3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational acc...3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational accuracy and efficiency,the optimal choices of numerical parameters and algorithms in FE modelling were determined.The formation mechanisms of cross-section distortion and springback were revealed.The effects of pre-stretching,post-stretching,friction,and the addition of internal fillers on forming quality were investigated.The results show that the stress state of profile in stretch-bending is uniaxial with only a circumferential stress.The stress distribution along the length direction of profile is non-uniform and the maximum tensile stress is located at a certain distance away from the center of profile.As aluminum profile is gradually attached to bending die,the distribution characteristic of cross-section distortion along the length direction of profile changes from V-shape to W-shape.After unloading the forming tools,cross-section distortion decreases obviously due to the stress relaxation,with a maximum distortion difference of 13%before and after unloading.As pre-stretching and post-stretching forces increase,cross-section distortion increases gradually,while springback first decreases and then remains unchanged.With increasing friction between bending die and profile,cross-section distortion slightly decreases,while springback increases.Cross-section distortion decreases by 83%with adding PVC fillers into the cavities of profile,while springback increases by 192.2%.展开更多
A new polymer system, referred to simply as the AP-P4 polymer system, aims at solving the problems of high temperature, high salinity and the poor shearing resistance, all of which are encountered by conventional ...A new polymer system, referred to simply as the AP-P4 polymer system, aims at solving the problems of high temperature, high salinity and the poor shearing resistance, all of which are encountered by conventional polymers (such as polyacrylamide) used in profile control, profile performance improvement and EOR operations in the Zhongyuan Oilfield, Sinopec. This system has been developed on the basis of the specific molecular structure and the better properties of high temperature resistance, high salinity resistance and strong shearing resistance of the new type of AP-P4 association polymer. Acidity modifying agents and cross-linking agents (MZ-YL, MZ-BE, MZ-XS), compatible with the new polymer system, are selected. Results of performance tests have shown that the new polymer system has excellent thickening, high temperature, high salinity and shearing resistance and anti-dehydrating properties. In 2003, it underwent its first pilot test in 26 wells in China, with remarkable effects in increasing oil production and decreasing water production. The newly developed polymer system and its application technology described in this paper may play a guiding role in polymer profile control operations in the oil reservoirs of high temperature and high salinity.展开更多
Profile monitoring is used to check the stability of the quality of a product over time when the product quality is best represented by a function at each time point.However,most previous monitoring approaches have no...Profile monitoring is used to check the stability of the quality of a product over time when the product quality is best represented by a function at each time point.However,most previous monitoring approaches have not considered that the argument values may vary from profile to profile,which is common in practice.A novel nonparametric control scheme based on profile error is proposed for monitoring nonlinear profiles with varied argument values.The proposed scheme uses the metrics of profile error as the statistics to construct the control charts.More details about the design of this nonparametric scheme are also discussed.The monitoring performance of the combined control scheme is compared with that of alternative nonparametric methods via simulation.Simulation studies show that the combined scheme is effective in detecting parameter error and is sensitive to small shifts in the process.In addition,due to the properties of the charting statistics,the out-of-control signal can provide diagnostic information for the users.Finally,the implementation steps of the proposed monitoring scheme are given and applied for monitoring the blade manufacturing process.With the application in blade manufacturing of aircraft engines,the proposed nonparametric control scheme is effective,interpretable,and easy to apply.展开更多
Varying contact-length backup roll and linearly variable crown work roll are provided for improving the mill performance of profile and flatness control. Integrated with theses technologies, relevant profile and flatn...Varying contact-length backup roll and linearly variable crown work roll are provided for improving the mill performance of profile and flatness control. Integrated with theses technologies, relevant profile and flatness control models are developed for hot strip mills on the basis of large amount of finite element calculation. These models include shape setup control model in process control system, bending force feedforward control model, crown feedback control model and flatness feedback control model in basis automation system. Such a profile and flatness control system with full functions is applied in 1 700 mm industrial hot strip mills of Ansteel. Large amount of production data shows that the crown precision with the tolerance of±18 μm is over 90%, the strip percentage which the actual flatness is within ±25 I-unit surpasses 96%, and general roll consume is reduced by 28% by using the profile and fiatness control system. In addition, schedule-free rolling is realized.展开更多
