Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public hea...Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public health burden.Military personnel,compared with civilians,is exposed to more stress,a risk factor for heart diseases,making cardiovascular health management and treatment innovation an important topic for military medicine.So far,medical intervention can slow down cardiovascular disease progression,but not yet induce heart regeneration.In the past decades,studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury.Insights have emerged from studies in animal models and early clinical trials.Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease.In this review,we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury.展开更多
BACKGROUND The success of liver resection relies on the ability of the remnant liver to regenerate.Most of the knowledge regarding the pathophysiological basis of liver regeneration comes from rodent studies,and data ...BACKGROUND The success of liver resection relies on the ability of the remnant liver to regenerate.Most of the knowledge regarding the pathophysiological basis of liver regeneration comes from rodent studies,and data on humans are scarce.Additionally,there is limited knowledge about the preoperative factors that influence postoperative regeneration.AIM To quantify postoperative remnant liver volume by the latest volumetric software and investigate perioperative factors that affect posthepatectomy liver regenera-tion.METHODS A total of 268 patients who received partial hepatectomy were enrolled.Patients were grouped into right hepatectomy/trisegmentectomy(RH/Tri),left hepa-tectomy(LH),segmentectomy(Seg),and subsegmentectomy/nonanatomical hepatectomy(Sub/Non)groups.The regeneration index(RI)and late rege-neration rate were defined as(postoperative liver volume)/[total functional liver volume(TFLV)]×100 and(RI at 6-months-RI at 3-months)/RI at 6-months,respectively.The lower 25th percentile of RI and the higher 25th percentile of late regeneration rate in each group were defined as“low regeneration”and“delayed regeneration”.“Restoration to the original size”was defined as regeneration of the liver volume by more than 90%of the TFLV at 12 months postsurgery.RESULTS The numbers of patients in the RH/Tri,LH,Seg,and Sub/Non groups were 41,53,99 and 75,respectively.The RI plateaued at 3 months in the LH,Seg,and Sub/Non groups,whereas the RI increased until 12 months in the RH/Tri group.According to our multivariate analysis,the preoperative albumin-bilirubin(ALBI)score was an independent factor for low regeneration at 3 months[odds ratio(OR)95%CI=2.80(1.17-6.69),P=0.02;per 1.0 up]and 12 months[OR=2.27(1.01-5.09),P=0.04;per 1.0 up].Multivariate analysis revealed that only liver resection percentage[OR=1.03(1.00-1.05),P=0.04]was associated with delayed regeneration.Furthermore,multivariate analysis demonstrated that the preoperative ALBI score[OR=2.63(1.00-1.05),P=0.02;per 1.0 up]and liver resection percentage[OR=1.02(1.00-1.05),P=0.04;per 1.0 up]were found to be independent risk factors associated with volume restoration failure.CONCLUSION Liver regeneration posthepatectomy was determined by the resection percentage and preoperative ALBI score.This knowledge helps surgeons decide the timing and type of rehepatectomy for recurrent cases.展开更多
Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. ...Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential.展开更多
The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite ofte...The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite often has a relatively intact structure with few defects after long cycling.Yet,most spent graphite is simply burned or discarded due to its limited value and inferior performance on using conventional recycling methods that are complex,have low efficiency,and fail in performance restoration.Herein,we propose a fast,efficient,and“intelligent”strategy to regenerate and upcycle spent graphite based on defect‐driven targeted remediation.Using Sn as a nanoscale healant,we used rapid heating(~50 ms)to enable dynamic Sn droplets to automatically nucleate around the surface defects on the graphite upon cooling owing to strong binding to the defects(~5.84 eV/atom),thus simultaneously achieving Sn dispersion and graphite remediation.As a result,the regenerated graphite showed enhanced capacity and cycle stability(458.9 mAh g^(−1) at 0.2 A g^(−1) after 100 cycles),superior to those of commercial graphite.Benefiting from the self‐adaption of Sn dispersion,spent graphite with different degrees of defects can be regenerated to similar structures and performance.EverBatt analysis indicates that targeted regeneration and upcycling have significantly lower energy consumption(~99%reduction)and near‐zero CO_(2) emission,and yield much higher profit than hydrometallurgy,which opens a new avenue for direct upcycling of spend graphite in an efficient,green,and profitable manner for sustainable battery manufacture.展开更多
Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to...Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells.However,axon regeneration and repair do not automatically result in the restoration of function,which is the ultimate therapeutic goal but also a major clinical challenge.Transforming growth factor(TGF)is a multifunctional cytokine that regulates various biological processes including tissue repair,embryo development,and cell growth and differentiation.There is accumulating evidence that TGF-βfamily proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells;recruiting specific immune cells;controlling the permeability of the blood-nerve barrier,thereby stimulating axon growth;and inhibiting remyelination of regenerated axons.TGF-βhas been applied to the treatment of peripheral nerve injury in animal models.In this context,we review the functions of TGF-βin peripheral nerve regeneration and potential clinical applications.展开更多
Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising ap...Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising approach for addressing these urgent clinical requirements.This review provides a thorough analysis of the application of 3D cell-based approaches to liver regeneration and their potential impact on patients with end-stage liver failure.Here,we discuss various 3D culture models that incorporate hepatocytes and stem cells to restore liver function and ameliorate the consequences of liver failure.Furthermore,we explored the challenges in transitioning these innovative strategies from preclinical studies to clinical applications.The collective insights presented herein highlight the significance of 3D cell-based strategies as a transformative paradigm for liver regeneration and improved patient care.展开更多
BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To e...BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To explore the role and potential mechanism of ICA on bone defect in the context of T1DM.METHODS The effects of ICA on osteogenesis and angiogenesis were evaluated by alkaline phosphatase staining,alizarin red S staining,quantitative real-time polymerase chain reaction,Western blot,and immunofluorescence.Angiogenesis-related assays were conducted to investigate the relationship between osteogenesis and angiogenesis.A bone defect model was established in T1DM rats.The model rats were then treated with ICA or placebo and micron-scale computed tomography,histomorphometry,histology,and sequential fluorescent labeling were used to evaluate the effect of ICA on bone formation in the defect area.RESULTS ICA promoted bone marrow mesenchymal stem cell(BMSC)proliferation and osteogenic differentiation.The ICA treated-BMSCs showed higher expression levels of osteogenesis-related markers(alkaline phosphatase and osteocalcin)and angiogenesis-related markers(vascular endothelial growth factor A and platelet endothelial cell adhesion molecule 1)compared to the untreated group.ICA was also found to induce osteogenesis-angiogenesis coupling of BMSCs.In the bone defect model T1DM rats,ICA facilitated bone formation and CD31hiEMCNhi type H-positive capillary formation.Lastly,ICA effectively accelerated the rate of bone formation in the defect area.CONCLUSION ICA was able to accelerate bone regeneration in a T1DM rat model by inducing osteogenesis-angiogenesis coupling of BMSCs.展开更多
Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifical...Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifically up-regulated in Schwann cells.Furthermore,using Schwann cell-specific Runx2 knocko ut mice,we studied peripheral nerve development and regeneration and found that multiple steps in the regeneration process following sciatic nerve injury were Runx2-dependent.Changes observed in Runx2 knoc kout mice include increased prolife ration of Schwann cells,impaired Schwann cell migration and axonal regrowth,reduced re-myelination of axo ns,and a block in macrophage clearance in the late stage of regeneration.Taken together,our findings indicate that Runx2 is a key regulator of Schwann cell plasticity,and therefore peripheral nerve repair.Thus,our study shows that Runx2 plays a major role in Schwann cell migration,re-myelination,and peripheral nerve functional recovery following injury.展开更多
Transition metal carbides and nitrides(MXenes)are crystal nanomaterials with a number of surface functional groups such as fluorine,hydroxyl,and oxygen,which can be used as carriers for proteins and drugs.MXenes have ...Transition metal carbides and nitrides(MXenes)are crystal nanomaterials with a number of surface functional groups such as fluorine,hydroxyl,and oxygen,which can be used as carriers for proteins and drugs.MXenes have excellent biocompatibility,electrical conductivity,surface hydrophilicity,mechanical properties and easy surface modification.However,at present,the stability of most MXenes needs to be improved,and more synthesis methods need to be explored.MXenes are good substrates for nerve cell regeneration and nerve reconstruction,which have broad application prospects in the repair of nervous system injury.Regarding the application of MXenes in neuroscience,mainly at the cellular level,the long-term in vivo biosafety and effects also need to be further explored.This review focuses on the progress of using MXenes in nerve regeneration over the last few years;discussing preparation of MXenes and their biocompatibility with different cells as well as the regulation by MXenes of nerve cell regeneration in two-dimensional and three-dimensional environments in vitro.MXenes have great potential in regulating the proliferation,differentiation,and maturation of nerve cells and in promoting regeneration and recovery after nerve injury.In addition,this review also presents the main challenges during optimization processes,such as the preparation of stable MXenes and long-term in vivo biosafety,and further discusses future directions in neural tissue engineering.展开更多
BACKGROUND Bone healing is a complex process involving early inflammatory immune regu-lation,angiogenesis,osteogenic differentiation,and biomineralization.Fracture repair poses challenges for orthopedic surgeons,neces...BACKGROUND Bone healing is a complex process involving early inflammatory immune regu-lation,angiogenesis,osteogenic differentiation,and biomineralization.Fracture repair poses challenges for orthopedic surgeons,necessitating the search for efficient healing methods.AIM To investigate the underlying mechanism by which hydrogel-loaded exosomes derived from bone marrow mesenchymal stem cells(BMSCs)facilitate the process of fracture healing.METHODS Hydrogels and loaded BMSC-derived exosome(BMSC-exo)gels were charac-terized to validate their properties.In vitro evaluations were conducted to assess the impact of hydrogels on various stages of the healing process.Hydrogels could recruit macrophages and inhibit inflammatory responses,enhance of human umbilical vein endothelial cell angiogenesis,and promote the osteogenic differen-tiation of primary cranial osteoblasts.Furthermore,the effect of hydrogel on fracture healing was confirmed using a mouse fracture model.RESULTS The hydrogel effectively attenuated the inflammatory response during the initial repair stage and subsequently facilitated vascular migration,promoted the formation of large vessels,and enabled functional vascularization during bone repair.These effects were further validated in fracture models.CONCLUSION We successfully fabricated a hydrogel loaded with BMSC-exo that modulates macrophage polarization and angiogenesis to influence bone regeneration.展开更多
