8 mm were manufactured. Orthogonal tests consisted of three factors and three levels were carried out to research the effects of melting copper temperature, continuous casting speed and nitrogen pressure on the performance of composite rods. Results showed that nitrogen pressure is the most important factor in influencing the surface quality; continuous casting speed is the most important factor in influencing copper & aluminum inter diffusion amount. Nitrogen pressure can noticeably improve the surface quality and make the rods easily be drawn out, but the surface quality does not show visible improvement when the nitrogen pressure is above 0.05 MPa. Measured by tests, the compound layer can be divided into three types according to its cladding layer degree: deficient cladding, normal cladding and excess cladding. The diameter of normal copper-clad aluminum composite rods can be successfully drawn less than 0.6 mm without annealing.
基金Project(2009AA03Z532) supported by the National High Technology Research and Development Program of ChinaProject(50774009) supported by the National Natural Science Foundation of China
文摘To provide theoretical basis and practical guidance for preparing composite rods of external diameter no larger than 12 mm by directly continuous casting,low melting point materials of lead and tin were selected to prepare composite rods of external diameter 12 mm and inner diameter 8 mm with air pressing core filled continuous casting process.The orthogonal tests consisting of three factors and three levels were designed to investigate the parameters of melting lead temperature,continuous casting speed and air pressure that affect the performance of the composite rods.The results show that melting lead temperature is the most important factor that influences the solid/liquid interface location;continuous casting speed is the most important factor that influences the surface quality and lead and tin inter-diffusion amount;air pressure can improve the surface quality obviously and make the rods easily drawn out,but the surface quality cannot get obvious improvement when the air pressure is above 0.03 MPa.The composite rods have excellent surface quality,obvious intermediate layer,even thick clad,and metallurgical bonding interface under the condition of melting lead temperature of 375 °C,continuous casting speed of 10 mm/min,and air pressure of 0.03 MPa.
文摘Al-11%Si(mass fraction)alloy was transformed into a ductile material by equal-channel angular pressing(ECAP)with a rotary die.Two mechanisms at impact test,slip deformation by dislocation motion and grain boundary sliding,were discussed.The ultrafine grains with modified grain boundaries and the high content of fine particles(<1μm)were necessary for attaining high absorbed energy.The results contradict the condition of slip deformation by dislocation motion and coincide with that of grain boundary sliding.Many fine zigzag lines like a mosaic were observed on the side surface of the tested specimens.These observed lines may show grain boundaries appeared by the sliding of grains.
基金Supported by the National High technology Research and Development Program of China (No.2002 AA442110)
文摘The detection system integrates control technology, network technology, video encoding and decoding, video transmiss-ion, multi-single chip microcomputer communication, dat-abase technology, computer software and robot technology. The robot can adaptively adjust its status according to diameter (from 400 mm to 650 mm) of pipeline. The maximum detection distance is up to 1 000 m. The method of video coding in the system is based on fractal transformation. The experiments show that the coding scheme is fast and good PSNR. The precision of on-line detection is up to 3% thickness of pipeline wall. The robot can also have a high precision of location up to 0.03 m. The control method is based on network and characterized by on-line and real-time. The experiment in real gas pipeline shows that the performance of the detection system is good.
基金the National Key R&D Program of China(Grant No.2018YFB1106100)。
文摘The laser powder bed fusion(L-PBF)method of additive manufacturing(AM)is increasingly used in various industrial manufacturing fields due to its high material utilization and design freedom of parts.However,the parts produced by L-PBF usually contain such defects as crack and porosity because of the technological characteristics of L-PBF,which affect the quality of the product.Laser ultrasonic testing(LUT)is a potential technology for on-line testing of the L-PBF process.It is a non-contact and non-destructive approach based on signals from abundant waveforms with a wide frequency-band.In this study,a method of LUT for on-line inspection of L-PBF process was proposed,and a system of LUT was established approaching the actual environment of on-line detection to evaluate the method applicability for defects detection of L-PBF parts.The detection results of near-surface defects in L-PBF 316L stainless steel parts show that the crack-type defects with a sub-millimeter level within 0.5 mm depth can be identified,and accordingly,the positions and dimensions information can be acquired.The results were verified by X-ray computed tomography,which indicates that the present method exhibits great potential for on-line inspection of AM processes.
基金Supported by Young Teacher Foundation of Tianjin University (5110105) and Aeronautic Science Foundation (03H53048).
文摘The deformation behavior of hot isostatic pressing (HIP) FGH96 superalloy was characterized in the temperature range of 1000-1100 ℃ and strain rate range of 0. 001-0. 1 s^-1 using hot compression testing. The flow curves of HIP FGH96, superalloy during hot deformation was analyzed systematically. The results show that deformation temperature, strain rate and strain are the main influence factors on flow stress of HIP FGH96 superalloy during hot deformation. The flow stress displays a peak at a critical strain and then decreases with further increase in strain. For a given strain, the flow stress decreases with the increase of deformation temperature, and increases with the increase of strain rate. A mathematical model of these flow curves was established through regression analysis and taking the strain as a modification factor. The calculated stress values agree well with the experimental values.
文摘Aluminum silicon alloy of composition (Al-25%Si-3%Ni-1%Fe-2%Cu) was atomized using water atomization. The powders were cold compacted in a die to produce green cylinder compacts. Four consolidation processes were applied, namely;conventional sintering at 500℃, sintering followed by hot forging to obtain pistons, one step hot forging into pistons, and hot pressing. The microstructure of the sintered specimens showed inter-granular pores and oxide layers on particle interfaces of 84% relative density. When the sintered specimens were hot forged, both the inter-granular pores and oxide layers on particle interfaces almost disappeared and the relative densities increased up to about 95%. The same microstructure is also obtained for the one step forged specimens, but the relative densities increased to about 97%. However, the hot pressing specimens showed the presence of oxide layers on particle surfaces as well as few isolated pores. The relative density of the hot pressed specimens was about 90%. Hardness and ultimate compression strength were measured. It is noted that the strongest bulk materials are those made by hot forging, followed by those made by hot pressing and the weakest bulk materials are those made by conventional sintering.