Scaled physical model tests for steam breakthrough were conducted based on the analysis of mechanisms and influence factors of steam breakthrough. Physical simulation results showed that at the initial steam breakthro...Scaled physical model tests for steam breakthrough were conducted based on the analysis of mechanisms and influence factors of steam breakthrough. Physical simulation results showed that at the initial steam breakthrough, preferential flow channels were formed in narrow sand packs and most residual oil left in these channels was immobile. This shortened the steam breakthrough time of follow-up steam flooding and decreased the increment of oil recovery efficiency. Steam breakthrough occurred easily for a smaller producer-injector spacing, and a bigger difference in physical properties between fluids and rock. Steam breakthrough is more likely to occur at a larger formation permeability (k), greater steam displacement velocity (u) and smaller producer-injector spacing (L). Steam breakthrough time is a function of the parameter group (uk/L), i.e. tb=3.2151 (uk/L)^-0.5142. A non piston-like displacement model was built based on steam breakthrough observation for a steam stimulated well in the Jinglou Oilfield, Henan Oilfield Company. The steam volume swept in different directions could be obtained from inter-well permeability capacity and breakthrough angle, and the steam swept pore volume (SSPV) was also determined. Numerical simulation showed that steam sweep efficiency reached its peak value when a slug of profile control agent (slug size 10%-15% SSPV) was set at one half of the inter-well spacing. Field test with 12.5% SSPV of profile control agents in the Jinglou Oilfield achieved success in sealing breakthrough channels and good production performance of adjacent producers.展开更多
The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and wi...The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.展开更多
The roll contour pattern and variety of work and backup rolls in service and its effect on profile and flatness control performance in 1 700 mm hot strip mill at Wuhan Iron and Steel(Group) Corporation were tested and...The roll contour pattern and variety of work and backup rolls in service and its effect on profile and flatness control performance in 1 700 mm hot strip mill at Wuhan Iron and Steel(Group) Corporation were tested and analyzed by the developed finite element models of different typical roll contours configurations.A rather smooth local work roll contour near strip edges and an increase in rolled length can be obtained by application of long stroke work roll shifting system with conventional work roll contours that is incapable of the crown control.In comparison with the conventional backup and work roll contours configuration,the crown control range by the roll bending force enhances by 12.79% and the roll gap stiffness increases by 25.26% with the developed asymmetry self-compensating work rolls(ASR) and varying contact backup rolls(VCR).A better strip profile and flatness quality,an increase in coil numbers within the rolling campaign and a significant alleviated effect of severe work roll wear contours on performance of edge drop control are achieved by the application of ASR with crown control and wear control ability in downstream stand F5 and VCR in all stands of 1 700 mm hot strip mill.展开更多
The morphology of the gully longitudinal profile (GLP) is an important topographic index of the gully bottom associated with the evolution of the gullies. This index can be used to predict the development trend and ...The morphology of the gully longitudinal profile (GLP) is an important topographic index of the gully bottom associated with the evolution of the gullies. This index can be used to predict the development trend and evaluate the eroded volumes and soil losses by gullying. To depict the morphology of GLP and understand its controlling factors, the Global Positioning System Real-time Kinematic (GPS RTK) and the total station were used to measure the detail points along the gully bottom of 122 gullies at six sites of the Yuanmou dry-hot Valley. Then, nine parameters including length (Lt), horizontal distance (Dh), height (H), vertical erosional area (A), vertical curvature (Co), concavity (Ca), average gradient (Ga), gully length-gradient index (GL), normalized gully length-gradient index (Ngl), were calculated and mapped using CASS, Excel and SPSS. The results showed that this study area is dominated by slightly concave and medium gradient GLPs, and the lithology of most gullies is sandstone and siltstone. Although different types of GLPs appear at different sites, all parameters present a positively skewed distribution. There are relatively strong correlations between several parameters: namely Lt and H, Dh and H, Lt and A, Dh and A, H and GL. Most GLPs, except three, have a best fit of exponential functions with quasi- straight shapes. Soil properties, vegetation coverage, piping erosion and topography are important factors to affect the GLP morphology. This study provides useful insight into the knowledge of GLP morphology and its influential factors that are of critical importance to prevent and control gully erosion.展开更多
The profile control hard-gel is composed of polyarylamide (5-6g/L), whose molecular weight is 4,000,000 - 7,000,000 and hydrolysis degree is 17.6%, and cross-linking oxidation-reduction agent (Na2Cr2O7 + NH4Cl), with ...The profile control hard-gel is composed of polyarylamide (5-6g/L), whose molecular weight is 4,000,000 - 7,000,000 and hydrolysis degree is 17.6%, and cross-linking oxidation-reduction agent (Na2Cr2O7 + NH4Cl), with an delayed organic acid crosslinker which contains lactic acid/propionic acid/ethanoic acid and ethylene glycol. After research of the influence factors, such as pH, temperature, salinity and the dosage of delayed crosslinker, the optimum condition(pH 5.2, temperature 55℃, salinity < 7g/L) was found. Gelation time (12-144h) can be controlled by adjusting the dosage of the delayed crosslinker. Deep profile control experiments are carried out on heterogeneous models, which contains three serial high permeable and low permeable cores arranged in a parallel. After water flooding (total recovery, 24.3%), the first, second and third high-permeable cores each are sealed in turn by the profile control agent, and the total displacement recovery increases to 46.8%, 62.2% and 69.1% respectively. So, the greater the sealed depth, the larger the enhancing recovery will be. Finally, the oil displacement mechanisms of deep profile control are discussed.展开更多