The retina of zebrafish can regenerate completely after injury.M ultiple studies have demonstrated that metabolic alte rations occur during retinal damage;however to date no study has identified a link between metabol...The retina of zebrafish can regenerate completely after injury.M ultiple studies have demonstrated that metabolic alte rations occur during retinal damage;however to date no study has identified a link between metabolites and retinal regeneration of zebrafish.Here,we performed an unbiased metabolome sequencing in the N-methyl-D-aspartic acid-damaged retinas of zebrafish to demonstrate the metabolomic mechanism of retinal regeneration.Among the differentially-ex pressed metabolites,we found a significant decrease in p-aminobenzoic acid in the N-methyl-D-aspartic acid-damaged retinas of zebrafish.Then,we investigated the role of p-aminobenzoic acid in retinal regeneration in adult zebrafish.Impo rtantly,p-aminobenzoic acid activated Achaetescute complex-like 1a expression,thereby promoting Müller glia reprogramming and division,as well as Müller glia-derived progenitor cell proliferation.Finally,we eliminated folic acid and inflammation as downstream effectors of PABA and demonstrated that PABA had little effect on Müller glia distribution.Taken together,these findings show that PABA contributes to retinal regeneration through activation of Achaetescute complex-like 1a expression in the N-methyl-Daspartic acid-damaged retinas of zebrafish.展开更多
Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and foun...Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and found that expression of platelet factor 4 was markedly up-regulated after sciatic nerve injury.Platelet factor is an important molecule in cell apoptosis,diffe rentiation,survival,and proliferation.Further,polymerase chain reaction and immunohistochemical staining confirmed the change in platelet factor 4 in the sciatic nerve at different time points after injury.Enzyme-linked immunosorbent assay confirmed that platelet factor 4 was secreted by Schwann cells.We also found that silencing platelet factor 4 decreased the proliferation and migration of primary cultured Schwann cells,while exogenously applied platelet factor 4 stimulated Schwann cell prolife ration and migration and neuronal axon growth.Furthermore,knocking out platelet factor 4 inhibited the prolife ration of Schwann cells in injured rat sciatic nerve.These findings suggest that Schwann cell-secreted platelet factor 4 may facilitate peripheral nerve repair and regeneration by regulating Schwann cell activation and axon growth.Thus,platelet factor 4 may be a potential therapeutic target for traumatic peripheral nerve injury.展开更多
Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles an...Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles and their fusion with the cellular membrane. Rab5 has been reported to play an important role in the development of the zebrafish embryo;however, its role in axonal regeneration in the central nervous system remains unclear. In this study, we established a zebrafish Mauthner cell model of axonal injury using single-cell electroporation and two-photon axotomy techniques. We found that overexpression of Rab5 in single Mauthner cells promoted marked axonal regeneration and increased the number of intra-axonal transport vesicles. In contrast, treatment of zebrafish larvae with the Rab kinase inhibitor CID-1067700markedly inhibited axonal regeneration in Mauthner cells. We also found that Rab5 activated phosphatidylinositol 3-kinase(PI3K) during axonal repair of Mauthner cells and promoted the recovery of zebrafish locomotor function. Additionally, rapamycin, an inhibitor of the mechanistic target of rapamycin downstream of PI3K, markedly hindered axonal regeneration. These findings suggest that Rab5 promotes the axonal regeneration of injured zebrafish Mauthner cells by activating the PI3K signaling pathway.展开更多
This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inerti...This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inertial parameters and the iterates,which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem.Consequently,our proof arguments are different from what is obtainable in the relevant literature.Finally,we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature.展开更多
Autotomy of appendages is a self-protection mechanism in crustaceans,which is defined as the reflexive loss of a limb in response to predation,competition,or other environmental factors.Single-limb injuries were the m...Autotomy of appendages is a self-protection mechanism in crustaceans,which is defined as the reflexive loss of a limb in response to predation,competition,or other environmental factors.Single-limb injuries were the most common among the species surveyed in the present study,and the chelicerae were the most frequently lost appendages.After autotomy,hormones and signaling pathways are altered.Loss of limbs can affect foraging efficiency,although cheliped loss may be compensated by shifting to alternative prey or using both motor and oral appendages.In heterogeneous species,the loss of the major chelae may affect the selectivity of feeding.Autotomy can affect crustacean growth by reducing size increases at molting and altering the timing of ecdysis.In commercial production,removing chelicerae is an effective strategy to reduce cannibalism,and production of soft-shell crabs can be increased via autotomy.After autotomy,a new limb will regrow through regeneration and molting.This process involves the regulation of hormones,regrowth of nerves,and a number of signaling pathways that include the Wnt/β-catenin signaling pathway and transforming growth factorβsignaling pathway.Crustaceans are somewhat different from vertebrates in terms of regeneration.This review provides theoretical guidance about autotomy and regeneration applied in artificial aquaculture,and we offer several suggestions for future research on autotomy and regeneration in crustaceans.展开更多
Neuro regeneration is a very complex phenomenon characterized by the generation of new neurons and synapses,involving connections between adjacent cells and axonal projections.Neuroregeneration supplies additional lon...Neuro regeneration is a very complex phenomenon characterized by the generation of new neurons and synapses,involving connections between adjacent cells and axonal projections.Neuroregeneration supplies additional longterm resources to replace those altered by the injury and ensure lasting functional recovery.展开更多
The Highlights session of the article unfortunately was taken falsely from another manuscript.The correct Highlights session is now in place.The correct is:Analyze the primary causes of cathode failure in three repres...The Highlights session of the article unfortunately was taken falsely from another manuscript.The correct Highlights session is now in place.The correct is:Analyze the primary causes of cathode failure in three representative batteries,illustrating their underlying regeneration mechanism.展开更多
Inflammatory skin disorders can cause chronic scarring and functional impairments,posing a significant burden on patients and the healthcare system.Conventional therapies,such as corticosteroids and nonsteroidal anti-...Inflammatory skin disorders can cause chronic scarring and functional impairments,posing a significant burden on patients and the healthcare system.Conventional therapies,such as corticosteroids and nonsteroidal anti-inflammatory drugs,are limited in efficacy and associated with adverse effects.Recently,nanozyme(NZ)-based hydrogels have shown great promise in addressing these challenges.NZ-based hydrogels possess unique therapeutic abilities by combining the therapeutic benefits of redox nanomaterials with enzymatic activity and the water-retaining capacity of hydrogels.The multifaceted therapeutic effects of these hydrogels include scavenging reactive oxygen species and other inflammatory mediators modulating immune responses toward a pro-regenerative environment and enhancing regenerative potential by triggering cell migration and differentiation.This review highlights the current state of the art in NZ-engineered hydrogels(NZ@hydrogels)for anti-inflammatory and skin regeneration applications.It also discusses the underlying chemo-mechano-biological mechanisms behind their effectiveness.Additionally,the challenges and future directions in this ground,particularly their clinical translation,are addressed.The insights provided in this review can aid in the design and engineering of novel NZ-based hydrogels,offering new possibilities for targeted and personalized skin-care therapies.展开更多
A biochar-supported green nZVI(G-nZVI@MKB)composite was synthesized using mango kernel waste with“dual identity”as reductant and biomass of biochar.The G-nZVI@MKB with a Fe/C mass ratio of 2.0(G-nZVI@MKB2)was determ...A biochar-supported green nZVI(G-nZVI@MKB)composite was synthesized using mango kernel waste with“dual identity”as reductant and biomass of biochar.The G-nZVI@MKB with a Fe/C mass ratio of 2.0(G-nZVI@MKB2)was determined as the most favorable composite for hexavalent chromium(Cr(VI))removal.Distinct influencing parameters were discussed,and 99.0%of Cr(VI)removal occurred within 360 min under these optimized parameters.Pseudo-second order kinetic model and intra-particle diffusion model well depicted Cr(VI)removal process.The XRD,FTIR,SEM,and XPS analyses verified the key roles of G-nZVI and functional groups,as well as the primary removal mechanisms involving electrostatic attraction,reduction,and complexation.G-nZVI@MKB2 exhibited good stability and reusability with only a 16.4%decline in Cr(VI)removal after five cycles.This study offered evidence that mango kernel could be recycled as a beneficial resource to synthesize green nZVI-loaded biochar composite for efficient Cr(VI)elimination from water.展开更多
In the medical and dental field, the importance and need for the study of materials and drugs for use as bone grafts or regeneration in injured areas due to the presence of fractures, infections or tumors that cause e...In the medical and dental field, the importance and need for the study of materials and drugs for use as bone grafts or regeneration in injured areas due to the presence of fractures, infections or tumors that cause extensive loss of bone tissue is observed. Bone is a specialized, vascularized and dynamic connective tissue that changes throughout the life of the organism. When injured, it has a unique ability to regenerate and repair without the presence of scars, but in some situations, due to the size of the defect, the bone tissue does not regenerate completely. Thus, due to its importance, there is a great development in therapeutic approaches for the treatment of bone defects through studies that include autografts, allografts and artificial materials used alone or in association with bone grafts. Pharmaceuticals composed of biomaterials and osteogenic active substances have been extensively studied because they provide potential for tissue regeneration and new strategies for the treatment of bone defects. Statins work as specific inhibitors of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMG-CoAreductase). They represent efficient drugs in lowering cholesterol, as they reduce platelet aggregation and thrombus deposition;in addition, they promote angiogenesis, reduce the β-amyloid peptide related to Alzheimer’s disease and suppress the activation of T lymphocytes. Furthermore, these substances have been used in the treatment of hypercholesterolemia and coronary artery disease. By inhibiting HMG-CoAreductase, statins not only inhibit cholesterol synthesis, but also exhibit several other beneficial pleiotropic effects. Therefore, there has been increasing interest in researching the effects of statins, including Simvastatin, on bone and osteometabolic diseases. However, statins in high doses cause inflammation in bone defects and inhibit osteoblastic differentiation, negatively contributing to bone repair. Thus, different types of studies with different concentrations of statins have been studied to positively or negatively correlate this drug with bone regeneration. In this review we will address the positive, negative or neutral effects of statins in relation to bone defects providing a comprehensive understanding of their application. Finally, we will discuss a variety of statin-based drugs and the ideal dose through a theoretical basis with preclinical, clinical and laboratory work in order to promote the repair of bone defects.展开更多
基金supported by the Natural Science Foundation of Beijing,China(7214223,7212027)the Beijing Hospitals Authority Youth Programme(QML20210601)+3 种基金the Chinese Scholarship Council(CSC)scholarship(201706210415)the National Key Research and Development Program of China(2017YFC0908800)the Beijing Municipal Health Commission(PXM2020_026272_000002,PXM2020_026272_000014)the National Natural Science Foundation of China(82070293).