An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanic...An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanical properties were predicted for different process parameters. In the later passes full recrystallization becomes difficult to occur and higher residual strain remains in austenite after rolling. For the reasonable temperature and cooling schedule, yield strength of 30 mm plain carbon steel plate can reach 310 MPa. The first on-line application of prediction and control of microstructure and properties (PCMP) in the medium plate production was achieved. The predictions of the system are in good agreement with measurements.展开更多
Most of the mining method of domestic oilfield is waterflood development, thus the water content in the mid and late water flooding would rise faster, and the oil recovery rate would decline relatively more rapid. So ...Most of the mining method of domestic oilfield is waterflood development, thus the water content in the mid and late water flooding would rise faster, and the oil recovery rate would decline relatively more rapid. So it is very important to research profile control agent for stabilizing oil production resin-type profile control agent, and focus on researching the themal stability, shear resistance, gelation time and gelation strength and other properties of this profile control agent?[1]. Finally, the best ratio for synthesizing the high temperature resistant phenolic resin-type profile control agent was obtained.展开更多
Facing problems with oil production decreasing quickly and water content increasing gradually in S103 well area, the Foam Profile Control was studied on the basis of its confirmed agent formula. The facies-controlled ...Facing problems with oil production decreasing quickly and water content increasing gradually in S103 well area, the Foam Profile Control was studied on the basis of its confirmed agent formula. The facies-controlled geological model of S103 well area was generated using random model based on Petrel software and using numerical simulation based on CMG software. Gas liquid alternating injection pattern was optimized as the optimal solution through the simulation optimization. Two months are optimized as the optimal solution through the simulation optimization. The cumulative oil production is 0.933 × 107 kg which is higher than the value of subsequent water flooding and the other three. Finally, it reaches the goals of slowing down the production decline and controlling the water rising.展开更多
Polyacrylamide microspheres have been suc- cessfully used to reduce water production in reservoirs, but it is impossible to distinguish polyacrylamide microspheres from polyacrylamide that is used to enhance oil recov...Polyacrylamide microspheres have been suc- cessfully used to reduce water production in reservoirs, but it is impossible to distinguish polyacrylamide microspheres from polyacrylamide that is used to enhance oil recovery and is already present in production fluids. In order to detect polyacrylamide microspheres in the reservoir pro- duced fluid, fluorescent polyacrylamide microspheres P(AM-BA-AMCO), which fluoresce under ultraviolet irradiation, were synthesized via an inverse suspension polymerization. In order to keep the particle size distribu- tion in a narrow range, the synthesis conditions of the polymerization were studied, including the stirring speed and the concentrations of initiator, NaaCO3, and dispersant. The bonding characteristics of microspheres were deter- mined by Fourier transform infrared spectroscopy. The surface morphology of these microspheres was observed under ultraviolet irradiation with an inverse fluorescence microscope. A laboratory evaluation test showed that the fluorescent polymer microspheres had good water swelling capability, thus they had the ability to plug and migrate in a sand pack. The plugging rate was 99.8 % and the residual resistance coefficient was 800 after microsphere treatment in the sand pack. Furthermore, the fluorescent microspheres and their fragments were accurately detected under ultra- violet irradiation in the produced fluid, even though theyhad experienced extrusion and deformation in the sand pack.展开更多
Due to long-term water injection,often oilfields enter the so-called medium and high water cut stage,and it is difficult to achieve good oil recovery and water reduction through standard methods(single profile control...Due to long-term water injection,often oilfields enter the so-called medium and high water cut stage,and it is difficult to achieve good oil recovery and water reduction through standard methods(single profile control and flooding measures).Therefore,in this study,a novel method based on“plugging,profile control,and flooding”being implemented at the same time is proposed.To assess the performances of this approach,physical simulations,computer tomography,and nuclear magnetic resonance are used.The results show that the combination of a gel plugging agent,a polymer microsphere flooding agent,and a high-efficiency oil displacement agent leads to better results in terms of oil recovery with respect to the situation in which these approaches are used separately(the oil recovery is increased by 15.37%).Computer tomography scan results show that with the combined approach,a larger sweep volume and higher oil washing efficiency are obtained.The remaining oil in the cluster form can be recovered in the middle and low permeability layer,increasing the proportion of the columnar and blind end states of the oil.The nuclear magnetic resonance test results show that the combined“plugging,profile control,and flooding”treatment can also be used to control more effectively the dominant channels of the high permeability layer and further expand the recovery degree of the remaining oil in the pores of different sizes in the middle and low permeability layers.However,for the low permeability layer(permeability difference of 20),the benefits in terms of oil recovery are limited.展开更多