文摘Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public health burden.Military personnel,compared with civilians,is exposed to more stress,a risk factor for heart diseases,making cardiovascular health management and treatment innovation an important topic for military medicine.So far,medical intervention can slow down cardiovascular disease progression,but not yet induce heart regeneration.In the past decades,studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury.Insights have emerged from studies in animal models and early clinical trials.Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease.In this review,we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury.
文摘BACKGROUND The success of liver resection relies on the ability of the remnant liver to regenerate.Most of the knowledge regarding the pathophysiological basis of liver regeneration comes from rodent studies,and data on humans are scarce.Additionally,there is limited knowledge about the preoperative factors that influence postoperative regeneration.AIM To quantify postoperative remnant liver volume by the latest volumetric software and investigate perioperative factors that affect posthepatectomy liver regenera-tion.METHODS A total of 268 patients who received partial hepatectomy were enrolled.Patients were grouped into right hepatectomy/trisegmentectomy(RH/Tri),left hepa-tectomy(LH),segmentectomy(Seg),and subsegmentectomy/nonanatomical hepatectomy(Sub/Non)groups.The regeneration index(RI)and late rege-neration rate were defined as(postoperative liver volume)/[total functional liver volume(TFLV)]×100 and(RI at 6-months-RI at 3-months)/RI at 6-months,respectively.The lower 25th percentile of RI and the higher 25th percentile of late regeneration rate in each group were defined as“low regeneration”and“delayed regeneration”.“Restoration to the original size”was defined as regeneration of the liver volume by more than 90%of the TFLV at 12 months postsurgery.RESULTS The numbers of patients in the RH/Tri,LH,Seg,and Sub/Non groups were 41,53,99 and 75,respectively.The RI plateaued at 3 months in the LH,Seg,and Sub/Non groups,whereas the RI increased until 12 months in the RH/Tri group.According to our multivariate analysis,the preoperative albumin-bilirubin(ALBI)score was an independent factor for low regeneration at 3 months[odds ratio(OR)95%CI=2.80(1.17-6.69),P=0.02;per 1.0 up]and 12 months[OR=2.27(1.01-5.09),P=0.04;per 1.0 up].Multivariate analysis revealed that only liver resection percentage[OR=1.03(1.00-1.05),P=0.04]was associated with delayed regeneration.Furthermore,multivariate analysis demonstrated that the preoperative ALBI score[OR=2.63(1.00-1.05),P=0.02;per 1.0 up]and liver resection percentage[OR=1.02(1.00-1.05),P=0.04;per 1.0 up]were found to be independent risk factors associated with volume restoration failure.CONCLUSION Liver regeneration posthepatectomy was determined by the resection percentage and preoperative ALBI score.This knowledge helps surgeons decide the timing and type of rehepatectomy for recurrent cases.
基金supported by the Sichuan Science and Technology Program,No.2023YFS0164 (to JC)。
文摘Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential.
基金The Fundamental Research Funds for the Central Universities,HUST,Grant/Award Number:2021GCRC046The Open Fund of State Key Laboratory of New Textile Materials and Advanced Processing Technologies,Grant/Award Number:FZ2022005Natural Science Foundation of Hubei Province,China,Grant/Award Number:2022CFA031。
文摘The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite often has a relatively intact structure with few defects after long cycling.Yet,most spent graphite is simply burned or discarded due to its limited value and inferior performance on using conventional recycling methods that are complex,have low efficiency,and fail in performance restoration.Herein,we propose a fast,efficient,and“intelligent”strategy to regenerate and upcycle spent graphite based on defect‐driven targeted remediation.Using Sn as a nanoscale healant,we used rapid heating(~50 ms)to enable dynamic Sn droplets to automatically nucleate around the surface defects on the graphite upon cooling owing to strong binding to the defects(~5.84 eV/atom),thus simultaneously achieving Sn dispersion and graphite remediation.As a result,the regenerated graphite showed enhanced capacity and cycle stability(458.9 mAh g^(−1) at 0.2 A g^(−1) after 100 cycles),superior to those of commercial graphite.Benefiting from the self‐adaption of Sn dispersion,spent graphite with different degrees of defects can be regenerated to similar structures and performance.EverBatt analysis indicates that targeted regeneration and upcycling have significantly lower energy consumption(~99%reduction)and near‐zero CO_(2) emission,and yield much higher profit than hydrometallurgy,which opens a new avenue for direct upcycling of spend graphite in an efficient,green,and profitable manner for sustainable battery manufacture.
基金supported by the National Natural Science Foundation of China,Nos.31971277 and 31950410551(both to DY)。
文摘Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells.However,axon regeneration and repair do not automatically result in the restoration of function,which is the ultimate therapeutic goal but also a major clinical challenge.Transforming growth factor(TGF)is a multifunctional cytokine that regulates various biological processes including tissue repair,embryo development,and cell growth and differentiation.There is accumulating evidence that TGF-βfamily proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells;recruiting specific immune cells;controlling the permeability of the blood-nerve barrier,thereby stimulating axon growth;and inhibiting remyelination of regenerated axons.TGF-βhas been applied to the treatment of peripheral nerve injury in animal models.In this context,we review the functions of TGF-βin peripheral nerve regeneration and potential clinical applications.
基金This work was supported by grants fromthe Sichuan Science and Technology Program(2023NSFSC1877).
文摘Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising approach for addressing these urgent clinical requirements.This review provides a thorough analysis of the application of 3D cell-based approaches to liver regeneration and their potential impact on patients with end-stage liver failure.Here,we discuss various 3D culture models that incorporate hepatocytes and stem cells to restore liver function and ameliorate the consequences of liver failure.Furthermore,we explored the challenges in transitioning these innovative strategies from preclinical studies to clinical applications.The collective insights presented herein highlight the significance of 3D cell-based strategies as a transformative paradigm for liver regeneration and improved patient care.
基金Supported by the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation,No.GZC20231088President Foundation of The Third Affiliated Hospital of Southern Medical University,China,No.YP202210.
文摘BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To explore the role and potential mechanism of ICA on bone defect in the context of T1DM.METHODS The effects of ICA on osteogenesis and angiogenesis were evaluated by alkaline phosphatase staining,alizarin red S staining,quantitative real-time polymerase chain reaction,Western blot,and immunofluorescence.Angiogenesis-related assays were conducted to investigate the relationship between osteogenesis and angiogenesis.A bone defect model was established in T1DM rats.The model rats were then treated with ICA or placebo and micron-scale computed tomography,histomorphometry,histology,and sequential fluorescent labeling were used to evaluate the effect of ICA on bone formation in the defect area.RESULTS ICA promoted bone marrow mesenchymal stem cell(BMSC)proliferation and osteogenic differentiation.The ICA treated-BMSCs showed higher expression levels of osteogenesis-related markers(alkaline phosphatase and osteocalcin)and angiogenesis-related markers(vascular endothelial growth factor A and platelet endothelial cell adhesion molecule 1)compared to the untreated group.ICA was also found to induce osteogenesis-angiogenesis coupling of BMSCs.In the bone defect model T1DM rats,ICA facilitated bone formation and CD31hiEMCNhi type H-positive capillary formation.Lastly,ICA effectively accelerated the rate of bone formation in the defect area.CONCLUSION ICA was able to accelerate bone regeneration in a T1DM rat model by inducing osteogenesis-angiogenesis coupling of BMSCs.
基金supported by the National Natural Science Foundation of China,No.82104795 (to RH)。
文摘Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifically up-regulated in Schwann cells.Furthermore,using Schwann cell-specific Runx2 knocko ut mice,we studied peripheral nerve development and regeneration and found that multiple steps in the regeneration process following sciatic nerve injury were Runx2-dependent.Changes observed in Runx2 knoc kout mice include increased prolife ration of Schwann cells,impaired Schwann cell migration and axonal regrowth,reduced re-myelination of axo ns,and a block in macrophage clearance in the late stage of regeneration.Taken together,our findings indicate that Runx2 is a key regulator of Schwann cell plasticity,and therefore peripheral nerve repair.Thus,our study shows that Runx2 plays a major role in Schwann cell migration,re-myelination,and peripheral nerve functional recovery following injury.
基金supported by grants from the National Key R&D Program of China,Nos.2021YFA1101300,2021YFA1101803,2020YFA0112503the National Natural Science Foundation of China,Nos.82030029,81970882,92149304Science and Technology Department of Sichuan Province,No.2021YFS0371(all to RC)。
文摘Transition metal carbides and nitrides(MXenes)are crystal nanomaterials with a number of surface functional groups such as fluorine,hydroxyl,and oxygen,which can be used as carriers for proteins and drugs.MXenes have excellent biocompatibility,electrical conductivity,surface hydrophilicity,mechanical properties and easy surface modification.However,at present,the stability of most MXenes needs to be improved,and more synthesis methods need to be explored.MXenes are good substrates for nerve cell regeneration and nerve reconstruction,which have broad application prospects in the repair of nervous system injury.Regarding the application of MXenes in neuroscience,mainly at the cellular level,the long-term in vivo biosafety and effects also need to be further explored.This review focuses on the progress of using MXenes in nerve regeneration over the last few years;discussing preparation of MXenes and their biocompatibility with different cells as well as the regulation by MXenes of nerve cell regeneration in two-dimensional and three-dimensional environments in vitro.MXenes have great potential in regulating the proliferation,differentiation,and maturation of nerve cells and in promoting regeneration and recovery after nerve injury.In addition,this review also presents the main challenges during optimization processes,such as the preparation of stable MXenes and long-term in vivo biosafety,and further discusses future directions in neural tissue engineering.
文摘BACKGROUND Bone healing is a complex process involving early inflammatory immune regu-lation,angiogenesis,osteogenic differentiation,and biomineralization.Fracture repair poses challenges for orthopedic surgeons,necessitating the search for efficient healing methods.AIM To investigate the underlying mechanism by which hydrogel-loaded exosomes derived from bone marrow mesenchymal stem cells(BMSCs)facilitate the process of fracture healing.METHODS Hydrogels and loaded BMSC-derived exosome(BMSC-exo)gels were charac-terized to validate their properties.In vitro evaluations were conducted to assess the impact of hydrogels on various stages of the healing process.Hydrogels could recruit macrophages and inhibit inflammatory responses,enhance of human umbilical vein endothelial cell angiogenesis,and promote the osteogenic differen-tiation of primary cranial osteoblasts.Furthermore,the effect of hydrogel on fracture healing was confirmed using a mouse fracture model.RESULTS The hydrogel effectively attenuated the inflammatory response during the initial repair stage and subsequently facilitated vascular migration,promoted the formation of large vessels,and enabled functional vascularization during bone repair.These effects were further validated in fracture models.CONCLUSION We successfully fabricated a hydrogel loaded with BMSC-exo that modulates macrophage polarization and angiogenesis to influence bone regeneration.