A large amount of residue from the water treatment process has gradually accumulated and thus caused serious environmental pollution in waterflood oilfields. The water treatment residue is a grey suspension, with a de...A large amount of residue from the water treatment process has gradually accumulated and thus caused serious environmental pollution in waterflood oilfields. The water treatment residue is a grey suspension, with a density of 1.08 g/cm^3, and mainly contains over 65% of light CaCO3, MgCO3, CaSO4, Fe2S3 and Ca(OH)2. This paper ascertains the effect of water treatment residue on core permeability and its application in oilfields. Coreflooding tests in laboratory were conducted in two artificial cores and one natural core. Core changes were evaluated by cast model image analysis, mercury injection method and scanning electron microscopy (SEM). Fresh water was injected into another natural core, which was plugged with water treatment residue, to determine the effective life. The results indicate that the water treatment residue has a strongly plugging capability, a resistance to erosion and a long effective life, and thus it can be used as a cheap raw material for profile control. In the past 8 years, a total of 60,164 m^3 of water treatment residue has been used for profile control of 151 well treatments, with a success ratio of 98% and an effective ratio of 83.2%. In the field tests, the profile control agent increased both starting pressure and injection pressure of injectors, and decreased the apparent water injectivity coefficient, significantly improving intake profiles and lengthening average service life of injectors. 28,381 tons of additional oil were recovered from these corresponding oil wells, with economic benefits of ¥3,069.55×10^4 (RMB) and a remarkable input-output ratio of 8.6:1.展开更多
In the designed automatic balancing head, a non contact induction transformer is used to deliver driving energy to solve the problem of current fed and controlling on line. Computer controlled automatic balancing expe...In the designed automatic balancing head, a non contact induction transformer is used to deliver driving energy to solve the problem of current fed and controlling on line. Computer controlled automatic balancing experiments with phase magnitude control tactics were performed on a flexible rotor system. Results of the experiments prove that the energy feeding method and the control tactics are effective in the automatic balancing head for vibration controlling.展开更多
The q-profile control problem in the ramp-up phase of plasma discharges is consid- ered in this work. The magnetic diffusion partial differential equation (PDE) models the dynamics of the poloidal magnetic flux prof...The q-profile control problem in the ramp-up phase of plasma discharges is consid- ered in this work. The magnetic diffusion partial differential equation (PDE) models the dynamics of the poloidal magnetic flux profile, which is used in this work to formulate a PDE-constrained op-timization problem under a quasi-static assumption. The minimum surface theory and constrained numeric optimization are then applied to achieve suboptimal solutions. Since the transient dy- namics is pre-given by the minimum surface theory, then this method can dramatically accelerate the solution process. In order to be robust under external uncertainties in real implementations, PID (proportional-integral-derivative) controllers are used to force the actuators to follow the computational input trajectories. It has the potential to implement in real-time for long time discharges by combining this method with the magnetic equilibrium update.展开更多
Profile control is utilized to redirect the injection water to low permeability region where a large amount of crude oil lies.Performed gel particles are the commonly used agent for redistributing water by blocking th...Profile control is utilized to redirect the injection water to low permeability region where a large amount of crude oil lies.Performed gel particles are the commonly used agent for redistributing water by blocking the pores in high permeability region.But the capability of deep penetration of performed gel particles is poor.Here,we formulate nanoparticle stabilized emulsion(NSE).The stability and the effect of NSE on the fluid redirection in a three-dimensional porous medium were investigated.By usingμ-PIV(particle image velocimetry),it was found that the velocity gradient of continuous fluid close to the nanoparticle stabilized droplets is much higher than that close to surfactant stabilized droplets.NSE behaves as solid particle in preferential seepage channels,which will decrease effectively the permeability,thereby redirecting the subsequent injection water.Furthermore,NSE shows high stability compared with emulsion stabilized by surfactant in static and dynamic tests.In addition,water flooding tests also confirm that the NSE can significantly reduce the permeability of porous media and redirect the fluid flow.Our results demonstrate NSE owns high potential to act as profile control agent in deep formation.展开更多
In order to study the profile control characteristics of emulsions in porous medium, the heterogeneous experimental model was established, by which the experimental scheme was designed with different permeabilities, m...In order to study the profile control characteristics of emulsions in porous medium, the heterogeneous experimental model was established, by which the experimental scheme was designed with different permeabilities, matching degree of particle size and concentration of emulsions. Based on experimental results of physical simulation, the concept of distributing rate and changing coefficient was introduced to quantitatively evaluate the profile control characteristics of emulsions. The results of the study show that, as the permeability ratio and emulsion concentration increase, the profile control characteristics of emulsions will enhance. The profile control characteristics of emulsions will be the best. The profile control scheme with emulsions was implemented in Bohai X oil field, The research results can be used for reference to design the profile control scheme in Bohai heterogeneous reservoir.展开更多