基金supported by the National Natural Science Foundation of China,Nos.81974134(to XX)and 82000895(to HL)National Key Research and Development Program of China,Nos.2021YFA1101200&2021YFA1101202National Natural Science Foundation of Hunan Province,China,No.2022JJ30071(to HL)。
文摘The retina of zebrafish can regenerate completely after injury.M ultiple studies have demonstrated that metabolic alte rations occur during retinal damage;however to date no study has identified a link between metabolites and retinal regeneration of zebrafish.Here,we performed an unbiased metabolome sequencing in the N-methyl-D-aspartic acid-damaged retinas of zebrafish to demonstrate the metabolomic mechanism of retinal regeneration.Among the differentially-ex pressed metabolites,we found a significant decrease in p-aminobenzoic acid in the N-methyl-D-aspartic acid-damaged retinas of zebrafish.Then,we investigated the role of p-aminobenzoic acid in retinal regeneration in adult zebrafish.Impo rtantly,p-aminobenzoic acid activated Achaetescute complex-like 1a expression,thereby promoting Müller glia reprogramming and division,as well as Müller glia-derived progenitor cell proliferation.Finally,we eliminated folic acid and inflammation as downstream effectors of PABA and demonstrated that PABA had little effect on Müller glia distribution.Taken together,these findings show that PABA contributes to retinal regeneration through activation of Achaetescute complex-like 1a expression in the N-methyl-Daspartic acid-damaged retinas of zebrafish.
基金supported by the National Natural Science Foundation of China,Nos.31730031,32130060the National Natural Science Foundation of China,No.31971276(to JH)+1 种基金the Natural Science Foundation of Jiangsu Province,No.BK20202013(to XG)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(Major Program),No.19KJA320005(to JH)。
文摘Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and found that expression of platelet factor 4 was markedly up-regulated after sciatic nerve injury.Platelet factor is an important molecule in cell apoptosis,diffe rentiation,survival,and proliferation.Further,polymerase chain reaction and immunohistochemical staining confirmed the change in platelet factor 4 in the sciatic nerve at different time points after injury.Enzyme-linked immunosorbent assay confirmed that platelet factor 4 was secreted by Schwann cells.We also found that silencing platelet factor 4 decreased the proliferation and migration of primary cultured Schwann cells,while exogenously applied platelet factor 4 stimulated Schwann cell prolife ration and migration and neuronal axon growth.Furthermore,knocking out platelet factor 4 inhibited the prolife ration of Schwann cells in injured rat sciatic nerve.These findings suggest that Schwann cell-secreted platelet factor 4 may facilitate peripheral nerve repair and regeneration by regulating Schwann cell activation and axon growth.Thus,platelet factor 4 may be a potential therapeutic target for traumatic peripheral nerve injury.
基金supported by the Research Funds of the Center for Advanced Interdisciplinary Science and Biomedicine of IHM,No.QYZD20220002the National Natural Science Foundation of China,No.82071357a grant from the Ministry of Science and Technology of China,No.2019YFA0405600 (all to BH)。
文摘Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles and their fusion with the cellular membrane. Rab5 has been reported to play an important role in the development of the zebrafish embryo;however, its role in axonal regeneration in the central nervous system remains unclear. In this study, we established a zebrafish Mauthner cell model of axonal injury using single-cell electroporation and two-photon axotomy techniques. We found that overexpression of Rab5 in single Mauthner cells promoted marked axonal regeneration and increased the number of intra-axonal transport vesicles. In contrast, treatment of zebrafish larvae with the Rab kinase inhibitor CID-1067700markedly inhibited axonal regeneration in Mauthner cells. We also found that Rab5 activated phosphatidylinositol 3-kinase(PI3K) during axonal repair of Mauthner cells and promoted the recovery of zebrafish locomotor function. Additionally, rapamycin, an inhibitor of the mechanistic target of rapamycin downstream of PI3K, markedly hindered axonal regeneration. These findings suggest that Rab5 promotes the axonal regeneration of injured zebrafish Mauthner cells by activating the PI3K signaling pathway.
文摘This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inertial parameters and the iterates,which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem.Consequently,our proof arguments are different from what is obtainable in the relevant literature.Finally,we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature.
基金funded by the National Natural Science Foundation of China(Nos.32172993,42106104)the Ningbo Provincial Natural Science Foundation of China(No.202003N4181).
文摘Autotomy of appendages is a self-protection mechanism in crustaceans,which is defined as the reflexive loss of a limb in response to predation,competition,or other environmental factors.Single-limb injuries were the most common among the species surveyed in the present study,and the chelicerae were the most frequently lost appendages.After autotomy,hormones and signaling pathways are altered.Loss of limbs can affect foraging efficiency,although cheliped loss may be compensated by shifting to alternative prey or using both motor and oral appendages.In heterogeneous species,the loss of the major chelae may affect the selectivity of feeding.Autotomy can affect crustacean growth by reducing size increases at molting and altering the timing of ecdysis.In commercial production,removing chelicerae is an effective strategy to reduce cannibalism,and production of soft-shell crabs can be increased via autotomy.After autotomy,a new limb will regrow through regeneration and molting.This process involves the regulation of hormones,regrowth of nerves,and a number of signaling pathways that include the Wnt/β-catenin signaling pathway and transforming growth factorβsignaling pathway.Crustaceans are somewhat different from vertebrates in terms of regeneration.This review provides theoretical guidance about autotomy and regeneration applied in artificial aquaculture,and we offer several suggestions for future research on autotomy and regeneration in crustaceans.