OBJECTIVE: To study and establish quality con-trol model of the Salvianolic Acid B by Near In-frared Spectroscopy (NIRS), and to realize on-line quality control of extracting and purifying proc-esses of industrial sca...OBJECTIVE: To study and establish quality con-trol model of the Salvianolic Acid B by Near In-frared Spectroscopy (NIRS), and to realize on-line quality control of extracting and purifying proc-esses of industrial scale herbal product manu-facturing. METHOD: NIR chromatography was obtained from on-line NIR detection of extract-ing process and purifying process. HPLC analysis was carried out to determine the con-tents of salvianolic acid B. Partial Least Squares Regression (PLS) was used to establish the model between the information between NIRS and HPLC. RESULTS: For extracting model: the optimum Near Infrared (NIR) wavelength range was 9815- 5430cm-1, R=0.9784, RMSEC=0.258;for puri-fying model: the optimum NIR wavelength range was 9815-5430cm-1, R=0.9776, RMSEC=4.02. The average relative error was <5%. CONCLUSION: NIR technique is applicable for on-line quality control in production of salvianolic acid B.展开更多
基金the National Natural Science Foundation of China(Nos.52005244,U20A20275)the Natural Science Foundation of Hunan Province,China(Nos.2021JJ30573,2023JJ60193)the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,China(No.31715011)。
文摘3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational accuracy and efficiency,the optimal choices of numerical parameters and algorithms in FE modelling were determined.The formation mechanisms of cross-section distortion and springback were revealed.The effects of pre-stretching,post-stretching,friction,and the addition of internal fillers on forming quality were investigated.The results show that the stress state of profile in stretch-bending is uniaxial with only a circumferential stress.The stress distribution along the length direction of profile is non-uniform and the maximum tensile stress is located at a certain distance away from the center of profile.As aluminum profile is gradually attached to bending die,the distribution characteristic of cross-section distortion along the length direction of profile changes from V-shape to W-shape.After unloading the forming tools,cross-section distortion decreases obviously due to the stress relaxation,with a maximum distortion difference of 13%before and after unloading.As pre-stretching and post-stretching forces increase,cross-section distortion increases gradually,while springback first decreases and then remains unchanged.With increasing friction between bending die and profile,cross-section distortion slightly decreases,while springback increases.Cross-section distortion decreases by 83%with adding PVC fillers into the cavities of profile,while springback increases by 192.2%.
文摘A new polymer system, referred to simply as the AP-P4 polymer system, aims at solving the problems of high temperature, high salinity and the poor shearing resistance, all of which are encountered by conventional polymers (such as polyacrylamide) used in profile control, profile performance improvement and EOR operations in the Zhongyuan Oilfield, Sinopec. This system has been developed on the basis of the specific molecular structure and the better properties of high temperature resistance, high salinity resistance and strong shearing resistance of the new type of AP-P4 association polymer. Acidity modifying agents and cross-linking agents (MZ-YL, MZ-BE, MZ-XS), compatible with the new polymer system, are selected. Results of performance tests have shown that the new polymer system has excellent thickening, high temperature, high salinity and shearing resistance and anti-dehydrating properties. In 2003, it underwent its first pilot test in 26 wells in China, with remarkable effects in increasing oil production and decreasing water production. The newly developed polymer system and its application technology described in this paper may play a guiding role in polymer profile control operations in the oil reservoirs of high temperature and high salinity.
基金supported by National Natural Science Foundation of China (Grant No. 70931004,Grant No. 70802043)
文摘Profile monitoring is used to check the stability of the quality of a product over time when the product quality is best represented by a function at each time point.However,most previous monitoring approaches have not considered that the argument values may vary from profile to profile,which is common in practice.A novel nonparametric control scheme based on profile error is proposed for monitoring nonlinear profiles with varied argument values.The proposed scheme uses the metrics of profile error as the statistics to construct the control charts.More details about the design of this nonparametric scheme are also discussed.The monitoring performance of the combined control scheme is compared with that of alternative nonparametric methods via simulation.Simulation studies show that the combined scheme is effective in detecting parameter error and is sensitive to small shifts in the process.In addition,due to the properties of the charting statistics,the out-of-control signal can provide diagnostic information for the users.Finally,the implementation steps of the proposed monitoring scheme are given and applied for monitoring the blade manufacturing process.With the application in blade manufacturing of aircraft engines,the proposed nonparametric control scheme is effective,interpretable,and easy to apply.
基金National Key Scientific Technological Project of the Ninth Five-year of China(No.97-316-01-01)
文摘Varying contact-length backup roll and linearly variable crown work roll are provided for improving the mill performance of profile and flatness control. Integrated with theses technologies, relevant profile and flatness control models are developed for hot strip mills on the basis of large amount of finite element calculation. These models include shape setup control model in process control system, bending force feedforward control model, crown feedback control model and flatness feedback control model in basis automation system. Such a profile and flatness control system with full functions is applied in 1 700 mm industrial hot strip mills of Ansteel. Large amount of production data shows that the crown precision with the tolerance of±18 μm is over 90%, the strip percentage which the actual flatness is within ±25 I-unit surpasses 96%, and general roll consume is reduced by 28% by using the profile and fiatness control system. In addition, schedule-free rolling is realized.