基金supported by PIAno di inCEntivi per la Rlcerca di Ateneo 2020/2022 Linea di In tervento3"Starting Grant""REPAIR"(to GM)。
文摘Neuro regeneration is a very complex phenomenon characterized by the generation of new neurons and synapses,involving connections between adjacent cells and axonal projections.Neuroregeneration supplies additional longterm resources to replace those altered by the injury and ensure lasting functional recovery.
文摘The Highlights session of the article unfortunately was taken falsely from another manuscript.The correct Highlights session is now in place.The correct is:Analyze the primary causes of cathode failure in three representative batteries,illustrating their underlying regeneration mechanism.
基金supported by the grants from National Research Foundation(NRF,#2021R1A5A2022318,#RS-2023-00220408,#RS-2023-00247485),Republic of Korea.
文摘Inflammatory skin disorders can cause chronic scarring and functional impairments,posing a significant burden on patients and the healthcare system.Conventional therapies,such as corticosteroids and nonsteroidal anti-inflammatory drugs,are limited in efficacy and associated with adverse effects.Recently,nanozyme(NZ)-based hydrogels have shown great promise in addressing these challenges.NZ-based hydrogels possess unique therapeutic abilities by combining the therapeutic benefits of redox nanomaterials with enzymatic activity and the water-retaining capacity of hydrogels.The multifaceted therapeutic effects of these hydrogels include scavenging reactive oxygen species and other inflammatory mediators modulating immune responses toward a pro-regenerative environment and enhancing regenerative potential by triggering cell migration and differentiation.This review highlights the current state of the art in NZ-engineered hydrogels(NZ@hydrogels)for anti-inflammatory and skin regeneration applications.It also discusses the underlying chemo-mechano-biological mechanisms behind their effectiveness.Additionally,the challenges and future directions in this ground,particularly their clinical translation,are addressed.The insights provided in this review can aid in the design and engineering of novel NZ-based hydrogels,offering new possibilities for targeted and personalized skin-care therapies.
基金supported by the National Natural Science Foundation of China(51808253)the Science and Technology Planning Project of Jilin Province(20220508008RC)+1 种基金Science and Technology Project of Jilin Provincial Education Department(JJKH20220295KJ and JJKH20210272KJ)the Science and Technology Projects of the Ministry of Housing and Urban-Rural Development(2018-K6-003).
文摘A biochar-supported green nZVI(G-nZVI@MKB)composite was synthesized using mango kernel waste with“dual identity”as reductant and biomass of biochar.The G-nZVI@MKB with a Fe/C mass ratio of 2.0(G-nZVI@MKB2)was determined as the most favorable composite for hexavalent chromium(Cr(VI))removal.Distinct influencing parameters were discussed,and 99.0%of Cr(VI)removal occurred within 360 min under these optimized parameters.Pseudo-second order kinetic model and intra-particle diffusion model well depicted Cr(VI)removal process.The XRD,FTIR,SEM,and XPS analyses verified the key roles of G-nZVI and functional groups,as well as the primary removal mechanisms involving electrostatic attraction,reduction,and complexation.G-nZVI@MKB2 exhibited good stability and reusability with only a 16.4%decline in Cr(VI)removal after five cycles.This study offered evidence that mango kernel could be recycled as a beneficial resource to synthesize green nZVI-loaded biochar composite for efficient Cr(VI)elimination from water.
文摘In the medical and dental field, the importance and need for the study of materials and drugs for use as bone grafts or regeneration in injured areas due to the presence of fractures, infections or tumors that cause extensive loss of bone tissue is observed. Bone is a specialized, vascularized and dynamic connective tissue that changes throughout the life of the organism. When injured, it has a unique ability to regenerate and repair without the presence of scars, but in some situations, due to the size of the defect, the bone tissue does not regenerate completely. Thus, due to its importance, there is a great development in therapeutic approaches for the treatment of bone defects through studies that include autografts, allografts and artificial materials used alone or in association with bone grafts. Pharmaceuticals composed of biomaterials and osteogenic active substances have been extensively studied because they provide potential for tissue regeneration and new strategies for the treatment of bone defects. Statins work as specific inhibitors of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMG-CoAreductase). They represent efficient drugs in lowering cholesterol, as they reduce platelet aggregation and thrombus deposition;in addition, they promote angiogenesis, reduce the β-amyloid peptide related to Alzheimer’s disease and suppress the activation of T lymphocytes. Furthermore, these substances have been used in the treatment of hypercholesterolemia and coronary artery disease. By inhibiting HMG-CoAreductase, statins not only inhibit cholesterol synthesis, but also exhibit several other beneficial pleiotropic effects. Therefore, there has been increasing interest in researching the effects of statins, including Simvastatin, on bone and osteometabolic diseases. However, statins in high doses cause inflammation in bone defects and inhibit osteoblastic differentiation, negatively contributing to bone repair. Thus, different types of studies with different concentrations of statins have been studied to positively or negatively correlate this drug with bone regeneration. In this review we will address the positive, negative or neutral effects of statins in relation to bone defects providing a comprehensive understanding of their application. Finally, we will discuss a variety of statin-based drugs and the ideal dose through a theoretical basis with preclinical, clinical and laboratory work in order to promote the repair of bone defects.