文摘Scaled physical model tests for steam breakthrough were conducted based on the analysis of mechanisms and influence factors of steam breakthrough. Physical simulation results showed that at the initial steam breakthrough, preferential flow channels were formed in narrow sand packs and most residual oil left in these channels was immobile. This shortened the steam breakthrough time of follow-up steam flooding and decreased the increment of oil recovery efficiency. Steam breakthrough occurred easily for a smaller producer-injector spacing, and a bigger difference in physical properties between fluids and rock. Steam breakthrough is more likely to occur at a larger formation permeability (k), greater steam displacement velocity (u) and smaller producer-injector spacing (L). Steam breakthrough time is a function of the parameter group (uk/L), i.e. tb=3.2151 (uk/L)^-0.5142. A non piston-like displacement model was built based on steam breakthrough observation for a steam stimulated well in the Jinglou Oilfield, Henan Oilfield Company. The steam volume swept in different directions could be obtained from inter-well permeability capacity and breakthrough angle, and the steam swept pore volume (SSPV) was also determined. Numerical simulation showed that steam sweep efficiency reached its peak value when a slug of profile control agent (slug size 10%-15% SSPV) was set at one half of the inter-well spacing. Field test with 12.5% SSPV of profile control agents in the Jinglou Oilfield achieved success in sealing breakthrough channels and good production performance of adjacent producers.
基金Project(51090385) supported by the Major Program of National Natural Science Foundation of ChinaProject(2011IB001) supported by Yunnan Provincial Science and Technology Program,China+1 种基金Project(2012DFA70570) supported by the International Science & Technology Cooperation Program of ChinaProject(2011IA004) supported by the Yunnan Provincial International Cooperative Program,China
文摘The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.
基金Project(20040311890) supported by the Science and Technology Development Foundation of University of Science and Technology Beijing
文摘The roll contour pattern and variety of work and backup rolls in service and its effect on profile and flatness control performance in 1 700 mm hot strip mill at Wuhan Iron and Steel(Group) Corporation were tested and analyzed by the developed finite element models of different typical roll contours configurations.A rather smooth local work roll contour near strip edges and an increase in rolled length can be obtained by application of long stroke work roll shifting system with conventional work roll contours that is incapable of the crown control.In comparison with the conventional backup and work roll contours configuration,the crown control range by the roll bending force enhances by 12.79% and the roll gap stiffness increases by 25.26% with the developed asymmetry self-compensating work rolls(ASR) and varying contact backup rolls(VCR).A better strip profile and flatness quality,an increase in coil numbers within the rolling campaign and a significant alleviated effect of severe work roll wear contours on performance of edge drop control are achieved by the application of ASR with crown control and wear control ability in downstream stand F5 and VCR in all stands of 1 700 mm hot strip mill.
基金supported by the"National Natural Science Foundation of China(Grant No.41471232)""the Fundamental Research Funds of China West Normal University"(Grant No.16A001)"Ecological Security Key Laboratory of Sichuan Province"(Grant No.ESP201301)
文摘The morphology of the gully longitudinal profile (GLP) is an important topographic index of the gully bottom associated with the evolution of the gullies. This index can be used to predict the development trend and evaluate the eroded volumes and soil losses by gullying. To depict the morphology of GLP and understand its controlling factors, the Global Positioning System Real-time Kinematic (GPS RTK) and the total station were used to measure the detail points along the gully bottom of 122 gullies at six sites of the Yuanmou dry-hot Valley. Then, nine parameters including length (Lt), horizontal distance (Dh), height (H), vertical erosional area (A), vertical curvature (Co), concavity (Ca), average gradient (Ga), gully length-gradient index (GL), normalized gully length-gradient index (Ngl), were calculated and mapped using CASS, Excel and SPSS. The results showed that this study area is dominated by slightly concave and medium gradient GLPs, and the lithology of most gullies is sandstone and siltstone. Although different types of GLPs appear at different sites, all parameters present a positively skewed distribution. There are relatively strong correlations between several parameters: namely Lt and H, Dh and H, Lt and A, Dh and A, H and GL. Most GLPs, except three, have a best fit of exponential functions with quasi- straight shapes. Soil properties, vegetation coverage, piping erosion and topography are important factors to affect the GLP morphology. This study provides useful insight into the knowledge of GLP morphology and its influential factors that are of critical importance to prevent and control gully erosion.
文摘The profile control hard-gel is composed of polyarylamide (5-6g/L), whose molecular weight is 4,000,000 - 7,000,000 and hydrolysis degree is 17.6%, and cross-linking oxidation-reduction agent (Na2Cr2O7 + NH4Cl), with an delayed organic acid crosslinker which contains lactic acid/propionic acid/ethanoic acid and ethylene glycol. After research of the influence factors, such as pH, temperature, salinity and the dosage of delayed crosslinker, the optimum condition(pH 5.2, temperature 55℃, salinity < 7g/L) was found. Gelation time (12-144h) can be controlled by adjusting the dosage of the delayed crosslinker. Deep profile control experiments are carried out on heterogeneous models, which contains three serial high permeable and low permeable cores arranged in a parallel. After water flooding (total recovery, 24.3%), the first, second and third high-permeable cores each are sealed in turn by the profile control agent, and the total displacement recovery increases to 46.8%, 62.2% and 69.1% respectively. So, the greater the sealed depth, the larger the enhancing recovery will be. Finally, the oil displacement mechanisms of deep profile control are discussed.
基金This work was financially supported by the High Technology Development Program(No.2001AA339030)the National Natural Science Foundation of China(No.50334010).
文摘An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanical properties were predicted for different process parameters. In the later passes full recrystallization becomes difficult to occur and higher residual strain remains in austenite after rolling. For the reasonable temperature and cooling schedule, yield strength of 30 mm plain carbon steel plate can reach 310 MPa. The first on-line application of prediction and control of microstructure and properties (PCMP) in the medium plate production was achieved. The predictions of the system are in good agreement with measurements.
文摘Most of the mining method of domestic oilfield is waterflood development, thus the water content in the mid and late water flooding would rise faster, and the oil recovery rate would decline relatively more rapid. So it is very important to research profile control agent for stabilizing oil production resin-type profile control agent, and focus on researching the themal stability, shear resistance, gelation time and gelation strength and other properties of this profile control agent?[1]. Finally, the best ratio for synthesizing the high temperature resistant phenolic resin-type profile control agent was obtained.
文摘Facing problems with oil production decreasing quickly and water content increasing gradually in S103 well area, the Foam Profile Control was studied on the basis of its confirmed agent formula. The facies-controlled geological model of S103 well area was generated using random model based on Petrel software and using numerical simulation based on CMG software. Gas liquid alternating injection pattern was optimized as the optimal solution through the simulation optimization. Two months are optimized as the optimal solution through the simulation optimization. The cumulative oil production is 0.933 × 107 kg which is higher than the value of subsequent water flooding and the other three. Finally, it reaches the goals of slowing down the production decline and controlling the water rising.
基金supported by the National Natural Science Foundation of China (No.21273286)Doctoral Program Foundation of the Education Ministry (No.20130133110005)
文摘Polyacrylamide microspheres have been suc- cessfully used to reduce water production in reservoirs, but it is impossible to distinguish polyacrylamide microspheres from polyacrylamide that is used to enhance oil recovery and is already present in production fluids. In order to detect polyacrylamide microspheres in the reservoir pro- duced fluid, fluorescent polyacrylamide microspheres P(AM-BA-AMCO), which fluoresce under ultraviolet irradiation, were synthesized via an inverse suspension polymerization. In order to keep the particle size distribu- tion in a narrow range, the synthesis conditions of the polymerization were studied, including the stirring speed and the concentrations of initiator, NaaCO3, and dispersant. The bonding characteristics of microspheres were deter- mined by Fourier transform infrared spectroscopy. The surface morphology of these microspheres was observed under ultraviolet irradiation with an inverse fluorescence microscope. A laboratory evaluation test showed that the fluorescent polymer microspheres had good water swelling capability, thus they had the ability to plug and migrate in a sand pack. The plugging rate was 99.8 % and the residual resistance coefficient was 800 after microsphere treatment in the sand pack. Furthermore, the fluorescent microspheres and their fragments were accurately detected under ultra- violet irradiation in the produced fluid, even though theyhad experienced extrusion and deformation in the sand pack.
基金The authors gratefully acknowledge the financial support from the National Science and Technology Major Special Project(2016ZX05058-003).
文摘Due to long-term water injection,often oilfields enter the so-called medium and high water cut stage,and it is difficult to achieve good oil recovery and water reduction through standard methods(single profile control and flooding measures).Therefore,in this study,a novel method based on“plugging,profile control,and flooding”being implemented at the same time is proposed.To assess the performances of this approach,physical simulations,computer tomography,and nuclear magnetic resonance are used.The results show that the combination of a gel plugging agent,a polymer microsphere flooding agent,and a high-efficiency oil displacement agent leads to better results in terms of oil recovery with respect to the situation in which these approaches are used separately(the oil recovery is increased by 15.37%).Computer tomography scan results show that with the combined approach,a larger sweep volume and higher oil washing efficiency are obtained.The remaining oil in the cluster form can be recovered in the middle and low permeability layer,increasing the proportion of the columnar and blind end states of the oil.The nuclear magnetic resonance test results show that the combined“plugging,profile control,and flooding”treatment can also be used to control more effectively the dominant channels of the high permeability layer and further expand the recovery degree of the remaining oil in the pores of different sizes in the middle and low permeability layers.However,for the low permeability layer(permeability difference of 20),the benefits in terms of oil recovery are limited.
文摘A large amount of residue from the water treatment process has gradually accumulated and thus caused serious environmental pollution in waterflood oilfields. The water treatment residue is a grey suspension, with a density of 1.08 g/cm^3, and mainly contains over 65% of light CaCO3, MgCO3, CaSO4, Fe2S3 and Ca(OH)2. This paper ascertains the effect of water treatment residue on core permeability and its application in oilfields. Coreflooding tests in laboratory were conducted in two artificial cores and one natural core. Core changes were evaluated by cast model image analysis, mercury injection method and scanning electron microscopy (SEM). Fresh water was injected into another natural core, which was plugged with water treatment residue, to determine the effective life. The results indicate that the water treatment residue has a strongly plugging capability, a resistance to erosion and a long effective life, and thus it can be used as a cheap raw material for profile control. In the past 8 years, a total of 60,164 m^3 of water treatment residue has been used for profile control of 151 well treatments, with a success ratio of 98% and an effective ratio of 83.2%. In the field tests, the profile control agent increased both starting pressure and injection pressure of injectors, and decreased the apparent water injectivity coefficient, significantly improving intake profiles and lengthening average service life of injectors. 28,381 tons of additional oil were recovered from these corresponding oil wells, with economic benefits of ¥3,069.55×10^4 (RMB) and a remarkable input-output ratio of 8.6:1.
文摘In the designed automatic balancing head, a non contact induction transformer is used to deliver driving energy to solve the problem of current fed and controlling on line. Computer controlled automatic balancing experiments with phase magnitude control tactics were performed on a flexible rotor system. Results of the experiments prove that the energy feeding method and the control tactics are effective in the automatic balancing head for vibration controlling.
基金supported partially by the US NSF CAREER award program (ECCS-0645086)National Natural Science Foundation of China (No.F030119)+2 种基金Zhejiang Provincial Natural Science Foundation of China (Nos.Y1110354, Y6110751)the Fundamental Research Funds for the Central Universities of China (No.1A5000-172210101)the Natural Science Foundation of Ningbo (No.2010A610096)
文摘The q-profile control problem in the ramp-up phase of plasma discharges is consid- ered in this work. The magnetic diffusion partial differential equation (PDE) models the dynamics of the poloidal magnetic flux profile, which is used in this work to formulate a PDE-constrained op-timization problem under a quasi-static assumption. The minimum surface theory and constrained numeric optimization are then applied to achieve suboptimal solutions. Since the transient dy- namics is pre-given by the minimum surface theory, then this method can dramatically accelerate the solution process. In order to be robust under external uncertainties in real implementations, PID (proportional-integral-derivative) controllers are used to force the actuators to follow the computational input trajectories. It has the potential to implement in real-time for long time discharges by combining this method with the magnetic equilibrium update.
基金supported by the National Natural Science Foundation of China(U1663206,51704313)the Taishan Scholar Climbing Program in Shandong Province(tspd20161004)the Fundamental Research Funds for the Central Universities(18CX02028A)
文摘Profile control is utilized to redirect the injection water to low permeability region where a large amount of crude oil lies.Performed gel particles are the commonly used agent for redistributing water by blocking the pores in high permeability region.But the capability of deep penetration of performed gel particles is poor.Here,we formulate nanoparticle stabilized emulsion(NSE).The stability and the effect of NSE on the fluid redirection in a three-dimensional porous medium were investigated.By usingμ-PIV(particle image velocimetry),it was found that the velocity gradient of continuous fluid close to the nanoparticle stabilized droplets is much higher than that close to surfactant stabilized droplets.NSE behaves as solid particle in preferential seepage channels,which will decrease effectively the permeability,thereby redirecting the subsequent injection water.Furthermore,NSE shows high stability compared with emulsion stabilized by surfactant in static and dynamic tests.In addition,water flooding tests also confirm that the NSE can significantly reduce the permeability of porous media and redirect the fluid flow.Our results demonstrate NSE owns high potential to act as profile control agent in deep formation.
文摘In order to study the profile control characteristics of emulsions in porous medium, the heterogeneous experimental model was established, by which the experimental scheme was designed with different permeabilities, matching degree of particle size and concentration of emulsions. Based on experimental results of physical simulation, the concept of distributing rate and changing coefficient was introduced to quantitatively evaluate the profile control characteristics of emulsions. The results of the study show that, as the permeability ratio and emulsion concentration increase, the profile control characteristics of emulsions will enhance. The profile control characteristics of emulsions will be the best. The profile control scheme with emulsions was implemented in Bohai X oil field, The research results can be used for reference to design the profile control scheme in Bohai heterogeneous reservoir.
文摘OBJECTIVE: To study and establish quality con-trol model of the Salvianolic Acid B by Near In-frared Spectroscopy (NIRS), and to realize on-line quality control of extracting and purifying proc-esses of industrial scale herbal product manu-facturing. METHOD: NIR chromatography was obtained from on-line NIR detection of extract-ing process and purifying process. HPLC analysis was carried out to determine the con-tents of salvianolic acid B. Partial Least Squares Regression (PLS) was used to establish the model between the information between NIRS and HPLC. RESULTS: For extracting model: the optimum Near Infrared (NIR) wavelength range was 9815- 5430cm-1, R=0.9784, RMSEC=0.258;for puri-fying model: the optimum NIR wavelength range was 9815-5430cm-1, R=0.9776, RMSEC=4.02. The average relative error was <5%. CONCLUSION: NIR technique is applicable for on-line quality control in production of salvianolic acid B.